YouCompleteMe/cpp/BoostParts/boost/atomic/detail/gcc-sparcv9.hpp
2013-03-16 11:00:13 -07:00

1230 lines
34 KiB
C++

#ifndef BOOST_ATOMIC_DETAIL_GCC_SPARC_HPP
#define BOOST_ATOMIC_DETAIL_GCC_SPARC_HPP
// Copyright (c) 2010 Helge Bahmann
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cstddef>
#include <boost/cstdint.hpp>
#include <boost/atomic/detail/config.hpp>
#ifdef BOOST_ATOMIC_HAS_PRAGMA_ONCE
#pragma once
#endif
namespace boost {
namespace atomics {
namespace detail {
inline void
platform_fence_before(memory_order order)
{
switch(order) {
case memory_order_relaxed:
case memory_order_acquire:
case memory_order_consume:
break;
case memory_order_release:
case memory_order_acq_rel:
__asm__ __volatile__ ("membar #StoreStore | #LoadStore" ::: "memory");
/* release */
break;
case memory_order_seq_cst:
__asm__ __volatile__ ("membar #Sync" ::: "memory");
/* seq */
break;
}
}
inline void
platform_fence_after(memory_order order)
{
switch(order) {
case memory_order_relaxed:
case memory_order_release:
break;
case memory_order_acquire:
case memory_order_acq_rel:
__asm__ __volatile__ ("membar #LoadLoad | #LoadStore" ::: "memory");
/* acquire */
break;
case memory_order_consume:
/* consume */
break;
case memory_order_seq_cst:
__asm__ __volatile__ ("membar #Sync" ::: "memory");
/* seq */
break;
default:;
}
}
inline void
platform_fence_after_store(memory_order order)
{
switch(order) {
case memory_order_seq_cst:
__asm__ __volatile__ ("membar #Sync" ::: "memory");
default:;
}
}
inline void
platform_fence_after_load(memory_order order)
{
platform_fence_after(order);
}
}
}
class atomic_flag {
private:
atomic_flag(const atomic_flag &) /* = delete */ ;
atomic_flag & operator=(const atomic_flag &) /* = delete */ ;
uint32_t v_;
public:
atomic_flag(void) : v_(false) {}
void
clear(memory_order order = memory_order_seq_cst) volatile
{
atomics::detail::platform_fence_before(order);
const_cast<volatile uint32_t &>(v_) = 0;
atomics::detail::platform_fence_after_store(order);
}
bool
test_and_set(memory_order order = memory_order_seq_cst) volatile
{
atomics::detail::platform_fence_before(order);
uint32_t tmp = 1;
__asm__ (
"cas [%1], %2, %0"
: "+r" (tmp)
: "r" (&v_), "r" (0)
: "memory"
);
atomics::detail::platform_fence_after(order);
return tmp;
}
};
} /* namespace boost */
#define BOOST_ATOMIC_FLAG_LOCK_FREE 2
#include <boost/atomic/detail/base.hpp>
#if !defined(BOOST_ATOMIC_FORCE_FALLBACK)
#define BOOST_ATOMIC_CHAR_LOCK_FREE 2
#define BOOST_ATOMIC_CHAR16_T_LOCK_FREE 2
#define BOOST_ATOMIC_CHAR32_T_LOCK_FREE 2
#define BOOST_ATOMIC_WCHAR_T_LOCK_FREE 2
#define BOOST_ATOMIC_SHORT_LOCK_FREE 2
#define BOOST_ATOMIC_INT_LOCK_FREE 2
#define BOOST_ATOMIC_LONG_LOCK_FREE 2
#define BOOST_ATOMIC_LLONG_LOCK_FREE 0
#define BOOST_ATOMIC_POINTER_LOCK_FREE 2
#define BOOST_ATOMIC_BOOL_LOCK_FREE 2
namespace boost {
#define BOOST_ATOMIC_THREAD_FENCE 2
inline void
atomic_thread_fence(memory_order order)
{
switch(order) {
case memory_order_relaxed:
break;
case memory_order_release:
__asm__ __volatile__ ("membar #StoreStore | #LoadStore" ::: "memory");
break;
case memory_order_acquire:
__asm__ __volatile__ ("membar #LoadLoad | #LoadStore" ::: "memory");
break;
case memory_order_acq_rel:
__asm__ __volatile__ ("membar #LoadLoad | #LoadStore | #StoreStore" ::: "memory");
break;
case memory_order_consume:
break;
case memory_order_seq_cst:
__asm__ __volatile__ ("membar #Sync" ::: "memory");
break;
default:;
}
}
#define BOOST_ATOMIC_SIGNAL_FENCE 2
inline void
atomic_signal_fence(memory_order)
{
__asm__ __volatile__ ("" ::: "memory");
}
namespace atomics {
namespace detail {
/* integral types */
template<typename T>
class base_atomic<T, int, 1, true> {
typedef base_atomic this_type;
typedef T value_type;
typedef T difference_type;
typedef int32_t storage_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile storage_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
fetch_add(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp + v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_sub(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp - v, order, memory_order_relaxed));
return tmp;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
storage_type desired_s = desired;
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" ((storage_type)expected)
: "memory"
);
desired = desired_s;
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
value_type
fetch_and(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp & v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_or(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp | v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_xor(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp ^ v, order, memory_order_relaxed));
return tmp;
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_INTEGRAL_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
template<typename T>
class base_atomic<T, int, 1, false> {
typedef base_atomic this_type;
typedef T value_type;
typedef T difference_type;
typedef uint32_t storage_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile storage_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
fetch_add(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp + v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_sub(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp - v, order, memory_order_relaxed));
return tmp;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
storage_type desired_s = desired;
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" ((storage_type)expected)
: "memory"
);
desired = desired_s;
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
value_type
fetch_and(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp & v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_or(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp | v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_xor(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp ^ v, order, memory_order_relaxed));
return tmp;
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_INTEGRAL_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
template<typename T>
class base_atomic<T, int, 2, true> {
typedef base_atomic this_type;
typedef T value_type;
typedef T difference_type;
typedef int32_t storage_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile storage_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
fetch_add(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp + v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_sub(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp - v, order, memory_order_relaxed));
return tmp;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
storage_type desired_s = desired;
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" ((storage_type)expected)
: "memory"
);
desired = desired_s;
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
value_type
fetch_and(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp & v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_or(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp | v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_xor(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp ^ v, order, memory_order_relaxed));
return tmp;
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_INTEGRAL_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
template<typename T>
class base_atomic<T, int, 2, false> {
typedef base_atomic this_type;
typedef T value_type;
typedef T difference_type;
typedef uint32_t storage_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile storage_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
fetch_add(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp + v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_sub(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp - v, order, memory_order_relaxed));
return tmp;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
storage_type desired_s = desired;
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" ((storage_type)expected)
: "memory"
);
desired = desired_s;
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
value_type
fetch_and(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp & v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_or(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp | v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_xor(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp ^ v, order, memory_order_relaxed));
return tmp;
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_INTEGRAL_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
template<typename T, bool Sign>
class base_atomic<T, int, 4, Sign> {
typedef base_atomic this_type;
typedef T value_type;
typedef T difference_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile value_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile value_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
fetch_add(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp + v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_sub(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp - v, order, memory_order_relaxed));
return tmp;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired)
: "r" (&v_), "r" (expected)
: "memory"
);
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
value_type
fetch_and(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp & v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_or(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp | v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_xor(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp ^ v, order, memory_order_relaxed));
return tmp;
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_INTEGRAL_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
value_type v_;
};
/* pointer types */
template<bool Sign>
class base_atomic<void *, void *, 4, Sign> {
typedef base_atomic this_type;
typedef void * value_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile value_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile value_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired)
: "r" (&v_), "r" (expected)
: "memory"
);
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool compare_exchange_weak(value_type & expected, value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_BASE_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
value_type v_;
};
template<typename T, bool Sign>
class base_atomic<T *, void *, 4, Sign> {
typedef base_atomic this_type;
typedef T * value_type;
typedef ptrdiff_t difference_type;
public:
explicit base_atomic(value_type v) : v_(v) {}
base_atomic(void) {}
void
store(value_type v, memory_order order = memory_order_seq_cst) volatile
{
platform_fence_before(order);
const_cast<volatile value_type &>(v_) = v;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
value_type v = const_cast<const volatile value_type &>(v_);
platform_fence_after_load(order);
return v;
}
value_type
exchange(value_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
platform_fence_before(success_order);
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired)
: "r" (&v_), "r" (expected)
: "memory"
);
bool success = (desired == expected);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
expected = desired;
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
value_type
fetch_add(difference_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp + v, order, memory_order_relaxed));
return tmp;
}
value_type
fetch_sub(difference_type v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, tmp - v, order, memory_order_relaxed));
return tmp;
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_POINTER_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
value_type v_;
};
/* generic types */
template<typename T, bool Sign>
class base_atomic<T, void, 1, Sign> {
typedef base_atomic this_type;
typedef T value_type;
typedef uint32_t storage_type;
public:
explicit base_atomic(value_type const& v) : v_(0)
{
memcpy(&v_, &v, sizeof(value_type));
}
base_atomic(void) {}
void
store(value_type const& v, memory_order order = memory_order_seq_cst) volatile
{
storage_type tmp = 0;
memcpy(&tmp, &v, sizeof(value_type));
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = tmp;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
storage_type tmp = const_cast<volatile storage_type &>(v_);
platform_fence_after_load(order);
value_type v;
memcpy(&v, &tmp, sizeof(value_type));
return v;
}
value_type
exchange(value_type const& v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type const& desired,
memory_order success_order,
memory_order failure_order) volatile
{
storage_type expected_s = 0, desired_s = 0;
memcpy(&expected_s, &expected, sizeof(value_type));
memcpy(&desired_s, &desired, sizeof(value_type));
platform_fence_before(success_order);
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" (expected_s)
: "memory"
);
bool success = (desired_s == expected_s);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
memcpy(&expected, &desired_s, sizeof(value_type));
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type const& desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_BASE_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
template<typename T, bool Sign>
class base_atomic<T, void, 2, Sign> {
typedef base_atomic this_type;
typedef T value_type;
typedef uint32_t storage_type;
public:
explicit base_atomic(value_type const& v) : v_(0)
{
memcpy(&v_, &v, sizeof(value_type));
}
base_atomic(void) {}
void
store(value_type const& v, memory_order order = memory_order_seq_cst) volatile
{
storage_type tmp = 0;
memcpy(&tmp, &v, sizeof(value_type));
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = tmp;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
storage_type tmp = const_cast<volatile storage_type &>(v_);
platform_fence_after_load(order);
value_type v;
memcpy(&v, &tmp, sizeof(value_type));
return v;
}
value_type
exchange(value_type const& v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type const& desired,
memory_order success_order,
memory_order failure_order) volatile
{
storage_type expected_s = 0, desired_s = 0;
memcpy(&expected_s, &expected, sizeof(value_type));
memcpy(&desired_s, &desired, sizeof(value_type));
platform_fence_before(success_order);
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" (expected_s)
: "memory"
);
bool success = (desired_s == expected_s);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
memcpy(&expected, &desired_s, sizeof(value_type));
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type const& desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_BASE_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
template<typename T, bool Sign>
class base_atomic<T, void, 4, Sign> {
typedef base_atomic this_type;
typedef T value_type;
typedef uint32_t storage_type;
public:
explicit base_atomic(value_type const& v) : v_(0)
{
memcpy(&v_, &v, sizeof(value_type));
}
base_atomic(void) {}
void
store(value_type const& v, memory_order order = memory_order_seq_cst) volatile
{
storage_type tmp = 0;
memcpy(&tmp, &v, sizeof(value_type));
platform_fence_before(order);
const_cast<volatile storage_type &>(v_) = tmp;
platform_fence_after_store(order);
}
value_type
load(memory_order order = memory_order_seq_cst) const volatile
{
storage_type tmp = const_cast<volatile storage_type &>(v_);
platform_fence_after_load(order);
value_type v;
memcpy(&v, &tmp, sizeof(value_type));
return v;
}
value_type
exchange(value_type const& v, memory_order order = memory_order_seq_cst) volatile
{
value_type tmp = load(memory_order_relaxed);
do {} while(!compare_exchange_weak(tmp, v, order, memory_order_relaxed));
return tmp;
}
bool
compare_exchange_strong(
value_type & expected,
value_type const& desired,
memory_order success_order,
memory_order failure_order) volatile
{
storage_type expected_s = 0, desired_s = 0;
memcpy(&expected_s, &expected, sizeof(value_type));
memcpy(&desired_s, &desired, sizeof(value_type));
platform_fence_before(success_order);
__asm__ (
"cas [%1], %2, %0"
: "+r" (desired_s)
: "r" (&v_), "r" (expected_s)
: "memory"
);
bool success = (desired_s == expected_s);
if (success)
platform_fence_after(success_order);
else
platform_fence_after(failure_order);
memcpy(&expected, &desired_s, sizeof(value_type));
return success;
}
bool
compare_exchange_weak(
value_type & expected,
value_type const& desired,
memory_order success_order,
memory_order failure_order) volatile
{
return compare_exchange_strong(expected, desired, success_order, failure_order);
}
bool
is_lock_free(void) const volatile
{
return true;
}
BOOST_ATOMIC_DECLARE_BASE_OPERATORS
private:
base_atomic(const base_atomic &) /* = delete */ ;
void operator=(const base_atomic &) /* = delete */ ;
storage_type v_;
};
#endif /* !defined(BOOST_ATOMIC_FORCE_FALLBACK) */
}
}
}
#endif