YouCompleteMe/cpp/llvm/tools/clang/lib/Parse/ParseDeclCXX.cpp
Strahinja Val Markovic 1f51a89d39 Adding more llvm/clang files
These were ignored by git accidentally. We want ALL OF THEM since they all came
in the llvm/clang source distribution.
2012-07-05 17:55:45 -07:00

3021 lines
108 KiB
C++

//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/OperatorKinds.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/PrettyDeclStackTrace.h"
#include "llvm/ADT/SmallString.h"
#include "RAIIObjectsForParser.h"
using namespace clang;
/// ParseNamespace - We know that the current token is a namespace keyword. This
/// may either be a top level namespace or a block-level namespace alias. If
/// there was an inline keyword, it has already been parsed.
///
/// namespace-definition: [C++ 7.3: basic.namespace]
/// named-namespace-definition
/// unnamed-namespace-definition
///
/// unnamed-namespace-definition:
/// 'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
///
/// named-namespace-definition:
/// original-namespace-definition
/// extension-namespace-definition
///
/// original-namespace-definition:
/// 'inline'[opt] 'namespace' identifier attributes[opt]
/// '{' namespace-body '}'
///
/// extension-namespace-definition:
/// 'inline'[opt] 'namespace' original-namespace-name
/// '{' namespace-body '}'
///
/// namespace-alias-definition: [C++ 7.3.2: namespace.alias]
/// 'namespace' identifier '=' qualified-namespace-specifier ';'
///
Decl *Parser::ParseNamespace(unsigned Context,
SourceLocation &DeclEnd,
SourceLocation InlineLoc) {
assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'.
ObjCDeclContextSwitch ObjCDC(*this);
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteNamespaceDecl(getCurScope());
cutOffParsing();
return 0;
}
SourceLocation IdentLoc;
IdentifierInfo *Ident = 0;
std::vector<SourceLocation> ExtraIdentLoc;
std::vector<IdentifierInfo*> ExtraIdent;
std::vector<SourceLocation> ExtraNamespaceLoc;
Token attrTok;
if (Tok.is(tok::identifier)) {
Ident = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken(); // eat the identifier.
while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) {
ExtraNamespaceLoc.push_back(ConsumeToken());
ExtraIdent.push_back(Tok.getIdentifierInfo());
ExtraIdentLoc.push_back(ConsumeToken());
}
}
// Read label attributes, if present.
ParsedAttributes attrs(AttrFactory);
if (Tok.is(tok::kw___attribute)) {
attrTok = Tok;
ParseGNUAttributes(attrs);
}
if (Tok.is(tok::equal)) {
if (!attrs.empty())
Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
if (InlineLoc.isValid())
Diag(InlineLoc, diag::err_inline_namespace_alias)
<< FixItHint::CreateRemoval(InlineLoc);
return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
}
BalancedDelimiterTracker T(*this, tok::l_brace);
if (T.consumeOpen()) {
if (!ExtraIdent.empty()) {
Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
<< SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
}
Diag(Tok, Ident ? diag::err_expected_lbrace :
diag::err_expected_ident_lbrace);
return 0;
}
if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
getCurScope()->getFnParent()) {
if (!ExtraIdent.empty()) {
Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
<< SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
}
Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
SkipUntil(tok::r_brace, false);
return 0;
}
if (!ExtraIdent.empty()) {
TentativeParsingAction TPA(*this);
SkipUntil(tok::r_brace, /*StopAtSemi*/false, /*DontConsume*/true);
Token rBraceToken = Tok;
TPA.Revert();
if (!rBraceToken.is(tok::r_brace)) {
Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
<< SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
} else {
std::string NamespaceFix;
for (std::vector<IdentifierInfo*>::iterator I = ExtraIdent.begin(),
E = ExtraIdent.end(); I != E; ++I) {
NamespaceFix += " { namespace ";
NamespaceFix += (*I)->getName();
}
std::string RBraces;
for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i)
RBraces += "} ";
Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
<< FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(),
ExtraIdentLoc.back()),
NamespaceFix)
<< FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
}
}
// If we're still good, complain about inline namespaces in non-C++0x now.
if (InlineLoc.isValid())
Diag(InlineLoc, getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
// Enter a scope for the namespace.
ParseScope NamespaceScope(this, Scope::DeclScope);
Decl *NamespcDecl =
Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
IdentLoc, Ident, T.getOpenLocation(),
attrs.getList());
PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
"parsing namespace");
// Parse the contents of the namespace. This includes parsing recovery on
// any improperly nested namespaces.
ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0,
InlineLoc, attrs, T);
// Leave the namespace scope.
NamespaceScope.Exit();
DeclEnd = T.getCloseLocation();
Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
return NamespcDecl;
}
/// ParseInnerNamespace - Parse the contents of a namespace.
void Parser::ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc,
std::vector<IdentifierInfo*>& Ident,
std::vector<SourceLocation>& NamespaceLoc,
unsigned int index, SourceLocation& InlineLoc,
ParsedAttributes& attrs,
BalancedDelimiterTracker &Tracker) {
if (index == Ident.size()) {
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX0XAttributes(attrs);
MaybeParseMicrosoftAttributes(attrs);
ParseExternalDeclaration(attrs);
}
// The caller is what called check -- we are simply calling
// the close for it.
Tracker.consumeClose();
return;
}
// Parse improperly nested namespaces.
ParseScope NamespaceScope(this, Scope::DeclScope);
Decl *NamespcDecl =
Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(),
NamespaceLoc[index], IdentLoc[index],
Ident[index], Tracker.getOpenLocation(),
attrs.getList());
ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc,
attrs, Tracker);
NamespaceScope.Exit();
Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
}
/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
/// alias definition.
///
Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceLocation &DeclEnd) {
assert(Tok.is(tok::equal) && "Not equal token");
ConsumeToken(); // eat the '='.
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
cutOffParsing();
return 0;
}
CXXScopeSpec SS;
// Parse (optional) nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_namespace_name);
// Skip to end of the definition and eat the ';'.
SkipUntil(tok::semi);
return 0;
}
// Parse identifier.
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
// Eat the ';'.
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
"", tok::semi);
return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
SS, IdentLoc, Ident);
}
/// ParseLinkage - We know that the current token is a string_literal
/// and just before that, that extern was seen.
///
/// linkage-specification: [C++ 7.5p2: dcl.link]
/// 'extern' string-literal '{' declaration-seq[opt] '}'
/// 'extern' string-literal declaration
///
Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
assert(Tok.is(tok::string_literal) && "Not a string literal!");
SmallString<8> LangBuffer;
bool Invalid = false;
StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
if (Invalid)
return 0;
// FIXME: This is incorrect: linkage-specifiers are parsed in translation
// phase 7, so string-literal concatenation is supposed to occur.
// extern "" "C" "" "+" "+" { } is legal.
if (Tok.hasUDSuffix())
Diag(Tok, diag::err_invalid_string_udl);
SourceLocation Loc = ConsumeStringToken();
ParseScope LinkageScope(this, Scope::DeclScope);
Decl *LinkageSpec
= Actions.ActOnStartLinkageSpecification(getCurScope(),
DS.getSourceRange().getBegin(),
Loc, Lang,
Tok.is(tok::l_brace) ? Tok.getLocation()
: SourceLocation());
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX0XAttributes(attrs);
MaybeParseMicrosoftAttributes(attrs);
if (Tok.isNot(tok::l_brace)) {
// Reset the source range in DS, as the leading "extern"
// does not really belong to the inner declaration ...
DS.SetRangeStart(SourceLocation());
DS.SetRangeEnd(SourceLocation());
// ... but anyway remember that such an "extern" was seen.
DS.setExternInLinkageSpec(true);
ParseExternalDeclaration(attrs, &DS);
return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
SourceLocation());
}
DS.abort();
ProhibitAttributes(attrs);
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseCXX0XAttributes(attrs);
MaybeParseMicrosoftAttributes(attrs);
ParseExternalDeclaration(attrs);
}
T.consumeClose();
return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
T.getCloseLocation());
}
/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
/// using-directive. Assumes that current token is 'using'.
Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs,
Decl **OwnedType) {
assert(Tok.is(tok::kw_using) && "Not using token");
ObjCDeclContextSwitch ObjCDC(*this);
// Eat 'using'.
SourceLocation UsingLoc = ConsumeToken();
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteUsing(getCurScope());
cutOffParsing();
return 0;
}
// 'using namespace' means this is a using-directive.
if (Tok.is(tok::kw_namespace)) {
// Template parameters are always an error here.
if (TemplateInfo.Kind) {
SourceRange R = TemplateInfo.getSourceRange();
Diag(UsingLoc, diag::err_templated_using_directive)
<< R << FixItHint::CreateRemoval(R);
}
return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
}
// Otherwise, it must be a using-declaration or an alias-declaration.
// Using declarations can't have attributes.
ProhibitAttributes(attrs);
return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
AS_none, OwnedType);
}
/// ParseUsingDirective - Parse C++ using-directive, assumes
/// that current token is 'namespace' and 'using' was already parsed.
///
/// using-directive: [C++ 7.3.p4: namespace.udir]
/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
/// namespace-name ;
/// [GNU] using-directive:
/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
/// namespace-name attributes[opt] ;
///
Decl *Parser::ParseUsingDirective(unsigned Context,
SourceLocation UsingLoc,
SourceLocation &DeclEnd,
ParsedAttributes &attrs) {
assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
// Eat 'namespace'.
SourceLocation NamespcLoc = ConsumeToken();
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteUsingDirective(getCurScope());
cutOffParsing();
return 0;
}
CXXScopeSpec SS;
// Parse (optional) nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
IdentifierInfo *NamespcName = 0;
SourceLocation IdentLoc = SourceLocation();
// Parse namespace-name.
if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_namespace_name);
// If there was invalid namespace name, skip to end of decl, and eat ';'.
SkipUntil(tok::semi);
// FIXME: Are there cases, when we would like to call ActOnUsingDirective?
return 0;
}
// Parse identifier.
NamespcName = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken();
// Parse (optional) attributes (most likely GNU strong-using extension).
bool GNUAttr = false;
if (Tok.is(tok::kw___attribute)) {
GNUAttr = true;
ParseGNUAttributes(attrs);
}
// Eat ';'.
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi,
GNUAttr ? diag::err_expected_semi_after_attribute_list
: diag::err_expected_semi_after_namespace_name,
"", tok::semi);
return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
IdentLoc, NamespcName, attrs.getList());
}
/// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
/// Assumes that 'using' was already seen.
///
/// using-declaration: [C++ 7.3.p3: namespace.udecl]
/// 'using' 'typename'[opt] ::[opt] nested-name-specifier
/// unqualified-id
/// 'using' :: unqualified-id
///
/// alias-declaration: C++0x [decl.typedef]p2
/// 'using' identifier = type-id ;
///
Decl *Parser::ParseUsingDeclaration(unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation UsingLoc,
SourceLocation &DeclEnd,
AccessSpecifier AS,
Decl **OwnedType) {
CXXScopeSpec SS;
SourceLocation TypenameLoc;
bool IsTypeName;
// Ignore optional 'typename'.
// FIXME: This is wrong; we should parse this as a typename-specifier.
if (Tok.is(tok::kw_typename)) {
TypenameLoc = Tok.getLocation();
ConsumeToken();
IsTypeName = true;
}
else
IsTypeName = false;
// Parse nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
// Check nested-name specifier.
if (SS.isInvalid()) {
SkipUntil(tok::semi);
return 0;
}
// Parse the unqualified-id. We allow parsing of both constructor and
// destructor names and allow the action module to diagnose any semantic
// errors.
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
if (ParseUnqualifiedId(SS,
/*EnteringContext=*/false,
/*AllowDestructorName=*/true,
/*AllowConstructorName=*/true,
ParsedType(),
TemplateKWLoc,
Name)) {
SkipUntil(tok::semi);
return 0;
}
ParsedAttributes attrs(AttrFactory);
// Maybe this is an alias-declaration.
bool IsAliasDecl = Tok.is(tok::equal);
TypeResult TypeAlias;
if (IsAliasDecl) {
// TODO: Attribute support. C++0x attributes may appear before the equals.
// Where can GNU attributes appear?
ConsumeToken();
Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_alias_declaration :
diag::ext_alias_declaration);
// Type alias templates cannot be specialized.
int SpecKind = -1;
if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
Name.getKind() == UnqualifiedId::IK_TemplateId)
SpecKind = 0;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
SpecKind = 1;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
SpecKind = 2;
if (SpecKind != -1) {
SourceRange Range;
if (SpecKind == 0)
Range = SourceRange(Name.TemplateId->LAngleLoc,
Name.TemplateId->RAngleLoc);
else
Range = TemplateInfo.getSourceRange();
Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
<< SpecKind << Range;
SkipUntil(tok::semi);
return 0;
}
// Name must be an identifier.
if (Name.getKind() != UnqualifiedId::IK_Identifier) {
Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier);
// No removal fixit: can't recover from this.
SkipUntil(tok::semi);
return 0;
} else if (IsTypeName)
Diag(TypenameLoc, diag::err_alias_declaration_not_identifier)
<< FixItHint::CreateRemoval(SourceRange(TypenameLoc,
SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc));
else if (SS.isNotEmpty())
Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
<< FixItHint::CreateRemoval(SS.getRange());
TypeAlias = ParseTypeName(0, TemplateInfo.Kind ?
Declarator::AliasTemplateContext :
Declarator::AliasDeclContext, AS, OwnedType);
} else
// Parse (optional) attributes (most likely GNU strong-using extension).
MaybeParseGNUAttributes(attrs);
// Eat ';'.
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
!attrs.empty() ? "attributes list" :
IsAliasDecl ? "alias declaration" : "using declaration",
tok::semi);
// Diagnose an attempt to declare a templated using-declaration.
// In C++0x, alias-declarations can be templates:
// template <...> using id = type;
if (TemplateInfo.Kind && !IsAliasDecl) {
SourceRange R = TemplateInfo.getSourceRange();
Diag(UsingLoc, diag::err_templated_using_declaration)
<< R << FixItHint::CreateRemoval(R);
// Unfortunately, we have to bail out instead of recovering by
// ignoring the parameters, just in case the nested name specifier
// depends on the parameters.
return 0;
}
// "typename" keyword is allowed for identifiers only,
// because it may be a type definition.
if (IsTypeName && Name.getKind() != UnqualifiedId::IK_Identifier) {
Diag(Name.getSourceRange().getBegin(), diag::err_typename_identifiers_only)
<< FixItHint::CreateRemoval(SourceRange(TypenameLoc));
// Proceed parsing, but reset the IsTypeName flag.
IsTypeName = false;
}
if (IsAliasDecl) {
TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
MultiTemplateParamsArg TemplateParamsArg(Actions,
TemplateParams ? TemplateParams->data() : 0,
TemplateParams ? TemplateParams->size() : 0);
return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
UsingLoc, Name, TypeAlias);
}
return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS,
Name, attrs.getList(),
IsTypeName, TypenameLoc);
}
/// ParseStaticAssertDeclaration - Parse C++0x or C11 static_assert-declaration.
///
/// [C++0x] static_assert-declaration:
/// static_assert ( constant-expression , string-literal ) ;
///
/// [C11] static_assert-declaration:
/// _Static_assert ( constant-expression , string-literal ) ;
///
Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) &&
"Not a static_assert declaration");
if (Tok.is(tok::kw__Static_assert) && !getLangOpts().C11)
Diag(Tok, diag::ext_c11_static_assert);
if (Tok.is(tok::kw_static_assert))
Diag(Tok, diag::warn_cxx98_compat_static_assert);
SourceLocation StaticAssertLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected_lparen);
return 0;
}
ExprResult AssertExpr(ParseConstantExpression());
if (AssertExpr.isInvalid()) {
SkipUntil(tok::semi);
return 0;
}
if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
return 0;
if (!isTokenStringLiteral()) {
Diag(Tok, diag::err_expected_string_literal);
SkipUntil(tok::semi);
return 0;
}
ExprResult AssertMessage(ParseStringLiteralExpression());
if (AssertMessage.isInvalid()) {
SkipUntil(tok::semi);
return 0;
}
T.consumeClose();
DeclEnd = Tok.getLocation();
ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
AssertExpr.take(),
AssertMessage.take(),
T.getCloseLocation());
}
/// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
///
/// 'decltype' ( expression )
///
SourceLocation Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
assert((Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))
&& "Not a decltype specifier");
ExprResult Result;
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc;
if (Tok.is(tok::annot_decltype)) {
Result = getExprAnnotation(Tok);
EndLoc = Tok.getAnnotationEndLoc();
ConsumeToken();
if (Result.isInvalid()) {
DS.SetTypeSpecError();
return EndLoc;
}
} else {
if (Tok.getIdentifierInfo()->isStr("decltype"))
Diag(Tok, diag::warn_cxx98_compat_decltype);
ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after,
"decltype", tok::r_paren)) {
DS.SetTypeSpecError();
return T.getOpenLocation() == Tok.getLocation() ?
StartLoc : T.getOpenLocation();
}
// Parse the expression
// C++0x [dcl.type.simple]p4:
// The operand of the decltype specifier is an unevaluated operand.
EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
0, /*IsDecltype=*/true);
Result = ParseExpression();
if (Result.isInvalid()) {
SkipUntil(tok::r_paren);
DS.SetTypeSpecError();
return StartLoc;
}
// Match the ')'
T.consumeClose();
if (T.getCloseLocation().isInvalid()) {
DS.SetTypeSpecError();
// FIXME: this should return the location of the last token
// that was consumed (by "consumeClose()")
return T.getCloseLocation();
}
Result = Actions.ActOnDecltypeExpression(Result.take());
if (Result.isInvalid()) {
DS.SetTypeSpecError();
return T.getCloseLocation();
}
EndLoc = T.getCloseLocation();
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int decltype(a)").
if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
DiagID, Result.release())) {
Diag(StartLoc, DiagID) << PrevSpec;
DS.SetTypeSpecError();
}
return EndLoc;
}
void Parser::AnnotateExistingDecltypeSpecifier(const DeclSpec& DS,
SourceLocation StartLoc,
SourceLocation EndLoc) {
// make sure we have a token we can turn into an annotation token
if (PP.isBacktrackEnabled())
PP.RevertCachedTokens(1);
else
PP.EnterToken(Tok);
Tok.setKind(tok::annot_decltype);
setExprAnnotation(Tok, DS.getTypeSpecType() == TST_decltype ?
DS.getRepAsExpr() : ExprResult());
Tok.setAnnotationEndLoc(EndLoc);
Tok.setLocation(StartLoc);
PP.AnnotateCachedTokens(Tok);
}
void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw___underlying_type) &&
"Not an underlying type specifier");
SourceLocation StartLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after,
"__underlying_type", tok::r_paren)) {
return;
}
TypeResult Result = ParseTypeName();
if (Result.isInvalid()) {
SkipUntil(tok::r_paren);
return;
}
// Match the ')'
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return;
const char *PrevSpec = 0;
unsigned DiagID;
if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
DiagID, Result.release()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
/// class name or decltype-specifier. Note that we only check that the result
/// names a type; semantic analysis will need to verify that the type names a
/// class. The result is either a type or null, depending on whether a type
/// name was found.
///
/// base-type-specifier: [C++ 10.1]
/// class-or-decltype
/// class-or-decltype: [C++ 10.1]
/// nested-name-specifier[opt] class-name
/// decltype-specifier
/// class-name: [C++ 9.1]
/// identifier
/// simple-template-id
///
Parser::TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
SourceLocation &EndLocation) {
// Ignore attempts to use typename
if (Tok.is(tok::kw_typename)) {
Diag(Tok, diag::err_expected_class_name_not_template)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
}
// Parse optional nested-name-specifier
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
BaseLoc = Tok.getLocation();
// Parse decltype-specifier
// tok == kw_decltype is just error recovery, it can only happen when SS
// isn't empty
if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
if (SS.isNotEmpty())
Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
<< FixItHint::CreateRemoval(SS.getRange());
// Fake up a Declarator to use with ActOnTypeName.
DeclSpec DS(AttrFactory);
EndLocation = ParseDecltypeSpecifier(DS);
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
// Check whether we have a template-id that names a type.
if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->Kind == TNK_Type_template ||
TemplateId->Kind == TNK_Dependent_template_name) {
AnnotateTemplateIdTokenAsType();
assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
ParsedType Type = getTypeAnnotation(Tok);
EndLocation = Tok.getAnnotationEndLoc();
ConsumeToken();
if (Type)
return Type;
return true;
}
// Fall through to produce an error below.
}
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_class_name);
return true;
}
IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
if (Tok.is(tok::less)) {
// It looks the user intended to write a template-id here, but the
// template-name was wrong. Try to fix that.
TemplateNameKind TNK = TNK_Type_template;
TemplateTy Template;
if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
&SS, Template, TNK)) {
Diag(IdLoc, diag::err_unknown_template_name)
<< Id;
}
if (!Template)
return true;
// Form the template name
UnqualifiedId TemplateName;
TemplateName.setIdentifier(Id, IdLoc);
// Parse the full template-id, then turn it into a type.
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
TemplateName, true))
return true;
if (TNK == TNK_Dependent_template_name)
AnnotateTemplateIdTokenAsType();
// If we didn't end up with a typename token, there's nothing more we
// can do.
if (Tok.isNot(tok::annot_typename))
return true;
// Retrieve the type from the annotation token, consume that token, and
// return.
EndLocation = Tok.getAnnotationEndLoc();
ParsedType Type = getTypeAnnotation(Tok);
ConsumeToken();
return Type;
}
// We have an identifier; check whether it is actually a type.
ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
false, ParsedType(),
/*IsCtorOrDtorName=*/false,
/*NonTrivialTypeSourceInfo=*/true);
if (!Type) {
Diag(IdLoc, diag::err_expected_class_name);
return true;
}
// Consume the identifier.
EndLocation = IdLoc;
// Fake up a Declarator to use with ActOnTypeName.
DeclSpec DS(AttrFactory);
DS.SetRangeStart(IdLoc);
DS.SetRangeEnd(EndLocation);
DS.getTypeSpecScope() = SS;
const char *PrevSpec = 0;
unsigned DiagID;
DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
/// until we reach the start of a definition or see a token that
/// cannot start a definition.
///
/// class-specifier: [C++ class]
/// class-head '{' member-specification[opt] '}'
/// class-head '{' member-specification[opt] '}' attributes[opt]
/// class-head:
/// class-key identifier[opt] base-clause[opt]
/// class-key nested-name-specifier identifier base-clause[opt]
/// class-key nested-name-specifier[opt] simple-template-id
/// base-clause[opt]
/// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier
/// identifier base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier[opt]
/// simple-template-id base-clause[opt]
/// class-key:
/// 'class'
/// 'struct'
/// 'union'
///
/// elaborated-type-specifier: [C++ dcl.type.elab]
/// class-key ::[opt] nested-name-specifier[opt] identifier
/// class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
/// simple-template-id
///
/// Note that the C++ class-specifier and elaborated-type-specifier,
/// together, subsume the C99 struct-or-union-specifier:
///
/// struct-or-union-specifier: [C99 6.7.2.1]
/// struct-or-union identifier[opt] '{' struct-contents '}'
/// struct-or-union identifier
/// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents
/// '}' attributes[opt]
/// [GNU] struct-or-union attributes[opt] identifier
/// struct-or-union:
/// 'struct'
/// 'union'
void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS,
bool EnteringContext, DeclSpecContext DSC) {
DeclSpec::TST TagType;
if (TagTokKind == tok::kw_struct)
TagType = DeclSpec::TST_struct;
else if (TagTokKind == tok::kw_class)
TagType = DeclSpec::TST_class;
else {
assert(TagTokKind == tok::kw_union && "Not a class specifier");
TagType = DeclSpec::TST_union;
}
if (Tok.is(tok::code_completion)) {
// Code completion for a struct, class, or union name.
Actions.CodeCompleteTag(getCurScope(), TagType);
return cutOffParsing();
}
// C++03 [temp.explicit] 14.7.2/8:
// The usual access checking rules do not apply to names used to specify
// explicit instantiations.
//
// As an extension we do not perform access checking on the names used to
// specify explicit specializations either. This is important to allow
// specializing traits classes for private types.
Sema::SuppressAccessChecksRAII SuppressAccess(Actions,
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
ParsedAttributes attrs(AttrFactory);
// If attributes exist after tag, parse them.
if (Tok.is(tok::kw___attribute))
ParseGNUAttributes(attrs);
// If declspecs exist after tag, parse them.
while (Tok.is(tok::kw___declspec))
ParseMicrosoftDeclSpec(attrs);
// If C++0x attributes exist here, parse them.
// FIXME: Are we consistent with the ordering of parsing of different
// styles of attributes?
MaybeParseCXX0XAttributes(attrs);
if (TagType == DeclSpec::TST_struct &&
!Tok.is(tok::identifier) &&
Tok.getIdentifierInfo() &&
(Tok.is(tok::kw___is_arithmetic) ||
Tok.is(tok::kw___is_convertible) ||
Tok.is(tok::kw___is_empty) ||
Tok.is(tok::kw___is_floating_point) ||
Tok.is(tok::kw___is_function) ||
Tok.is(tok::kw___is_fundamental) ||
Tok.is(tok::kw___is_integral) ||
Tok.is(tok::kw___is_member_function_pointer) ||
Tok.is(tok::kw___is_member_pointer) ||
Tok.is(tok::kw___is_pod) ||
Tok.is(tok::kw___is_pointer) ||
Tok.is(tok::kw___is_same) ||
Tok.is(tok::kw___is_scalar) ||
Tok.is(tok::kw___is_signed) ||
Tok.is(tok::kw___is_unsigned) ||
Tok.is(tok::kw___is_void))) {
// GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
// name of struct templates, but some are keywords in GCC >= 4.3
// and Clang. Therefore, when we see the token sequence "struct
// X", make X into a normal identifier rather than a keyword, to
// allow libstdc++ 4.2 and libc++ to work properly.
Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
Tok.setKind(tok::identifier);
}
// Parse the (optional) nested-name-specifier.
CXXScopeSpec &SS = DS.getTypeSpecScope();
if (getLangOpts().CPlusPlus) {
// "FOO : BAR" is not a potential typo for "FOO::BAR".
ColonProtectionRAIIObject X(*this);
if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
DS.SetTypeSpecError();
if (SS.isSet())
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
Diag(Tok, diag::err_expected_ident);
}
TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
// Parse the (optional) class name or simple-template-id.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
TemplateIdAnnotation *TemplateId = 0;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
if (Tok.is(tok::less) && getLangOpts().CPlusPlus) {
// The name was supposed to refer to a template, but didn't.
// Eat the template argument list and try to continue parsing this as
// a class (or template thereof).
TemplateArgList TemplateArgs;
SourceLocation LAngleLoc, RAngleLoc;
if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
true, LAngleLoc,
TemplateArgs, RAngleLoc)) {
// We couldn't parse the template argument list at all, so don't
// try to give any location information for the list.
LAngleLoc = RAngleLoc = SourceLocation();
}
Diag(NameLoc, diag::err_explicit_spec_non_template)
<< (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
<< (TagType == DeclSpec::TST_class? 0
: TagType == DeclSpec::TST_struct? 1
: 2)
<< Name
<< SourceRange(LAngleLoc, RAngleLoc);
// Strip off the last template parameter list if it was empty, since
// we've removed its template argument list.
if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
if (TemplateParams && TemplateParams->size() > 1) {
TemplateParams->pop_back();
} else {
TemplateParams = 0;
const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
= ParsedTemplateInfo::NonTemplate;
}
} else if (TemplateInfo.Kind
== ParsedTemplateInfo::ExplicitInstantiation) {
// Pretend this is just a forward declaration.
TemplateParams = 0;
const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
= ParsedTemplateInfo::NonTemplate;
const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
= SourceLocation();
const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
= SourceLocation();
}
}
} else if (Tok.is(tok::annot_template_id)) {
TemplateId = takeTemplateIdAnnotation(Tok);
NameLoc = ConsumeToken();
if (TemplateId->Kind != TNK_Type_template &&
TemplateId->Kind != TNK_Dependent_template_name) {
// The template-name in the simple-template-id refers to
// something other than a class template. Give an appropriate
// error message and skip to the ';'.
SourceRange Range(NameLoc);
if (SS.isNotEmpty())
Range.setBegin(SS.getBeginLoc());
Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
<< Name << static_cast<int>(TemplateId->Kind) << Range;
DS.SetTypeSpecError();
SkipUntil(tok::semi, false, true);
return;
}
}
// As soon as we're finished parsing the class's template-id, turn access
// checking back on.
SuppressAccess.done();
// There are four options here.
// - If we are in a trailing return type, this is always just a reference,
// and we must not try to parse a definition. For instance,
// [] () -> struct S { };
// does not define a type.
// - If we have 'struct foo {...', 'struct foo :...',
// 'struct foo final :' or 'struct foo final {', then this is a definition.
// - If we have 'struct foo;', then this is either a forward declaration
// or a friend declaration, which have to be treated differently.
// - Otherwise we have something like 'struct foo xyz', a reference.
// However, in type-specifier-seq's, things look like declarations but are
// just references, e.g.
// new struct s;
// or
// &T::operator struct s;
// For these, DSC is DSC_type_specifier.
Sema::TagUseKind TUK;
if (DSC == DSC_trailing)
TUK = Sema::TUK_Reference;
else if (Tok.is(tok::l_brace) ||
(getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
(isCXX0XFinalKeyword() &&
(NextToken().is(tok::l_brace) || NextToken().is(tok::colon)))) {
if (DS.isFriendSpecified()) {
// C++ [class.friend]p2:
// A class shall not be defined in a friend declaration.
Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
<< SourceRange(DS.getFriendSpecLoc());
// Skip everything up to the semicolon, so that this looks like a proper
// friend class (or template thereof) declaration.
SkipUntil(tok::semi, true, true);
TUK = Sema::TUK_Friend;
} else {
// Okay, this is a class definition.
TUK = Sema::TUK_Definition;
}
} else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
else
TUK = Sema::TUK_Reference;
if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
TUK != Sema::TUK_Definition)) {
if (DS.getTypeSpecType() != DeclSpec::TST_error) {
// We have a declaration or reference to an anonymous class.
Diag(StartLoc, diag::err_anon_type_definition)
<< DeclSpec::getSpecifierName(TagType);
}
SkipUntil(tok::comma, true);
return;
}
// Create the tag portion of the class or class template.
DeclResult TagOrTempResult = true; // invalid
TypeResult TypeResult = true; // invalid
bool Owned = false;
if (TemplateId) {
// Explicit specialization, class template partial specialization,
// or explicit instantiation.
ASTTemplateArgsPtr TemplateArgsPtr(Actions,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TUK == Sema::TUK_Declaration) {
// This is an explicit instantiation of a class template.
TagOrTempResult
= Actions.ActOnExplicitInstantiation(getCurScope(),
TemplateInfo.ExternLoc,
TemplateInfo.TemplateLoc,
TagType,
StartLoc,
SS,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc,
attrs.getList());
// Friend template-ids are treated as references unless
// they have template headers, in which case they're ill-formed
// (FIXME: "template <class T> friend class A<T>::B<int>;").
// We diagnose this error in ActOnClassTemplateSpecialization.
} else if (TUK == Sema::TUK_Reference ||
(TUK == Sema::TUK_Friend &&
TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc,
TemplateId->SS,
TemplateId->TemplateKWLoc,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc);
} else {
// This is an explicit specialization or a class template
// partial specialization.
TemplateParameterLists FakedParamLists;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// This looks like an explicit instantiation, because we have
// something like
//
// template class Foo<X>
//
// but it actually has a definition. Most likely, this was
// meant to be an explicit specialization, but the user forgot
// the '<>' after 'template'.
assert(TUK == Sema::TUK_Definition && "Expected a definition here");
SourceLocation LAngleLoc
= PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(TemplateId->TemplateNameLoc,
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< FixItHint::CreateInsertion(LAngleLoc, "<>");
// Create a fake template parameter list that contains only
// "template<>", so that we treat this construct as a class
// template specialization.
FakedParamLists.push_back(
Actions.ActOnTemplateParameterList(0, SourceLocation(),
TemplateInfo.TemplateLoc,
LAngleLoc,
0, 0,
LAngleLoc));
TemplateParams = &FakedParamLists;
}
// Build the class template specialization.
TagOrTempResult
= Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
StartLoc, DS.getModulePrivateSpecLoc(), SS,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc,
attrs.getList(),
MultiTemplateParamsArg(Actions,
TemplateParams? &(*TemplateParams)[0] : 0,
TemplateParams? TemplateParams->size() : 0));
}
} else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TUK == Sema::TUK_Declaration) {
// Explicit instantiation of a member of a class template
// specialization, e.g.,
//
// template struct Outer<int>::Inner;
//
TagOrTempResult
= Actions.ActOnExplicitInstantiation(getCurScope(),
TemplateInfo.ExternLoc,
TemplateInfo.TemplateLoc,
TagType, StartLoc, SS, Name,
NameLoc, attrs.getList());
} else if (TUK == Sema::TUK_Friend &&
TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
TagOrTempResult =
Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
TagType, StartLoc, SS,
Name, NameLoc, attrs.getList(),
MultiTemplateParamsArg(Actions,
TemplateParams? &(*TemplateParams)[0] : 0,
TemplateParams? TemplateParams->size() : 0));
} else {
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TUK == Sema::TUK_Definition) {
// FIXME: Diagnose this particular error.
}
bool IsDependent = false;
// Don't pass down template parameter lists if this is just a tag
// reference. For example, we don't need the template parameters here:
// template <class T> class A *makeA(T t);
MultiTemplateParamsArg TParams;
if (TUK != Sema::TUK_Reference && TemplateParams)
TParams =
MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
// Declaration or definition of a class type
TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
SS, Name, NameLoc, attrs.getList(), AS,
DS.getModulePrivateSpecLoc(),
TParams, Owned, IsDependent,
SourceLocation(), false,
clang::TypeResult());
// If ActOnTag said the type was dependent, try again with the
// less common call.
if (IsDependent) {
assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
SS, Name, StartLoc, NameLoc);
}
}
// If there is a body, parse it and inform the actions module.
if (TUK == Sema::TUK_Definition) {
assert(Tok.is(tok::l_brace) ||
(getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
isCXX0XFinalKeyword());
if (getLangOpts().CPlusPlus)
ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
else
ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
}
const char *PrevSpec = 0;
unsigned DiagID;
bool Result;
if (!TypeResult.isInvalid()) {
Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TypeResult.get());
} else if (!TagOrTempResult.isInvalid()) {
Result = DS.SetTypeSpecType(TagType, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TagOrTempResult.get(), Owned);
} else {
DS.SetTypeSpecError();
return;
}
if (Result)
Diag(StartLoc, DiagID) << PrevSpec;
// At this point, we've successfully parsed a class-specifier in 'definition'
// form (e.g. "struct foo { int x; }". While we could just return here, we're
// going to look at what comes after it to improve error recovery. If an
// impossible token occurs next, we assume that the programmer forgot a ; at
// the end of the declaration and recover that way.
//
// This switch enumerates the valid "follow" set for definition.
if (TUK == Sema::TUK_Definition) {
bool ExpectedSemi = true;
switch (Tok.getKind()) {
default: break;
case tok::semi: // struct foo {...} ;
case tok::star: // struct foo {...} * P;
case tok::amp: // struct foo {...} & R = ...
case tok::identifier: // struct foo {...} V ;
case tok::r_paren: //(struct foo {...} ) {4}
case tok::annot_cxxscope: // struct foo {...} a:: b;
case tok::annot_typename: // struct foo {...} a ::b;
case tok::annot_template_id: // struct foo {...} a<int> ::b;
case tok::l_paren: // struct foo {...} ( x);
case tok::comma: // __builtin_offsetof(struct foo{...} ,
ExpectedSemi = false;
break;
// Type qualifiers
case tok::kw_const: // struct foo {...} const x;
case tok::kw_volatile: // struct foo {...} volatile x;
case tok::kw_restrict: // struct foo {...} restrict x;
case tok::kw_inline: // struct foo {...} inline foo() {};
// Storage-class specifiers
case tok::kw_static: // struct foo {...} static x;
case tok::kw_extern: // struct foo {...} extern x;
case tok::kw_typedef: // struct foo {...} typedef x;
case tok::kw_register: // struct foo {...} register x;
case tok::kw_auto: // struct foo {...} auto x;
case tok::kw_mutable: // struct foo {...} mutable x;
case tok::kw_constexpr: // struct foo {...} constexpr x;
// As shown above, type qualifiers and storage class specifiers absolutely
// can occur after class specifiers according to the grammar. However,
// almost no one actually writes code like this. If we see one of these,
// it is much more likely that someone missed a semi colon and the
// type/storage class specifier we're seeing is part of the *next*
// intended declaration, as in:
//
// struct foo { ... }
// typedef int X;
//
// We'd really like to emit a missing semicolon error instead of emitting
// an error on the 'int' saying that you can't have two type specifiers in
// the same declaration of X. Because of this, we look ahead past this
// token to see if it's a type specifier. If so, we know the code is
// otherwise invalid, so we can produce the expected semi error.
if (!isKnownToBeTypeSpecifier(NextToken()))
ExpectedSemi = false;
break;
case tok::r_brace: // struct bar { struct foo {...} }
// Missing ';' at end of struct is accepted as an extension in C mode.
if (!getLangOpts().CPlusPlus)
ExpectedSemi = false;
break;
}
// C++ [temp]p3 In a template-declaration which defines a class, no
// declarator is permitted.
if (TemplateInfo.Kind)
ExpectedSemi = true;
if (ExpectedSemi) {
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
TagType == DeclSpec::TST_class ? "class"
: TagType == DeclSpec::TST_struct? "struct" : "union");
// Push this token back into the preprocessor and change our current token
// to ';' so that the rest of the code recovers as though there were an
// ';' after the definition.
PP.EnterToken(Tok);
Tok.setKind(tok::semi);
}
}
}
/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
///
/// base-clause : [C++ class.derived]
/// ':' base-specifier-list
/// base-specifier-list:
/// base-specifier '...'[opt]
/// base-specifier-list ',' base-specifier '...'[opt]
void Parser::ParseBaseClause(Decl *ClassDecl) {
assert(Tok.is(tok::colon) && "Not a base clause");
ConsumeToken();
// Build up an array of parsed base specifiers.
SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
while (true) {
// Parse a base-specifier.
BaseResult Result = ParseBaseSpecifier(ClassDecl);
if (Result.isInvalid()) {
// Skip the rest of this base specifier, up until the comma or
// opening brace.
SkipUntil(tok::comma, tok::l_brace, true, true);
} else {
// Add this to our array of base specifiers.
BaseInfo.push_back(Result.get());
}
// If the next token is a comma, consume it and keep reading
// base-specifiers.
if (Tok.isNot(tok::comma)) break;
// Consume the comma.
ConsumeToken();
}
// Attach the base specifiers
Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
}
/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
/// one entry in the base class list of a class specifier, for example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
///
/// base-specifier: [C++ class.derived]
/// ::[opt] nested-name-specifier[opt] class-name
/// 'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
/// base-type-specifier
/// access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
/// base-type-specifier
Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
bool IsVirtual = false;
SourceLocation StartLoc = Tok.getLocation();
// Parse the 'virtual' keyword.
if (Tok.is(tok::kw_virtual)) {
ConsumeToken();
IsVirtual = true;
}
// Parse an (optional) access specifier.
AccessSpecifier Access = getAccessSpecifierIfPresent();
if (Access != AS_none)
ConsumeToken();
// Parse the 'virtual' keyword (again!), in case it came after the
// access specifier.
if (Tok.is(tok::kw_virtual)) {
SourceLocation VirtualLoc = ConsumeToken();
if (IsVirtual) {
// Complain about duplicate 'virtual'
Diag(VirtualLoc, diag::err_dup_virtual)
<< FixItHint::CreateRemoval(VirtualLoc);
}
IsVirtual = true;
}
// Parse the class-name.
SourceLocation EndLocation;
SourceLocation BaseLoc;
TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
if (BaseType.isInvalid())
return true;
// Parse the optional ellipsis (for a pack expansion). The ellipsis is
// actually part of the base-specifier-list grammar productions, but we
// parse it here for convenience.
SourceLocation EllipsisLoc;
if (Tok.is(tok::ellipsis))
EllipsisLoc = ConsumeToken();
// Find the complete source range for the base-specifier.
SourceRange Range(StartLoc, EndLocation);
// Notify semantic analysis that we have parsed a complete
// base-specifier.
return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
BaseType.get(), BaseLoc, EllipsisLoc);
}
/// getAccessSpecifierIfPresent - Determine whether the next token is
/// a C++ access-specifier.
///
/// access-specifier: [C++ class.derived]
/// 'private'
/// 'protected'
/// 'public'
AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
switch (Tok.getKind()) {
default: return AS_none;
case tok::kw_private: return AS_private;
case tok::kw_protected: return AS_protected;
case tok::kw_public: return AS_public;
}
}
/// \brief If the given declarator has any parts for which parsing has to be
/// delayed, e.g., default arguments, create a late-parsed method declaration
/// record to handle the parsing at the end of the class definition.
void Parser::HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo,
Decl *ThisDecl) {
// We just declared a member function. If this member function
// has any default arguments, we'll need to parse them later.
LateParsedMethodDeclaration *LateMethod = 0;
DeclaratorChunk::FunctionTypeInfo &FTI
= DeclaratorInfo.getFunctionTypeInfo();
for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
if (!LateMethod) {
// Push this method onto the stack of late-parsed method
// declarations.
LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
// Add all of the parameters prior to this one (they don't
// have default arguments).
LateMethod->DefaultArgs.reserve(FTI.NumArgs);
for (unsigned I = 0; I < ParamIdx; ++I)
LateMethod->DefaultArgs.push_back(
LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
}
// Add this parameter to the list of parameters (it may or may
// not have a default argument).
LateMethod->DefaultArgs.push_back(
LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
FTI.ArgInfo[ParamIdx].DefaultArgTokens));
}
}
}
/// isCXX0XVirtSpecifier - Determine whether the given token is a C++0x
/// virt-specifier.
///
/// virt-specifier:
/// override
/// final
VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier(const Token &Tok) const {
if (!getLangOpts().CPlusPlus)
return VirtSpecifiers::VS_None;
if (Tok.is(tok::identifier)) {
IdentifierInfo *II = Tok.getIdentifierInfo();
// Initialize the contextual keywords.
if (!Ident_final) {
Ident_final = &PP.getIdentifierTable().get("final");
Ident_override = &PP.getIdentifierTable().get("override");
}
if (II == Ident_override)
return VirtSpecifiers::VS_Override;
if (II == Ident_final)
return VirtSpecifiers::VS_Final;
}
return VirtSpecifiers::VS_None;
}
/// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq.
///
/// virt-specifier-seq:
/// virt-specifier
/// virt-specifier-seq virt-specifier
void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) {
while (true) {
VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier();
if (Specifier == VirtSpecifiers::VS_None)
return;
// C++ [class.mem]p8:
// A virt-specifier-seq shall contain at most one of each virt-specifier.
const char *PrevSpec = 0;
if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
<< PrevSpec
<< FixItHint::CreateRemoval(Tok.getLocation());
Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_override_control_keyword :
diag::ext_override_control_keyword)
<< VirtSpecifiers::getSpecifierName(Specifier);
ConsumeToken();
}
}
/// isCXX0XFinalKeyword - Determine whether the next token is a C++0x
/// contextual 'final' keyword.
bool Parser::isCXX0XFinalKeyword() const {
if (!getLangOpts().CPlusPlus)
return false;
if (!Tok.is(tok::identifier))
return false;
// Initialize the contextual keywords.
if (!Ident_final) {
Ident_final = &PP.getIdentifierTable().get("final");
Ident_override = &PP.getIdentifierTable().get("override");
}
return Tok.getIdentifierInfo() == Ident_final;
}
/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
///
/// member-declaration:
/// decl-specifier-seq[opt] member-declarator-list[opt] ';'
/// function-definition ';'[opt]
/// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
/// using-declaration [TODO]
/// [C++0x] static_assert-declaration
/// template-declaration
/// [GNU] '__extension__' member-declaration
///
/// member-declarator-list:
/// member-declarator
/// member-declarator-list ',' member-declarator
///
/// member-declarator:
/// declarator virt-specifier-seq[opt] pure-specifier[opt]
/// declarator constant-initializer[opt]
/// [C++11] declarator brace-or-equal-initializer[opt]
/// identifier[opt] ':' constant-expression
///
/// virt-specifier-seq:
/// virt-specifier
/// virt-specifier-seq virt-specifier
///
/// virt-specifier:
/// override
/// final
///
/// pure-specifier:
/// '= 0'
///
/// constant-initializer:
/// '=' constant-expression
///
void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
AttributeList *AccessAttrs,
const ParsedTemplateInfo &TemplateInfo,
ParsingDeclRAIIObject *TemplateDiags) {
if (Tok.is(tok::at)) {
if (getLangOpts().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs))
Diag(Tok, diag::err_at_defs_cxx);
else
Diag(Tok, diag::err_at_in_class);
ConsumeToken();
SkipUntil(tok::r_brace);
return;
}
// Access declarations.
if (!TemplateInfo.Kind &&
(Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) &&
!TryAnnotateCXXScopeToken() &&
Tok.is(tok::annot_cxxscope)) {
bool isAccessDecl = false;
if (NextToken().is(tok::identifier))
isAccessDecl = GetLookAheadToken(2).is(tok::semi);
else
isAccessDecl = NextToken().is(tok::kw_operator);
if (isAccessDecl) {
// Collect the scope specifier token we annotated earlier.
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
/*EnteringContext=*/false);
// Try to parse an unqualified-id.
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
if (ParseUnqualifiedId(SS, false, true, true, ParsedType(),
TemplateKWLoc, Name)) {
SkipUntil(tok::semi);
return;
}
// TODO: recover from mistakenly-qualified operator declarations.
if (ExpectAndConsume(tok::semi,
diag::err_expected_semi_after,
"access declaration",
tok::semi))
return;
Actions.ActOnUsingDeclaration(getCurScope(), AS,
false, SourceLocation(),
SS, Name,
/* AttrList */ 0,
/* IsTypeName */ false,
SourceLocation());
return;
}
}
// static_assert-declaration
if (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) {
// FIXME: Check for templates
SourceLocation DeclEnd;
ParseStaticAssertDeclaration(DeclEnd);
return;
}
if (Tok.is(tok::kw_template)) {
assert(!TemplateInfo.TemplateParams &&
"Nested template improperly parsed?");
SourceLocation DeclEnd;
ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
AS, AccessAttrs);
return;
}
// Handle: member-declaration ::= '__extension__' member-declaration
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
TemplateInfo, TemplateDiags);
}
// Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
// is a bitfield.
ColonProtectionRAIIObject X(*this);
ParsedAttributesWithRange attrs(AttrFactory);
// Optional C++0x attribute-specifier
MaybeParseCXX0XAttributes(attrs);
MaybeParseMicrosoftAttributes(attrs);
if (Tok.is(tok::kw_using)) {
ProhibitAttributes(attrs);
// Eat 'using'.
SourceLocation UsingLoc = ConsumeToken();
if (Tok.is(tok::kw_namespace)) {
Diag(UsingLoc, diag::err_using_namespace_in_class);
SkipUntil(tok::semi, true, true);
} else {
SourceLocation DeclEnd;
// Otherwise, it must be a using-declaration or an alias-declaration.
ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
UsingLoc, DeclEnd, AS);
}
return;
}
// Hold late-parsed attributes so we can attach a Decl to them later.
LateParsedAttrList CommonLateParsedAttrs;
// decl-specifier-seq:
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this, TemplateDiags);
DS.takeAttributesFrom(attrs);
ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class,
&CommonLateParsedAttrs);
MultiTemplateParamsArg TemplateParams(Actions,
TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
if (Tok.is(tok::semi)) {
ConsumeToken();
Decl *TheDecl =
Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams);
DS.complete(TheDecl);
return;
}
ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
VirtSpecifiers VS;
// Hold late-parsed attributes so we can attach a Decl to them later.
LateParsedAttrList LateParsedAttrs;
SourceLocation EqualLoc;
bool HasInitializer = false;
ExprResult Init;
if (Tok.isNot(tok::colon)) {
// Don't parse FOO:BAR as if it were a typo for FOO::BAR.
ColonProtectionRAIIObject X(*this);
// Parse the first declarator.
ParseDeclarator(DeclaratorInfo);
// Error parsing the declarator?
if (!DeclaratorInfo.hasName()) {
// If so, skip until the semi-colon or a }.
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return;
}
ParseOptionalCXX0XVirtSpecifierSeq(VS);
// If attributes exist after the declarator, but before an '{', parse them.
MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
// MSVC permits pure specifier on inline functions declared at class scope.
// Hence check for =0 before checking for function definition.
if (getLangOpts().MicrosoftExt && Tok.is(tok::equal) &&
DeclaratorInfo.isFunctionDeclarator() &&
NextToken().is(tok::numeric_constant)) {
EqualLoc = ConsumeToken();
Init = ParseInitializer();
if (Init.isInvalid())
SkipUntil(tok::comma, true, true);
else
HasInitializer = true;
}
FunctionDefinitionKind DefinitionKind = FDK_Declaration;
// function-definition:
//
// In C++11, a non-function declarator followed by an open brace is a
// braced-init-list for an in-class member initialization, not an
// erroneous function definition.
if (Tok.is(tok::l_brace) && !getLangOpts().CPlusPlus0x) {
DefinitionKind = FDK_Definition;
} else if (DeclaratorInfo.isFunctionDeclarator()) {
if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
DefinitionKind = FDK_Definition;
} else if (Tok.is(tok::equal)) {
const Token &KW = NextToken();
if (KW.is(tok::kw_default))
DefinitionKind = FDK_Defaulted;
else if (KW.is(tok::kw_delete))
DefinitionKind = FDK_Deleted;
}
}
if (DefinitionKind) {
if (!DeclaratorInfo.isFunctionDeclarator()) {
Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_func_def_no_params);
ConsumeBrace();
SkipUntil(tok::r_brace, /*StopAtSemi*/false);
// Consume the optional ';'
if (Tok.is(tok::semi))
ConsumeToken();
return;
}
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(DeclaratorInfo.getIdentifierLoc(),
diag::err_function_declared_typedef);
// This recovery skips the entire function body. It would be nice
// to simply call ParseCXXInlineMethodDef() below, however Sema
// assumes the declarator represents a function, not a typedef.
ConsumeBrace();
SkipUntil(tok::r_brace, /*StopAtSemi*/false);
// Consume the optional ';'
if (Tok.is(tok::semi))
ConsumeToken();
return;
}
Decl *FunDecl =
ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
VS, DefinitionKind, Init);
for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
CommonLateParsedAttrs[i]->addDecl(FunDecl);
}
for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
LateParsedAttrs[i]->addDecl(FunDecl);
}
LateParsedAttrs.clear();
// Consume the ';' - it's optional unless we have a delete or default
if (Tok.is(tok::semi)) {
ConsumeToken();
}
return;
}
}
// member-declarator-list:
// member-declarator
// member-declarator-list ',' member-declarator
SmallVector<Decl *, 8> DeclsInGroup;
ExprResult BitfieldSize;
bool ExpectSemi = true;
while (1) {
// member-declarator:
// declarator pure-specifier[opt]
// declarator brace-or-equal-initializer[opt]
// identifier[opt] ':' constant-expression
if (Tok.is(tok::colon)) {
ConsumeToken();
BitfieldSize = ParseConstantExpression();
if (BitfieldSize.isInvalid())
SkipUntil(tok::comma, true, true);
}
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid())
SkipUntil(tok::comma, true, true);
DeclaratorInfo.setAsmLabel(AsmLabel.release());
DeclaratorInfo.SetRangeEnd(Loc);
}
// If attributes exist after the declarator, parse them.
MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
// FIXME: When g++ adds support for this, we'll need to check whether it
// goes before or after the GNU attributes and __asm__.
ParseOptionalCXX0XVirtSpecifierSeq(VS);
bool HasDeferredInitializer = false;
if ((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && !HasInitializer) {
if (BitfieldSize.get()) {
Diag(Tok, diag::err_bitfield_member_init);
SkipUntil(tok::comma, true, true);
} else {
HasInitializer = true;
HasDeferredInitializer = !DeclaratorInfo.isDeclarationOfFunction() &&
DeclaratorInfo.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_static &&
DeclaratorInfo.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_typedef;
}
}
// NOTE: If Sema is the Action module and declarator is an instance field,
// this call will *not* return the created decl; It will return null.
// See Sema::ActOnCXXMemberDeclarator for details.
Decl *ThisDecl = 0;
if (DS.isFriendSpecified()) {
// TODO: handle initializers, bitfields, 'delete'
ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
move(TemplateParams));
} else {
ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
DeclaratorInfo,
move(TemplateParams),
BitfieldSize.release(),
VS, HasDeferredInitializer);
if (AccessAttrs)
Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs,
false, true);
}
// Set the Decl for any late parsed attributes
for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
CommonLateParsedAttrs[i]->addDecl(ThisDecl);
}
for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
LateParsedAttrs[i]->addDecl(ThisDecl);
}
LateParsedAttrs.clear();
// Handle the initializer.
if (HasDeferredInitializer) {
// The initializer was deferred; parse it and cache the tokens.
Diag(Tok, getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_nonstatic_member_init :
diag::ext_nonstatic_member_init);
if (DeclaratorInfo.isArrayOfUnknownBound()) {
// C++0x [dcl.array]p3: An array bound may also be omitted when the
// declarator is followed by an initializer.
//
// A brace-or-equal-initializer for a member-declarator is not an
// initializer in the grammar, so this is ill-formed.
Diag(Tok, diag::err_incomplete_array_member_init);
SkipUntil(tok::comma, true, true);
if (ThisDecl)
// Avoid later warnings about a class member of incomplete type.
ThisDecl->setInvalidDecl();
} else
ParseCXXNonStaticMemberInitializer(ThisDecl);
} else if (HasInitializer) {
// Normal initializer.
if (!Init.isUsable())
Init = ParseCXXMemberInitializer(ThisDecl,
DeclaratorInfo.isDeclarationOfFunction(), EqualLoc);
if (Init.isInvalid())
SkipUntil(tok::comma, true, true);
else if (ThisDecl)
Actions.AddInitializerToDecl(ThisDecl, Init.get(), EqualLoc.isInvalid(),
DS.getTypeSpecType() == DeclSpec::TST_auto);
} else if (ThisDecl && DS.getStorageClassSpec() == DeclSpec::SCS_static) {
// No initializer.
Actions.ActOnUninitializedDecl(ThisDecl,
DS.getTypeSpecType() == DeclSpec::TST_auto);
}
if (ThisDecl) {
Actions.FinalizeDeclaration(ThisDecl);
DeclsInGroup.push_back(ThisDecl);
}
if (ThisDecl && DeclaratorInfo.isFunctionDeclarator() &&
DeclaratorInfo.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_typedef) {
HandleMemberFunctionDeclDelays(DeclaratorInfo, ThisDecl);
}
DeclaratorInfo.complete(ThisDecl);
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
break;
// Consume the comma.
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isAtStartOfLine() &&
!MightBeDeclarator(Declarator::MemberContext)) {
// This comma was followed by a line-break and something which can't be
// the start of a declarator. The comma was probably a typo for a
// semicolon.
Diag(CommaLoc, diag::err_expected_semi_declaration)
<< FixItHint::CreateReplacement(CommaLoc, ";");
ExpectSemi = false;
break;
}
// Parse the next declarator.
DeclaratorInfo.clear();
VS.clear();
BitfieldSize = true;
Init = true;
HasInitializer = false;
DeclaratorInfo.setCommaLoc(CommaLoc);
// Attributes are only allowed on the second declarator.
MaybeParseGNUAttributes(DeclaratorInfo);
if (Tok.isNot(tok::colon))
ParseDeclarator(DeclaratorInfo);
}
if (ExpectSemi &&
ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
// Skip to end of block or statement.
SkipUntil(tok::r_brace, true, true);
// If we stopped at a ';', eat it.
if (Tok.is(tok::semi)) ConsumeToken();
return;
}
Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
DeclsInGroup.size());
}
/// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or
/// pure-specifier. Also detect and reject any attempted defaulted/deleted
/// function definition. The location of the '=', if any, will be placed in
/// EqualLoc.
///
/// pure-specifier:
/// '= 0'
///
/// brace-or-equal-initializer:
/// '=' initializer-expression
/// braced-init-list
///
/// initializer-clause:
/// assignment-expression
/// braced-init-list
///
/// defaulted/deleted function-definition:
/// '=' 'default'
/// '=' 'delete'
///
/// Prior to C++0x, the assignment-expression in an initializer-clause must
/// be a constant-expression.
ExprResult Parser::ParseCXXMemberInitializer(Decl *D, bool IsFunction,
SourceLocation &EqualLoc) {
assert((Tok.is(tok::equal) || Tok.is(tok::l_brace))
&& "Data member initializer not starting with '=' or '{'");
EnterExpressionEvaluationContext Context(Actions,
Sema::PotentiallyEvaluated,
D);
if (Tok.is(tok::equal)) {
EqualLoc = ConsumeToken();
if (Tok.is(tok::kw_delete)) {
// In principle, an initializer of '= delete p;' is legal, but it will
// never type-check. It's better to diagnose it as an ill-formed expression
// than as an ill-formed deleted non-function member.
// An initializer of '= delete p, foo' will never be parsed, because
// a top-level comma always ends the initializer expression.
const Token &Next = NextToken();
if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) ||
Next.is(tok::eof)) {
if (IsFunction)
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 1 /* delete */;
else
Diag(ConsumeToken(), diag::err_deleted_non_function);
return ExprResult();
}
} else if (Tok.is(tok::kw_default)) {
if (IsFunction)
Diag(Tok, diag::err_default_delete_in_multiple_declaration)
<< 0 /* default */;
else
Diag(ConsumeToken(), diag::err_default_special_members);
return ExprResult();
}
}
return ParseInitializer();
}
/// ParseCXXMemberSpecification - Parse the class definition.
///
/// member-specification:
/// member-declaration member-specification[opt]
/// access-specifier ':' member-specification[opt]
///
void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
unsigned TagType, Decl *TagDecl) {
assert((TagType == DeclSpec::TST_struct ||
TagType == DeclSpec::TST_union ||
TagType == DeclSpec::TST_class) && "Invalid TagType!");
PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
"parsing struct/union/class body");
// Determine whether this is a non-nested class. Note that local
// classes are *not* considered to be nested classes.
bool NonNestedClass = true;
if (!ClassStack.empty()) {
for (const Scope *S = getCurScope(); S; S = S->getParent()) {
if (S->isClassScope()) {
// We're inside a class scope, so this is a nested class.
NonNestedClass = false;
break;
}
if ((S->getFlags() & Scope::FnScope)) {
// If we're in a function or function template declared in the
// body of a class, then this is a local class rather than a
// nested class.
const Scope *Parent = S->getParent();
if (Parent->isTemplateParamScope())
Parent = Parent->getParent();
if (Parent->isClassScope())
break;
}
}
}
// Enter a scope for the class.
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
// Note that we are parsing a new (potentially-nested) class definition.
ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
if (TagDecl)
Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
SourceLocation FinalLoc;
// Parse the optional 'final' keyword.
if (getLangOpts().CPlusPlus && Tok.is(tok::identifier)) {
assert(isCXX0XFinalKeyword() && "not a class definition");
FinalLoc = ConsumeToken();
Diag(FinalLoc, getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_override_control_keyword :
diag::ext_override_control_keyword) << "final";
}
if (Tok.is(tok::colon)) {
ParseBaseClause(TagDecl);
if (!Tok.is(tok::l_brace)) {
Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
if (TagDecl)
Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
return;
}
}
assert(Tok.is(tok::l_brace));
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
if (TagDecl)
Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
T.getOpenLocation());
// C++ 11p3: Members of a class defined with the keyword class are private
// by default. Members of a class defined with the keywords struct or union
// are public by default.
AccessSpecifier CurAS;
if (TagType == DeclSpec::TST_class)
CurAS = AS_private;
else
CurAS = AS_public;
ParsedAttributes AccessAttrs(AttrFactory);
if (TagDecl) {
// While we still have something to read, read the member-declarations.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one member-declaration.
if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
Tok.is(tok::kw___if_not_exists))) {
ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
continue;
}
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi)
<< DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
continue;
}
if (Tok.is(tok::annot_pragma_vis)) {
HandlePragmaVisibility();
continue;
}
if (Tok.is(tok::annot_pragma_pack)) {
HandlePragmaPack();
continue;
}
AccessSpecifier AS = getAccessSpecifierIfPresent();
if (AS != AS_none) {
// Current token is a C++ access specifier.
CurAS = AS;
SourceLocation ASLoc = Tok.getLocation();
unsigned TokLength = Tok.getLength();
ConsumeToken();
AccessAttrs.clear();
MaybeParseGNUAttributes(AccessAttrs);
SourceLocation EndLoc;
if (Tok.is(tok::colon)) {
EndLoc = Tok.getLocation();
ConsumeToken();
} else if (Tok.is(tok::semi)) {
EndLoc = Tok.getLocation();
ConsumeToken();
Diag(EndLoc, diag::err_expected_colon)
<< FixItHint::CreateReplacement(EndLoc, ":");
} else {
EndLoc = ASLoc.getLocWithOffset(TokLength);
Diag(EndLoc, diag::err_expected_colon)
<< FixItHint::CreateInsertion(EndLoc, ":");
}
if (Actions.ActOnAccessSpecifier(AS, ASLoc, EndLoc,
AccessAttrs.getList())) {
// found another attribute than only annotations
AccessAttrs.clear();
}
continue;
}
// FIXME: Make sure we don't have a template here.
// Parse all the comma separated declarators.
ParseCXXClassMemberDeclaration(CurAS, AccessAttrs.getList());
}
T.consumeClose();
} else {
SkipUntil(tok::r_brace, false, false);
}
// If attributes exist after class contents, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
if (TagDecl)
Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
T.getOpenLocation(),
T.getCloseLocation(),
attrs.getList());
// C++11 [class.mem]p2:
// Within the class member-specification, the class is regarded as complete
// within function bodies, default arguments, and
// brace-or-equal-initializers for non-static data members (including such
// things in nested classes).
if (TagDecl && NonNestedClass) {
// We are not inside a nested class. This class and its nested classes
// are complete and we can parse the delayed portions of method
// declarations and the lexed inline method definitions, along with any
// delayed attributes.
SourceLocation SavedPrevTokLocation = PrevTokLocation;
ParseLexedAttributes(getCurrentClass());
ParseLexedMethodDeclarations(getCurrentClass());
// We've finished with all pending member declarations.
Actions.ActOnFinishCXXMemberDecls();
ParseLexedMemberInitializers(getCurrentClass());
ParseLexedMethodDefs(getCurrentClass());
PrevTokLocation = SavedPrevTokLocation;
}
if (TagDecl)
Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
T.getCloseLocation());
// Leave the class scope.
ParsingDef.Pop();
ClassScope.Exit();
}
/// ParseConstructorInitializer - Parse a C++ constructor initializer,
/// which explicitly initializes the members or base classes of a
/// class (C++ [class.base.init]). For example, the three initializers
/// after the ':' in the Derived constructor below:
///
/// @code
/// class Base { };
/// class Derived : Base {
/// int x;
/// float f;
/// public:
/// Derived(float f) : Base(), x(17), f(f) { }
/// };
/// @endcode
///
/// [C++] ctor-initializer:
/// ':' mem-initializer-list
///
/// [C++] mem-initializer-list:
/// mem-initializer ...[opt]
/// mem-initializer ...[opt] , mem-initializer-list
void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
// Poison the SEH identifiers so they are flagged as illegal in constructor initializers
PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
SourceLocation ColonLoc = ConsumeToken();
SmallVector<CXXCtorInitializer*, 4> MemInitializers;
bool AnyErrors = false;
do {
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
MemInitializers.data(),
MemInitializers.size());
return cutOffParsing();
} else {
MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
if (!MemInit.isInvalid())
MemInitializers.push_back(MemInit.get());
else
AnyErrors = true;
}
if (Tok.is(tok::comma))
ConsumeToken();
else if (Tok.is(tok::l_brace))
break;
// If the next token looks like a base or member initializer, assume that
// we're just missing a comma.
else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
Diag(Loc, diag::err_ctor_init_missing_comma)
<< FixItHint::CreateInsertion(Loc, ", ");
} else {
// Skip over garbage, until we get to '{'. Don't eat the '{'.
Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
SkipUntil(tok::l_brace, true, true);
break;
}
} while (true);
Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
MemInitializers.data(), MemInitializers.size(),
AnyErrors);
}
/// ParseMemInitializer - Parse a C++ member initializer, which is
/// part of a constructor initializer that explicitly initializes one
/// member or base class (C++ [class.base.init]). See
/// ParseConstructorInitializer for an example.
///
/// [C++] mem-initializer:
/// mem-initializer-id '(' expression-list[opt] ')'
/// [C++0x] mem-initializer-id braced-init-list
///
/// [C++] mem-initializer-id:
/// '::'[opt] nested-name-specifier[opt] class-name
/// identifier
Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
// parse '::'[opt] nested-name-specifier[opt]
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
ParsedType TemplateTypeTy;
if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->Kind == TNK_Type_template ||
TemplateId->Kind == TNK_Dependent_template_name) {
AnnotateTemplateIdTokenAsType();
assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
TemplateTypeTy = getTypeAnnotation(Tok);
}
}
// Uses of decltype will already have been converted to annot_decltype by
// ParseOptionalCXXScopeSpecifier at this point.
if (!TemplateTypeTy && Tok.isNot(tok::identifier)
&& Tok.isNot(tok::annot_decltype)) {
Diag(Tok, diag::err_expected_member_or_base_name);
return true;
}
IdentifierInfo *II = 0;
DeclSpec DS(AttrFactory);
SourceLocation IdLoc = Tok.getLocation();
if (Tok.is(tok::annot_decltype)) {
// Get the decltype expression, if there is one.
ParseDecltypeSpecifier(DS);
} else {
if (Tok.is(tok::identifier))
// Get the identifier. This may be a member name or a class name,
// but we'll let the semantic analysis determine which it is.
II = Tok.getIdentifierInfo();
ConsumeToken();
}
// Parse the '('.
if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
ExprResult InitList = ParseBraceInitializer();
if (InitList.isInvalid())
return true;
SourceLocation EllipsisLoc;
if (Tok.is(tok::ellipsis))
EllipsisLoc = ConsumeToken();
return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
TemplateTypeTy, DS, IdLoc,
InitList.take(), EllipsisLoc);
} else if(Tok.is(tok::l_paren)) {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
// Parse the optional expression-list.
ExprVector ArgExprs(Actions);
CommaLocsTy CommaLocs;
if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
SkipUntil(tok::r_paren);
return true;
}
T.consumeClose();
SourceLocation EllipsisLoc;
if (Tok.is(tok::ellipsis))
EllipsisLoc = ConsumeToken();
return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
TemplateTypeTy, DS, IdLoc,
T.getOpenLocation(), ArgExprs.take(),
ArgExprs.size(), T.getCloseLocation(),
EllipsisLoc);
}
Diag(Tok, getLangOpts().CPlusPlus0x ? diag::err_expected_lparen_or_lbrace
: diag::err_expected_lparen);
return true;
}
/// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
///
/// exception-specification:
/// dynamic-exception-specification
/// noexcept-specification
///
/// noexcept-specification:
/// 'noexcept'
/// 'noexcept' '(' constant-expression ')'
ExceptionSpecificationType
Parser::tryParseExceptionSpecification(
SourceRange &SpecificationRange,
SmallVectorImpl<ParsedType> &DynamicExceptions,
SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
ExprResult &NoexceptExpr) {
ExceptionSpecificationType Result = EST_None;
// See if there's a dynamic specification.
if (Tok.is(tok::kw_throw)) {
Result = ParseDynamicExceptionSpecification(SpecificationRange,
DynamicExceptions,
DynamicExceptionRanges);
assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
"Produced different number of exception types and ranges.");
}
// If there's no noexcept specification, we're done.
if (Tok.isNot(tok::kw_noexcept))
return Result;
Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
// If we already had a dynamic specification, parse the noexcept for,
// recovery, but emit a diagnostic and don't store the results.
SourceRange NoexceptRange;
ExceptionSpecificationType NoexceptType = EST_None;
SourceLocation KeywordLoc = ConsumeToken();
if (Tok.is(tok::l_paren)) {
// There is an argument.
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
NoexceptType = EST_ComputedNoexcept;
NoexceptExpr = ParseConstantExpression();
// The argument must be contextually convertible to bool. We use
// ActOnBooleanCondition for this purpose.
if (!NoexceptExpr.isInvalid())
NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
NoexceptExpr.get());
T.consumeClose();
NoexceptRange = SourceRange(KeywordLoc, T.getCloseLocation());
} else {
// There is no argument.
NoexceptType = EST_BasicNoexcept;
NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
}
if (Result == EST_None) {
SpecificationRange = NoexceptRange;
Result = NoexceptType;
// If there's a dynamic specification after a noexcept specification,
// parse that and ignore the results.
if (Tok.is(tok::kw_throw)) {
Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
DynamicExceptionRanges);
}
} else {
Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
}
return Result;
}
/// ParseDynamicExceptionSpecification - Parse a C++
/// dynamic-exception-specification (C++ [except.spec]).
///
/// dynamic-exception-specification:
/// 'throw' '(' type-id-list [opt] ')'
/// [MS] 'throw' '(' '...' ')'
///
/// type-id-list:
/// type-id ... [opt]
/// type-id-list ',' type-id ... [opt]
///
ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
SourceRange &SpecificationRange,
SmallVectorImpl<ParsedType> &Exceptions,
SmallVectorImpl<SourceRange> &Ranges) {
assert(Tok.is(tok::kw_throw) && "expected throw");
SpecificationRange.setBegin(ConsumeToken());
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected_lparen_after) << "throw";
SpecificationRange.setEnd(SpecificationRange.getBegin());
return EST_DynamicNone;
}
// Parse throw(...), a Microsoft extension that means "this function
// can throw anything".
if (Tok.is(tok::ellipsis)) {
SourceLocation EllipsisLoc = ConsumeToken();
if (!getLangOpts().MicrosoftExt)
Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
T.consumeClose();
SpecificationRange.setEnd(T.getCloseLocation());
return EST_MSAny;
}
// Parse the sequence of type-ids.
SourceRange Range;
while (Tok.isNot(tok::r_paren)) {
TypeResult Res(ParseTypeName(&Range));
if (Tok.is(tok::ellipsis)) {
// C++0x [temp.variadic]p5:
// - In a dynamic-exception-specification (15.4); the pattern is a
// type-id.
SourceLocation Ellipsis = ConsumeToken();
Range.setEnd(Ellipsis);
if (!Res.isInvalid())
Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
}
if (!Res.isInvalid()) {
Exceptions.push_back(Res.get());
Ranges.push_back(Range);
}
if (Tok.is(tok::comma))
ConsumeToken();
else
break;
}
T.consumeClose();
SpecificationRange.setEnd(T.getCloseLocation());
return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
}
/// ParseTrailingReturnType - Parse a trailing return type on a new-style
/// function declaration.
TypeResult Parser::ParseTrailingReturnType(SourceRange &Range) {
assert(Tok.is(tok::arrow) && "expected arrow");
ConsumeToken();
return ParseTypeName(&Range, Declarator::TrailingReturnContext);
}
/// \brief We have just started parsing the definition of a new class,
/// so push that class onto our stack of classes that is currently
/// being parsed.
Sema::ParsingClassState
Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
assert((NonNestedClass || !ClassStack.empty()) &&
"Nested class without outer class");
ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
return Actions.PushParsingClass();
}
/// \brief Deallocate the given parsed class and all of its nested
/// classes.
void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
delete Class->LateParsedDeclarations[I];
delete Class;
}
/// \brief Pop the top class of the stack of classes that are
/// currently being parsed.
///
/// This routine should be called when we have finished parsing the
/// definition of a class, but have not yet popped the Scope
/// associated with the class's definition.
///
/// \returns true if the class we've popped is a top-level class,
/// false otherwise.
void Parser::PopParsingClass(Sema::ParsingClassState state) {
assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
Actions.PopParsingClass(state);
ParsingClass *Victim = ClassStack.top();
ClassStack.pop();
if (Victim->TopLevelClass) {
// Deallocate all of the nested classes of this class,
// recursively: we don't need to keep any of this information.
DeallocateParsedClasses(Victim);
return;
}
assert(!ClassStack.empty() && "Missing top-level class?");
if (Victim->LateParsedDeclarations.empty()) {
// The victim is a nested class, but we will not need to perform
// any processing after the definition of this class since it has
// no members whose handling was delayed. Therefore, we can just
// remove this nested class.
DeallocateParsedClasses(Victim);
return;
}
// This nested class has some members that will need to be processed
// after the top-level class is completely defined. Therefore, add
// it to the list of nested classes within its parent.
assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
}
/// \brief Try to parse an 'identifier' which appears within an attribute-token.
///
/// \return the parsed identifier on success, and 0 if the next token is not an
/// attribute-token.
///
/// C++11 [dcl.attr.grammar]p3:
/// If a keyword or an alternative token that satisfies the syntactic
/// requirements of an identifier is contained in an attribute-token,
/// it is considered an identifier.
IdentifierInfo *Parser::TryParseCXX11AttributeIdentifier(SourceLocation &Loc) {
switch (Tok.getKind()) {
default:
// Identifiers and keywords have identifier info attached.
if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
Loc = ConsumeToken();
return II;
}
return 0;
case tok::ampamp: // 'and'
case tok::pipe: // 'bitor'
case tok::pipepipe: // 'or'
case tok::caret: // 'xor'
case tok::tilde: // 'compl'
case tok::amp: // 'bitand'
case tok::ampequal: // 'and_eq'
case tok::pipeequal: // 'or_eq'
case tok::caretequal: // 'xor_eq'
case tok::exclaim: // 'not'
case tok::exclaimequal: // 'not_eq'
// Alternative tokens do not have identifier info, but their spelling
// starts with an alphabetical character.
llvm::SmallString<8> SpellingBuf;
StringRef Spelling = PP.getSpelling(Tok.getLocation(), SpellingBuf);
if (std::isalpha(Spelling[0])) {
Loc = ConsumeToken();
return &PP.getIdentifierTable().get(Spelling.data());
}
return 0;
}
}
/// ParseCXX11AttributeSpecifier - Parse a C++11 attribute-specifier. Currently
/// only parses standard attributes.
///
/// [C++11] attribute-specifier:
/// '[' '[' attribute-list ']' ']'
/// alignment-specifier
///
/// [C++11] attribute-list:
/// attribute[opt]
/// attribute-list ',' attribute[opt]
/// attribute '...'
/// attribute-list ',' attribute '...'
///
/// [C++11] attribute:
/// attribute-token attribute-argument-clause[opt]
///
/// [C++11] attribute-token:
/// identifier
/// attribute-scoped-token
///
/// [C++11] attribute-scoped-token:
/// attribute-namespace '::' identifier
///
/// [C++11] attribute-namespace:
/// identifier
///
/// [C++11] attribute-argument-clause:
/// '(' balanced-token-seq ')'
///
/// [C++11] balanced-token-seq:
/// balanced-token
/// balanced-token-seq balanced-token
///
/// [C++11] balanced-token:
/// '(' balanced-token-seq ')'
/// '[' balanced-token-seq ']'
/// '{' balanced-token-seq '}'
/// any token but '(', ')', '[', ']', '{', or '}'
void Parser::ParseCXX11AttributeSpecifier(ParsedAttributes &attrs,
SourceLocation *endLoc) {
if (Tok.is(tok::kw_alignas)) {
Diag(Tok.getLocation(), diag::warn_cxx98_compat_alignas);
ParseAlignmentSpecifier(attrs, endLoc);
return;
}
assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
&& "Not a C++11 attribute list");
Diag(Tok.getLocation(), diag::warn_cxx98_compat_attribute);
ConsumeBracket();
ConsumeBracket();
while (Tok.isNot(tok::r_square)) {
// attribute not present
if (Tok.is(tok::comma)) {
ConsumeToken();
continue;
}
SourceLocation ScopeLoc, AttrLoc;
IdentifierInfo *ScopeName = 0, *AttrName = 0;
AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
if (!AttrName)
// Break out to the "expected ']'" diagnostic.
break;
// scoped attribute
if (Tok.is(tok::coloncolon)) {
ConsumeToken();
ScopeName = AttrName;
ScopeLoc = AttrLoc;
AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
if (!AttrName) {
Diag(Tok.getLocation(), diag::err_expected_ident);
SkipUntil(tok::r_square, tok::comma, true, true);
continue;
}
}
bool AttrParsed = false;
// No scoped names are supported; ideally we could put all non-standard
// attributes into namespaces.
if (!ScopeName) {
switch (AttributeList::getKind(AttrName)) {
// No arguments
case AttributeList::AT_carries_dependency:
case AttributeList::AT_noreturn: {
if (Tok.is(tok::l_paren)) {
Diag(Tok.getLocation(), diag::err_cxx11_attribute_forbids_arguments)
<< AttrName->getName();
break;
}
attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0,
SourceLocation(), 0, 0, false, true);
AttrParsed = true;
break;
}
// Silence warnings
default: break;
}
}
// Skip the entire parameter clause, if any
if (!AttrParsed && Tok.is(tok::l_paren)) {
ConsumeParen();
// SkipUntil maintains the balancedness of tokens.
SkipUntil(tok::r_paren, false);
}
if (Tok.is(tok::ellipsis)) {
if (AttrParsed)
Diag(Tok, diag::err_cxx11_attribute_forbids_ellipsis)
<< AttrName->getName();
ConsumeToken();
}
}
if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
SkipUntil(tok::r_square, false);
if (endLoc)
*endLoc = Tok.getLocation();
if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
SkipUntil(tok::r_square, false);
}
/// ParseCXX11Attributes - Parse a C++0x attribute-specifier-seq.
///
/// attribute-specifier-seq:
/// attribute-specifier-seq[opt] attribute-specifier
void Parser::ParseCXX11Attributes(ParsedAttributesWithRange &attrs,
SourceLocation *endLoc) {
SourceLocation StartLoc = Tok.getLocation(), Loc;
if (!endLoc)
endLoc = &Loc;
do {
ParseCXX11AttributeSpecifier(attrs, endLoc);
} while (isCXX11AttributeSpecifier());
attrs.Range = SourceRange(StartLoc, *endLoc);
}
/// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
///
/// [MS] ms-attribute:
/// '[' token-seq ']'
///
/// [MS] ms-attribute-seq:
/// ms-attribute[opt]
/// ms-attribute ms-attribute-seq
void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc) {
assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
while (Tok.is(tok::l_square)) {
// FIXME: If this is actually a C++11 attribute, parse it as one.
ConsumeBracket();
SkipUntil(tok::r_square, true, true);
if (endLoc) *endLoc = Tok.getLocation();
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare);
}
}
void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
AccessSpecifier& CurAS) {
IfExistsCondition Result;
if (ParseMicrosoftIfExistsCondition(Result))
return;
BalancedDelimiterTracker Braces(*this, tok::l_brace);
if (Braces.consumeOpen()) {
Diag(Tok, diag::err_expected_lbrace);
return;
}
switch (Result.Behavior) {
case IEB_Parse:
// Parse the declarations below.
break;
case IEB_Dependent:
Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
<< Result.IsIfExists;
// Fall through to skip.
case IEB_Skip:
Braces.skipToEnd();
return;
}
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// __if_exists, __if_not_exists can nest.
if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) {
ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
continue;
}
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi)
<< DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
continue;
}
AccessSpecifier AS = getAccessSpecifierIfPresent();
if (AS != AS_none) {
// Current token is a C++ access specifier.
CurAS = AS;
SourceLocation ASLoc = Tok.getLocation();
ConsumeToken();
if (Tok.is(tok::colon))
Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
else
Diag(Tok, diag::err_expected_colon);
ConsumeToken();
continue;
}
// Parse all the comma separated declarators.
ParseCXXClassMemberDeclaration(CurAS, 0);
}
Braces.consumeClose();
}