vimtex/test/vader/format.vader

177 lines
8.0 KiB
Plaintext
Raw Normal View History

2016-04-05 17:16:36 -04:00
Execute (Setup):
2016-04-05 17:18:13 -04:00
set textwidth=79
2016-07-21 16:19:23 -04:00
set nojoinspaces
set shiftwidth=2
2016-04-05 17:16:36 -04:00
let g:vimtex_format_enabled = 1
2016-04-07 02:24:26 -04:00
silent! VimtexReload
2016-04-05 17:16:36 -04:00
2016-04-07 16:12:46 -04:00
Given tex (Format: Inline comment):
2016-04-05 17:16:36 -04:00
Lorem ipsum dolor sit amet, consetetur sadipscing % a comment
elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo dolores et ea
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
ipsum dolor sit amet.
2016-04-07 16:12:46 -04:00
Do (Format text):
2016-04-05 17:16:36 -04:00
gqG
2016-04-07 16:12:46 -04:00
Expect tex (Verify):
2016-04-05 17:16:36 -04:00
Lorem ipsum dolor sit amet, consetetur sadipscing % a comment
elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores
et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
dolor sit amet.
Given tex (Format: Line breaking):
start a new paragraph \\
start a new line but not a new paragraph \\*
flush all, start a new (odd numbered) page \cleardoublepage
flush all, start a new page \clearpage
allow to break the line here \linebreak
request a new line \newline
request a new page \newpage
encourage page break \pagebreak
2016-07-21 16:03:10 -04:00
Do (Format text):
gqG
Expect tex (Verify):
start a new paragraph \\
start a new line but not a new paragraph \\*
flush all, start a new (odd numbered) page \cleardoublepage
flush all, start a new page \clearpage
allow to break the line here \linebreak
request a new line \newline
request a new page \newpage
encourage page break \pagebreak
2016-07-21 16:03:10 -04:00
Given tex (Format: Advanced example):
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo dolores et ea
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
ipsum dolor sit amet.
\begin{itemize}
\item Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo dolores et ea \\
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
\item ipsum dolor sit amet.
start a new paragraph % test
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo dolores et ea
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
ipsum dolor sit amet.
\end{itemize}
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo dolores et ea
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
ipsum dolor sit amet.
Do (Format text):
gqG
Expect tex (Verify):
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At
vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.
\begin{itemize}
\item Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed
diam voluptua. At vero eos et accusam et justo duo dolores et ea \\
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
2016-08-13 16:23:42 -04:00
\item ipsum dolor sit amet.
start a new paragraph % test
2016-07-21 16:03:10 -04:00
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet
clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
amet.
\end{itemize}
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At
vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.
Given tex (Format: With math):
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt asd asdj klkut \( g(x)
= 4\) labore et dolore magna aliquyam erat, sed diam volu.
$f(x) = 3$ vero eos et accusam et justo duo dolores et ea
\begin{align}
f(x) &= 1 \\
g(x) &= 2
\end{align}
rebum. Stet clita kasd gubergren, no sea takimata sanctus
est Lorem ipsum dolor sit amet.
\[
e^{2\pi i} = 1
\]
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt asd asdj klkut labore et
Do (Format text):
gqG
Expect tex (Verify):
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt asd asdj klkut \( g(x) = 4\) labore et dolore magna aliquyam
erat, sed diam volu. $f(x) = 3$ vero eos et accusam et justo duo dolores et ea
\begin{align}
f(x) &= 1 \\
g(x) &= 2
\end{align}
rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor
sit amet.
\[
e^{2\pi i} = 1
\]
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt asd asdj klkut labore et
Given tex (Format: Strange bug):
Therefore, in that case the observed dynamics cannot be truly
Markovian. We can still approximately capture the observed density dynamics
with eq.~\ref{eq:fpe}; however the local coefficients are then effectively
averages over the co-evolving unobserved distribution. For example, $\vec
v(\vec x,t)=\int p(\vec x^u|\vec x,t)v(\vec x,\vec x^u,t)dx^u$. This has some
important consequences. First, the effective Markovian coefficients $\vec v,
\lambda, D$, will generally depend on time, reflecting the time evolution of
the hidden $p(\vec x^u)$ over the time scale of the experiment. Second, the
effective coefficients may also depend on the initial condition: a cell
population started concentrated around label $\vec x_0$ implies a certain
distribution over $x^u$ when sampled at label $\vec x$ some time later; another
population started around $\vec x_1$ carries a different history when it, too,
visits $\vec x$ later. Therefore, for instance the effective drift $\vec v(\vec
x)$ will be different in the two cases. We conclude that, if unobserved degrees
of freedom have dynamics on the time scale of the experiment eq.~\ref{eq:fpe}
is an approximation whose coefficients become \emph{non-universal} (dependent
on intial conditions) and \emph{time-dependent}.
Do (Format text):
gqG
Expect tex (Verify):
Therefore, in that case the observed dynamics cannot be truly Markovian. We can
still approximately capture the observed density dynamics with
eq.~\ref{eq:fpe}; however the local coefficients are then effectively averages
over the co-evolving unobserved distribution. For example, $\vec v(\vec
x,t)=\int p(\vec x^u|\vec x,t)v(\vec x,\vec x^u,t)dx^u$. This has some
important consequences. First, the effective Markovian coefficients $\vec v,
\lambda, D$, will generally depend on time, reflecting the time evolution of
the hidden $p(\vec x^u)$ over the time scale of the experiment. Second, the
effective coefficients may also depend on the initial condition: a cell
population started concentrated around label $\vec x_0$ implies a certain
distribution over $x^u$ when sampled at label $\vec x$ some time later; another
population started around $\vec x_1$ carries a different history when it, too,
visits $\vec x$ later. Therefore, for instance the effective drift $\vec v(\vec
x)$ will be different in the two cases. We conclude that, if unobserved degrees
of freedom have dynamics on the time scale of the experiment eq.~\ref{eq:fpe}
is an approximation whose coefficients become \emph{non-universal} (dependent
on intial conditions) and \emph{time-dependent}.