YouCompleteMe/cpp/BoostParts/boost/thread/future.hpp
Strahinja Val Markovic 121d88518e Updating to boost 1.52
2013-01-13 14:38:19 -08:00

1869 lines
53 KiB
C++

// (C) Copyright 2008-10 Anthony Williams
// (C) Copyright 2011-2012 Vicente J. Botet Escriba
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_THREAD_FUTURE_HPP
#define BOOST_THREAD_FUTURE_HPP
#include <boost/thread/detail/config.hpp>
// boost::thread::future requires exception handling
// due to boost::exception::exception_ptr dependency
#ifndef BOOST_NO_EXCEPTIONS
#include <boost/detail/scoped_enum_emulation.hpp>
#include <stdexcept>
#include <boost/thread/detail/move.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/exception_ptr.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/type_traits/is_fundamental.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/mpl/if.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <algorithm>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/ref.hpp>
#include <boost/scoped_array.hpp>
#include <boost/utility/enable_if.hpp>
#include <list>
#include <boost/next_prior.hpp>
#include <vector>
#include <boost/system/error_code.hpp>
#ifdef BOOST_THREAD_USES_CHRONO
#include <boost/chrono/system_clocks.hpp>
#endif
#if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
#include <boost/thread/detail/memory.hpp>
#endif
#include <boost/utility/result_of.hpp>
#include <boost/thread/thread.hpp>
#if defined BOOST_THREAD_PROVIDES_FUTURE
#define BOOST_THREAD_FUTURE future
#else
#define BOOST_THREAD_FUTURE unique_future
#endif
namespace boost
{
//enum class future_errc
BOOST_SCOPED_ENUM_DECLARE_BEGIN(future_errc)
{
broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state
}
BOOST_SCOPED_ENUM_DECLARE_END(future_errc)
namespace system
{
template <>
struct BOOST_SYMBOL_VISIBLE is_error_code_enum<future_errc> : public true_type {};
#ifdef BOOST_NO_CXX11_SCOPED_ENUMS
template <>
struct BOOST_SYMBOL_VISIBLE is_error_code_enum<future_errc::enum_type> : public true_type { };
#endif
}
//enum class launch
BOOST_SCOPED_ENUM_DECLARE_BEGIN(launch)
{
async = 1,
deferred = 2,
any = async | deferred
}
BOOST_SCOPED_ENUM_DECLARE_END(launch)
//enum class future_status
BOOST_SCOPED_ENUM_DECLARE_BEGIN(future_status)
{
ready,
timeout,
deferred
}
BOOST_SCOPED_ENUM_DECLARE_END(future_status)
BOOST_THREAD_DECL
const system::error_category& future_category() BOOST_NOEXCEPT;
namespace system
{
inline
error_code
make_error_code(future_errc e) //BOOST_NOEXCEPT
{
return error_code(underlying_cast<int>(e), boost::future_category());
}
inline
error_condition
make_error_condition(future_errc e) //BOOST_NOEXCEPT
{
return error_condition(underlying_cast<int>(e), future_category());
}
}
class BOOST_SYMBOL_VISIBLE future_error
: public std::logic_error
{
system::error_code ec_;
public:
future_error(system::error_code ec)
: logic_error(ec.message()),
ec_(ec)
{
}
const system::error_code& code() const BOOST_NOEXCEPT
{
return ec_;
}
const char* what() const BOOST_THREAD_NOEXCEPT_OR_THROW
{
return code().message().c_str();
}
};
class BOOST_SYMBOL_VISIBLE future_uninitialized:
public future_error
{
public:
future_uninitialized() :
future_error(system::make_error_code(future_errc::no_state))
{}
};
class BOOST_SYMBOL_VISIBLE broken_promise:
public future_error
{
public:
broken_promise():
future_error(system::make_error_code(future_errc::broken_promise))
{}
};
class BOOST_SYMBOL_VISIBLE future_already_retrieved:
public future_error
{
public:
future_already_retrieved():
future_error(system::make_error_code(future_errc::future_already_retrieved))
{}
};
class BOOST_SYMBOL_VISIBLE promise_already_satisfied:
public future_error
{
public:
promise_already_satisfied():
future_error(system::make_error_code(future_errc::promise_already_satisfied))
{}
};
class BOOST_SYMBOL_VISIBLE task_already_started:
public future_error
{
public:
task_already_started():
future_error(system::make_error_code(future_errc::promise_already_satisfied))
{}
};
class BOOST_SYMBOL_VISIBLE task_moved:
public future_error
{
public:
task_moved():
future_error(system::make_error_code(future_errc::no_state))
{}
};
class promise_moved:
public future_error
{
public:
promise_moved():
future_error(system::make_error_code(future_errc::no_state))
{}
};
namespace future_state
{
enum state { uninitialized, waiting, ready, moved };
}
namespace detail
{
struct future_object_base
{
boost::exception_ptr exception;
bool done;
bool thread_was_interrupted;
boost::mutex mutex;
boost::condition_variable waiters;
typedef std::list<boost::condition_variable_any*> waiter_list;
waiter_list external_waiters;
boost::function<void()> callback;
future_object_base():
done(false),
thread_was_interrupted(false)
{}
virtual ~future_object_base()
{}
waiter_list::iterator register_external_waiter(boost::condition_variable_any& cv)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
return external_waiters.insert(external_waiters.end(),&cv);
}
void remove_external_waiter(waiter_list::iterator it)
{
boost::lock_guard<boost::mutex> lock(mutex);
external_waiters.erase(it);
}
void mark_finished_internal()
{
done=true;
waiters.notify_all();
for(waiter_list::const_iterator it=external_waiters.begin(),
end=external_waiters.end();it!=end;++it)
{
(*it)->notify_all();
}
}
struct relocker
{
boost::unique_lock<boost::mutex>& lock;
relocker(boost::unique_lock<boost::mutex>& lock_):
lock(lock_)
{
lock.unlock();
}
~relocker()
{
lock.lock();
}
private:
relocker& operator=(relocker const&);
};
void do_callback(boost::unique_lock<boost::mutex>& lock)
{
if(callback && !done)
{
boost::function<void()> local_callback=callback;
relocker relock(lock);
local_callback();
}
}
void wait(bool rethrow=true)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
while(!done)
{
waiters.wait(lock);
}
if(rethrow && thread_was_interrupted)
{
throw boost::thread_interrupted();
}
if(rethrow && exception)
{
boost::rethrow_exception(exception);
}
}
bool timed_wait_until(boost::system_time const& target_time)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
while(!done)
{
bool const success=waiters.timed_wait(lock,target_time);
if(!success && !done)
{
return false;
}
}
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
while(!done)
{
cv_status const st=waiters.wait_until(lock,abs_time);
if(st==cv_status::timeout && !done)
{
return future_status::timeout;
}
}
return future_status::ready;
}
#endif
void mark_exceptional_finish_internal(boost::exception_ptr const& e)
{
exception=e;
mark_finished_internal();
}
void mark_exceptional_finish()
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_exceptional_finish_internal(boost::current_exception());
}
void mark_interrupted_finish()
{
boost::lock_guard<boost::mutex> lock(mutex);
thread_was_interrupted=true;
mark_finished_internal();
}
bool has_value()
{
boost::lock_guard<boost::mutex> lock(mutex);
return done && !(exception || thread_was_interrupted);
}
bool has_exception()
{
boost::lock_guard<boost::mutex> lock(mutex);
return done && (exception || thread_was_interrupted);
}
template<typename F,typename U>
void set_wait_callback(F f,U* u)
{
callback=boost::bind(f,boost::ref(*u));
}
private:
future_object_base(future_object_base const&);
future_object_base& operator=(future_object_base const&);
};
template<typename T>
struct future_traits
{
typedef boost::scoped_ptr<T> storage_type;
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
typedef T const& source_reference_type;
struct dummy;
typedef typename boost::mpl::if_<boost::is_fundamental<T>,dummy&,BOOST_THREAD_RV_REF(T)>::type rvalue_source_type;
typedef typename boost::mpl::if_<boost::is_fundamental<T>,T,BOOST_THREAD_RV_REF(T)>::type move_dest_type;
#elif defined BOOST_THREAD_USES_MOVE
typedef T& source_reference_type;
typedef typename boost::mpl::if_<boost::has_move_emulation_enabled<T>,BOOST_THREAD_RV_REF(T),T const&>::type rvalue_source_type;
typedef typename boost::mpl::if_<boost::has_move_emulation_enabled<T>,BOOST_THREAD_RV_REF(T),T>::type move_dest_type;
#else
typedef T& source_reference_type;
typedef typename boost::mpl::if_<boost::is_convertible<T&,BOOST_THREAD_RV_REF(T) >,BOOST_THREAD_RV_REF(T),T const&>::type rvalue_source_type;
typedef typename boost::mpl::if_<boost::is_convertible<T&,BOOST_THREAD_RV_REF(T) >,BOOST_THREAD_RV_REF(T),T>::type move_dest_type;
#endif
typedef const T& shared_future_get_result_type;
static void init(storage_type& storage,source_reference_type t)
{
storage.reset(new T(t));
}
static void init(storage_type& storage,rvalue_source_type t)
{
storage.reset(new T(static_cast<rvalue_source_type>(t)));
}
static void cleanup(storage_type& storage)
{
storage.reset();
}
};
template<typename T>
struct future_traits<T&>
{
typedef T* storage_type;
typedef T& source_reference_type;
struct rvalue_source_type
{};
typedef T& move_dest_type;
typedef T& shared_future_get_result_type;
static void init(storage_type& storage,T& t)
{
storage=&t;
}
static void cleanup(storage_type& storage)
{
storage=0;
}
};
template<>
struct future_traits<void>
{
typedef bool storage_type;
typedef void move_dest_type;
typedef void shared_future_get_result_type;
static void init(storage_type& storage)
{
storage=true;
}
static void cleanup(storage_type& storage)
{
storage=false;
}
};
template<typename T>
struct future_object:
detail::future_object_base
{
typedef typename future_traits<T>::storage_type storage_type;
typedef typename future_traits<T>::source_reference_type source_reference_type;
typedef typename future_traits<T>::rvalue_source_type rvalue_source_type;
typedef typename future_traits<T>::move_dest_type move_dest_type;
typedef typename future_traits<T>::shared_future_get_result_type shared_future_get_result_type;
storage_type result;
future_object():
result(0)
{}
void mark_finished_with_result_internal(source_reference_type result_)
{
future_traits<T>::init(result,result_);
mark_finished_internal();
}
void mark_finished_with_result_internal(rvalue_source_type result_)
{
future_traits<T>::init(result,static_cast<rvalue_source_type>(result_));
mark_finished_internal();
}
void mark_finished_with_result(source_reference_type result_)
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_finished_with_result_internal(result_);
}
void mark_finished_with_result(rvalue_source_type result_)
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_finished_with_result_internal(static_cast<rvalue_source_type>(result_));
}
move_dest_type get()
{
wait();
return static_cast<move_dest_type>(*result);
}
shared_future_get_result_type get_sh()
{
wait();
return static_cast<shared_future_get_result_type>(*result);
}
future_state::state get_state()
{
boost::lock_guard<boost::mutex> guard(mutex);
if(!done)
{
return future_state::waiting;
}
else
{
return future_state::ready;
}
}
private:
future_object(future_object const&);
future_object& operator=(future_object const&);
};
template<>
struct future_object<void>:
detail::future_object_base
{
typedef void shared_future_get_result_type;
future_object()
{}
void mark_finished_with_result_internal()
{
mark_finished_internal();
}
void mark_finished_with_result()
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_finished_with_result_internal();
}
void get()
{
wait();
}
void get_sh()
{
wait();
}
future_state::state get_state()
{
boost::lock_guard<boost::mutex> guard(mutex);
if(!done)
{
return future_state::waiting;
}
else
{
return future_state::ready;
}
}
private:
future_object(future_object const&);
future_object& operator=(future_object const&);
};
// template<typename T, typename Allocator>
// struct future_object_alloc: public future_object<T>
// {
// typedef future_object<T> base;
// Allocator alloc_;
//
// public:
// explicit future_object_alloc(const Allocator& a)
// : alloc_(a) {}
//
// };
class future_waiter
{
struct registered_waiter;
typedef std::vector<int>::size_type count_type;
struct registered_waiter
{
boost::shared_ptr<detail::future_object_base> future_;
detail::future_object_base::waiter_list::iterator wait_iterator;
count_type index;
registered_waiter(boost::shared_ptr<detail::future_object_base> const& a_future,
detail::future_object_base::waiter_list::iterator wait_iterator_,
count_type index_):
future_(a_future),wait_iterator(wait_iterator_),index(index_)
{}
};
struct all_futures_lock
{
#ifdef _MANAGED
typedef std::ptrdiff_t count_type_portable;
#else
typedef count_type count_type_portable;
#endif
count_type_portable count;
boost::scoped_array<boost::unique_lock<boost::mutex> > locks;
all_futures_lock(std::vector<registered_waiter>& futures):
count(futures.size()),locks(new boost::unique_lock<boost::mutex>[count])
{
for(count_type_portable i=0;i<count;++i)
{
#if defined __DECCXX || defined __SUNPRO_CC || defined __hpux
locks[i]=boost::unique_lock<boost::mutex>(futures[i].future_->mutex).move();
#else
locks[i]=boost::unique_lock<boost::mutex>(futures[i].future_->mutex);
#endif
}
}
void lock()
{
boost::lock(locks.get(),locks.get()+count);
}
void unlock()
{
for(count_type_portable i=0;i<count;++i)
{
locks[i].unlock();
}
}
};
boost::condition_variable_any cv;
std::vector<registered_waiter> futures;
count_type future_count;
public:
future_waiter():
future_count(0)
{}
template<typename F>
void add(F& f)
{
if(f.future_)
{
futures.push_back(registered_waiter(f.future_,f.future_->register_external_waiter(cv),future_count));
}
++future_count;
}
count_type wait()
{
all_futures_lock lk(futures);
for(;;)
{
for(count_type i=0;i<futures.size();++i)
{
if(futures[i].future_->done)
{
return futures[i].index;
}
}
cv.wait(lk);
}
}
~future_waiter()
{
for(count_type i=0;i<futures.size();++i)
{
futures[i].future_->remove_external_waiter(futures[i].wait_iterator);
}
}
};
}
template <typename R>
class BOOST_THREAD_FUTURE;
template <typename R>
class shared_future;
template<typename T>
struct is_future_type
{
BOOST_STATIC_CONSTANT(bool, value=false);
};
template<typename T>
struct is_future_type<BOOST_THREAD_FUTURE<T> >
{
BOOST_STATIC_CONSTANT(bool, value=true);
};
template<typename T>
struct is_future_type<shared_future<T> >
{
BOOST_STATIC_CONSTANT(bool, value=true);
};
template<typename Iterator>
typename boost::disable_if<is_future_type<Iterator>,void>::type wait_for_all(Iterator begin,Iterator end)
{
for(Iterator current=begin;current!=end;++current)
{
current->wait();
}
}
template<typename F1,typename F2>
typename boost::enable_if<is_future_type<F1>,void>::type wait_for_all(F1& f1,F2& f2)
{
f1.wait();
f2.wait();
}
template<typename F1,typename F2,typename F3>
void wait_for_all(F1& f1,F2& f2,F3& f3)
{
f1.wait();
f2.wait();
f3.wait();
}
template<typename F1,typename F2,typename F3,typename F4>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4)
{
f1.wait();
f2.wait();
f3.wait();
f4.wait();
}
template<typename F1,typename F2,typename F3,typename F4,typename F5>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5)
{
f1.wait();
f2.wait();
f3.wait();
f4.wait();
f5.wait();
}
template<typename Iterator>
typename boost::disable_if<is_future_type<Iterator>,Iterator>::type wait_for_any(Iterator begin,Iterator end)
{
if(begin==end)
return end;
detail::future_waiter waiter;
for(Iterator current=begin;current!=end;++current)
{
waiter.add(*current);
}
return boost::next(begin,waiter.wait());
}
template<typename F1,typename F2>
typename boost::enable_if<is_future_type<F1>,unsigned>::type wait_for_any(F1& f1,F2& f2)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
return waiter.wait();
}
template<typename F1,typename F2,typename F3>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
waiter.add(f3);
return waiter.wait();
}
template<typename F1,typename F2,typename F3,typename F4>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
waiter.add(f3);
waiter.add(f4);
return waiter.wait();
}
template<typename F1,typename F2,typename F3,typename F4,typename F5>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
waiter.add(f3);
waiter.add(f4);
waiter.add(f5);
return waiter.wait();
}
template <typename R>
class promise;
template <typename R>
class packaged_task;
template <typename R>
class BOOST_THREAD_FUTURE
{
private:
typedef boost::shared_ptr<detail::future_object<R> > future_ptr;
future_ptr future_;
friend class shared_future<R>;
friend class promise<R>;
friend class packaged_task<R>;
friend class detail::future_waiter;
typedef typename detail::future_traits<R>::move_dest_type move_dest_type;
BOOST_THREAD_FUTURE(future_ptr a_future):
future_(a_future)
{}
public:
BOOST_THREAD_MOVABLE_ONLY(BOOST_THREAD_FUTURE)
typedef future_state::state state;
BOOST_THREAD_FUTURE()
{}
~BOOST_THREAD_FUTURE()
{}
BOOST_THREAD_FUTURE(BOOST_THREAD_RV_REF(BOOST_THREAD_FUTURE) other) BOOST_NOEXCEPT:
future_(BOOST_THREAD_RV(other).future_)
{
BOOST_THREAD_RV(other).future_.reset();
}
BOOST_THREAD_FUTURE& operator=(BOOST_THREAD_RV_REF(BOOST_THREAD_FUTURE) other) BOOST_NOEXCEPT
{
future_=BOOST_THREAD_RV(other).future_;
BOOST_THREAD_RV(other).future_.reset();
return *this;
}
shared_future<R> share()
{
return shared_future<R>(::boost::move(*this));
}
void swap(BOOST_THREAD_FUTURE& other)
{
future_.swap(other.future_);
}
// retrieving the value
move_dest_type get()
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
return future_->get();
}
// functions to check state, and wait for ready
state get_state() const BOOST_NOEXCEPT
{
if(!future_)
{
return future_state::uninitialized;
}
return future_->get_state();
}
bool is_ready() const BOOST_NOEXCEPT
{
return get_state()==future_state::ready;
}
bool has_exception() const BOOST_NOEXCEPT
{
return future_ && future_->has_exception();
}
bool has_value() const BOOST_NOEXCEPT
{
return future_ && future_->has_value();
}
bool valid() const BOOST_NOEXCEPT
{
return future_ != 0;
}
void wait() const
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
future_->wait(false);
}
template<typename Duration>
bool timed_wait(Duration const& rel_time) const
{
return timed_wait_until(boost::get_system_time()+rel_time);
}
bool timed_wait_until(boost::system_time const& abs_time) const
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
return future_->timed_wait_until(abs_time);
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const
{
return wait_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
return future_->wait_until(abs_time);
}
#endif
};
BOOST_THREAD_DCL_MOVABLE_BEG(T) BOOST_THREAD_FUTURE<T> BOOST_THREAD_DCL_MOVABLE_END
template <typename R>
class shared_future
{
typedef boost::shared_ptr<detail::future_object<R> > future_ptr;
future_ptr future_;
friend class detail::future_waiter;
friend class promise<R>;
friend class packaged_task<R>;
shared_future(future_ptr a_future):
future_(a_future)
{}
public:
BOOST_THREAD_MOVABLE(shared_future)
shared_future(shared_future const& other):
future_(other.future_)
{}
typedef future_state::state state;
shared_future()
{}
~shared_future()
{}
shared_future& operator=(shared_future const& other)
{
future_=other.future_;
return *this;
}
shared_future(BOOST_THREAD_RV_REF(shared_future) other) BOOST_NOEXCEPT :
future_(BOOST_THREAD_RV(other).future_)
{
BOOST_THREAD_RV(other).future_.reset();
}
shared_future(BOOST_THREAD_RV_REF_BEG BOOST_THREAD_FUTURE<R> BOOST_THREAD_RV_REF_END other) BOOST_NOEXCEPT :
future_(BOOST_THREAD_RV(other).future_)
{
BOOST_THREAD_RV(other).future_.reset();
}
shared_future& operator=(BOOST_THREAD_RV_REF(shared_future) other) BOOST_NOEXCEPT
{
future_.swap(BOOST_THREAD_RV(other).future_);
BOOST_THREAD_RV(other).future_.reset();
return *this;
}
shared_future& operator=(BOOST_THREAD_RV_REF_BEG BOOST_THREAD_FUTURE<R> BOOST_THREAD_RV_REF_END other) BOOST_NOEXCEPT
{
future_.swap(BOOST_THREAD_RV(other).future_);
BOOST_THREAD_RV(other).future_.reset();
return *this;
}
void swap(shared_future& other) BOOST_NOEXCEPT
{
future_.swap(other.future_);
}
// retrieving the value
typename detail::future_object<R>::shared_future_get_result_type get()
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
return future_->get_sh();
}
// functions to check state, and wait for ready
state get_state() const BOOST_NOEXCEPT
{
if(!future_)
{
return future_state::uninitialized;
}
return future_->get_state();
}
bool valid() const BOOST_NOEXCEPT
{
return future_ != 0;
}
bool is_ready() const BOOST_NOEXCEPT
{
return get_state()==future_state::ready;
}
bool has_exception() const BOOST_NOEXCEPT
{
return future_ && future_->has_exception();
}
bool has_value() const BOOST_NOEXCEPT
{
return future_ && future_->has_value();
}
void wait() const
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
future_->wait(false);
}
template<typename Duration>
bool timed_wait(Duration const& rel_time) const
{
return timed_wait_until(boost::get_system_time()+rel_time);
}
bool timed_wait_until(boost::system_time const& abs_time) const
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
return future_->timed_wait_until(abs_time);
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const
{
return wait_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const
{
if(!future_)
{
boost::throw_exception(future_uninitialized());
}
return future_->wait_until(abs_time);
}
#endif
};
BOOST_THREAD_DCL_MOVABLE_BEG(T) shared_future<T> BOOST_THREAD_DCL_MOVABLE_END
template <typename R>
class promise
{
typedef boost::shared_ptr<detail::future_object<R> > future_ptr;
future_ptr future_;
bool future_obtained;
void lazy_init()
{
#if defined BOOST_THREAD_PROMISE_LAZY
if(!atomic_load(&future_))
{
future_ptr blank;
atomic_compare_exchange(&future_,&blank,future_ptr(new detail::future_object<R>));
}
#endif
}
public:
BOOST_THREAD_MOVABLE_ONLY(promise)
#if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
template <class Allocator>
promise(boost::allocator_arg_t, Allocator a)
{
typedef typename Allocator::template rebind<detail::future_object<R> >::other A2;
A2 a2(a);
typedef thread_detail::allocator_destructor<A2> D;
future_ = future_ptr(::new(a2.allocate(1)) detail::future_object<R>(), D(a2, 1) );
future_obtained = false;
}
#endif
promise():
#if defined BOOST_THREAD_PROMISE_LAZY
future_(),
#else
future_(new detail::future_object<R>()),
#endif
future_obtained(false)
{}
~promise()
{
if(future_)
{
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(!future_->done)
{
future_->mark_exceptional_finish_internal(boost::copy_exception(broken_promise()));
}
}
}
// Assignment
promise(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT :
future_(BOOST_THREAD_RV(rhs).future_),future_obtained(BOOST_THREAD_RV(rhs).future_obtained)
{
BOOST_THREAD_RV(rhs).future_.reset();
BOOST_THREAD_RV(rhs).future_obtained=false;
}
promise & operator=(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT
{
future_=BOOST_THREAD_RV(rhs).future_;
future_obtained=BOOST_THREAD_RV(rhs).future_obtained;
BOOST_THREAD_RV(rhs).future_.reset();
BOOST_THREAD_RV(rhs).future_obtained=false;
return *this;
}
void swap(promise& other)
{
future_.swap(other.future_);
std::swap(future_obtained,other.future_obtained);
}
// Result retrieval
BOOST_THREAD_FUTURE<R> get_future()
{
lazy_init();
if (future_.get()==0)
{
boost::throw_exception(promise_moved());
}
if (future_obtained)
{
boost::throw_exception(future_already_retrieved());
}
future_obtained=true;
return BOOST_THREAD_FUTURE<R>(future_);
}
void set_value(typename detail::future_traits<R>::source_reference_type r)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(future_->done)
{
boost::throw_exception(promise_already_satisfied());
}
future_->mark_finished_with_result_internal(r);
}
// void set_value(R && r);
void set_value(typename detail::future_traits<R>::rvalue_source_type r)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(future_->done)
{
boost::throw_exception(promise_already_satisfied());
}
future_->mark_finished_with_result_internal(static_cast<typename detail::future_traits<R>::rvalue_source_type>(r));
}
void set_exception(boost::exception_ptr p)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(future_->done)
{
boost::throw_exception(promise_already_satisfied());
}
future_->mark_exceptional_finish_internal(p);
}
// setting the result with deferred notification
//void set_value_at_thread_exit(const R& r); // NOT YET IMPLEMENTED
//void set_value_at_thread_exit(see below); // NOT YET IMPLEMENTED
//void set_exception_at_thread_exit(exception_ptr p); // NOT YET IMPLEMENTED
template<typename F>
void set_wait_callback(F f)
{
lazy_init();
future_->set_wait_callback(f,this);
}
};
template <>
class promise<void>
{
typedef boost::shared_ptr<detail::future_object<void> > future_ptr;
future_ptr future_;
bool future_obtained;
void lazy_init()
{
#if defined BOOST_THREAD_PROMISE_LAZY
if(!atomic_load(&future_))
{
future_ptr blank;
atomic_compare_exchange(&future_,&blank,future_ptr(new detail::future_object<void>));
}
#endif
}
public:
BOOST_THREAD_MOVABLE_ONLY(promise)
#if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
template <class Allocator>
promise(boost::allocator_arg_t, Allocator a)
{
typedef typename Allocator::template rebind<detail::future_object<void> >::other A2;
A2 a2(a);
typedef thread_detail::allocator_destructor<A2> D;
future_ = future_ptr(::new(a2.allocate(1)) detail::future_object<void>(), D(a2, 1) );
future_obtained = false;
}
#endif
promise():
#if defined BOOST_THREAD_PROMISE_LAZY
future_(),
#else
future_(new detail::future_object<void>),
#endif
future_obtained(false)
{}
~promise()
{
if(future_)
{
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(!future_->done)
{
future_->mark_exceptional_finish_internal(boost::copy_exception(broken_promise()));
}
}
}
// Assignment
promise(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT :
future_(BOOST_THREAD_RV(rhs).future_),future_obtained(BOOST_THREAD_RV(rhs).future_obtained)
{
// we need to release the future as shared_ptr doesn't implements move semantics
BOOST_THREAD_RV(rhs).future_.reset();
BOOST_THREAD_RV(rhs).future_obtained=false;
}
promise & operator=(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT
{
future_=BOOST_THREAD_RV(rhs).future_;
future_obtained=BOOST_THREAD_RV(rhs).future_obtained;
BOOST_THREAD_RV(rhs).future_.reset();
BOOST_THREAD_RV(rhs).future_obtained=false;
return *this;
}
void swap(promise& other)
{
future_.swap(other.future_);
std::swap(future_obtained,other.future_obtained);
}
// Result retrieval
BOOST_THREAD_FUTURE<void> get_future()
{
lazy_init();
if (future_.get()==0)
{
boost::throw_exception(promise_moved());
}
if(future_obtained)
{
boost::throw_exception(future_already_retrieved());
}
future_obtained=true;
return BOOST_THREAD_FUTURE<void>(future_);
}
void set_value()
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(future_->done)
{
boost::throw_exception(promise_already_satisfied());
}
future_->mark_finished_with_result_internal();
}
void set_exception(boost::exception_ptr p)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future_->mutex);
if(future_->done)
{
boost::throw_exception(promise_already_satisfied());
}
future_->mark_exceptional_finish_internal(p);
}
template<typename F>
void set_wait_callback(F f)
{
lazy_init();
future_->set_wait_callback(f,this);
}
};
#if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
namespace container
{
template <class R, class Alloc>
struct uses_allocator<promise<R> , Alloc> : true_type
{
};
}
#endif
BOOST_THREAD_DCL_MOVABLE_BEG(T) promise<T> BOOST_THREAD_DCL_MOVABLE_END
namespace detail
{
template<typename R>
struct task_base:
detail::future_object<R>
{
bool started;
task_base():
started(false)
{}
void reset()
{
started=false;
}
void run()
{
{
boost::lock_guard<boost::mutex> lk(this->mutex);
if(started)
{
boost::throw_exception(task_already_started());
}
started=true;
}
do_run();
}
void owner_destroyed()
{
boost::lock_guard<boost::mutex> lk(this->mutex);
if(!started)
{
started=true;
this->mark_exceptional_finish_internal(boost::copy_exception(boost::broken_promise()));
}
}
virtual void do_run()=0;
};
template<typename R,typename F>
struct task_object:
task_base<R>
{
private:
task_object(task_object&);
public:
F f;
task_object(F const& f_):
f(f_)
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
task_object(BOOST_THREAD_RV_REF(F) f_):
f(boost::forward<F>(f_))
{}
#else
task_object(BOOST_THREAD_RV_REF(F) f_):
f(boost::move(f_))
{}
#endif
void do_run()
{
try
{
this->mark_finished_with_result(f());
}
catch(thread_interrupted& )
{
this->mark_interrupted_finish();
}
catch(...)
{
this->mark_exceptional_finish();
}
}
};
template<typename R>
struct task_object<R,R (*)()>:
task_base<R>
{
private:
task_object(task_object&);
public:
R (*f)();
task_object(R (*f_)()):
f(f_)
{}
void do_run()
{
try
{
this->mark_finished_with_result(f());
}
catch(thread_interrupted& )
{
this->mark_interrupted_finish();
}
catch(...)
{
this->mark_exceptional_finish();
}
}
};
template<typename F>
struct task_object<void,F>:
task_base<void>
{
private:
task_object(task_object&);
public:
F f;
task_object(F const& f_):
f(f_)
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
task_object(BOOST_THREAD_RV_REF(F) f_):
f(boost::forward<F>(f_))
{}
#else
task_object(BOOST_THREAD_RV_REF(F) f_):
f(boost::move(f_))
{}
#endif
void do_run()
{
try
{
f();
this->mark_finished_with_result();
}
catch(thread_interrupted& )
{
this->mark_interrupted_finish();
}
catch(...)
{
this->mark_exceptional_finish();
}
}
};
template<>
struct task_object<void,void (*)()>:
task_base<void>
{
private:
task_object(task_object&);
public:
void (*f)();
task_object(void (*f_)()):
f(f_)
{}
void do_run()
{
try
{
f();
this->mark_finished_with_result();
}
catch(thread_interrupted& )
{
this->mark_interrupted_finish();
}
catch(...)
{
this->mark_exceptional_finish();
}
}
};
}
template<typename R>
class packaged_task
{
typedef boost::shared_ptr<detail::task_base<R> > task_ptr;
boost::shared_ptr<detail::task_base<R> > task;
bool future_obtained;
public:
typedef R result_type;
BOOST_THREAD_MOVABLE_ONLY(packaged_task)
packaged_task():
future_obtained(false)
{}
// construction and destruction
explicit packaged_task(R(*f)()):
task(new detail::task_object<R,R(*)()>(f)),future_obtained(false)
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <class F>
explicit packaged_task(BOOST_THREAD_RV_REF(F) f):
task(new detail::task_object<R,
typename remove_cv<typename remove_reference<F>::type>::type
>(boost::forward<F>(f))),future_obtained(false)
{}
#else
template <class F>
explicit packaged_task(F const& f):
task(new detail::task_object<R,F>(f)),future_obtained(false)
{}
template <class F>
explicit packaged_task(BOOST_THREAD_RV_REF(F) f):
task(new detail::task_object<R,F>(boost::move(f))),future_obtained(false)
{}
#endif
#if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
template <class Allocator>
packaged_task(boost::allocator_arg_t, Allocator a, R(*f)())
{
typedef R(*FR)();
typedef typename Allocator::template rebind<detail::task_object<R,FR> >::other A2;
A2 a2(a);
typedef thread_detail::allocator_destructor<A2> D;
task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,FR>(f), D(a2, 1) );
future_obtained = false;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <class F, class Allocator>
packaged_task(boost::allocator_arg_t, Allocator a, BOOST_THREAD_RV_REF(F) f)
{
typedef typename remove_cv<typename remove_reference<F>::type>::type FR;
typedef typename Allocator::template rebind<detail::task_object<R,FR> >::other A2;
A2 a2(a);
typedef thread_detail::allocator_destructor<A2> D;
task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,FR>(boost::forward<F>(f)), D(a2, 1) );
future_obtained = false;
}
#else
template <class F, class Allocator>
packaged_task(boost::allocator_arg_t, Allocator a, const F& f)
{
typedef typename Allocator::template rebind<detail::task_object<R,F> >::other A2;
A2 a2(a);
typedef thread_detail::allocator_destructor<A2> D;
task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,F>(f), D(a2, 1) );
future_obtained = false;
}
template <class F, class Allocator>
packaged_task(boost::allocator_arg_t, Allocator a, BOOST_THREAD_RV_REF(F) f)
{
typedef typename Allocator::template rebind<detail::task_object<R,F> >::other A2;
A2 a2(a);
typedef thread_detail::allocator_destructor<A2> D;
task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,F>(boost::move(f)), D(a2, 1) );
future_obtained = false;
}
#endif //BOOST_NO_CXX11_RVALUE_REFERENCES
#endif // BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
~packaged_task()
{
if(task)
{
task->owner_destroyed();
}
}
// assignment
packaged_task(BOOST_THREAD_RV_REF(packaged_task) other) BOOST_NOEXCEPT :
future_obtained(BOOST_THREAD_RV(other).future_obtained)
{
task.swap(BOOST_THREAD_RV(other).task);
BOOST_THREAD_RV(other).future_obtained=false;
}
packaged_task& operator=(BOOST_THREAD_RV_REF(packaged_task) other) BOOST_NOEXCEPT
{
packaged_task temp(static_cast<BOOST_THREAD_RV_REF(packaged_task)>(other));
swap(temp);
return *this;
}
void reset()
{
if (!valid())
throw future_error(system::make_error_code(future_errc::no_state));
task->reset();
future_obtained=false;
}
void swap(packaged_task& other) BOOST_NOEXCEPT
{
task.swap(other.task);
std::swap(future_obtained,other.future_obtained);
}
bool valid() const BOOST_NOEXCEPT
{
return task.get()!=0;
}
// result retrieval
BOOST_THREAD_FUTURE<R> get_future()
{
if(!task)
{
boost::throw_exception(task_moved());
}
else if(!future_obtained)
{
future_obtained=true;
return BOOST_THREAD_FUTURE<R>(task);
}
else
{
boost::throw_exception(future_already_retrieved());
}
return BOOST_THREAD_FUTURE<R>();
}
// execution
void operator()()
{
if(!task)
{
boost::throw_exception(task_moved());
}
task->run();
}
template<typename F>
void set_wait_callback(F f)
{
task->set_wait_callback(f,this);
}
};
#if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS
namespace container
{
template <class R, class Alloc>
struct uses_allocator<packaged_task<R>, Alloc>
: public true_type {};
}
#endif
BOOST_THREAD_DCL_MOVABLE_BEG(T) packaged_task<T> BOOST_THREAD_DCL_MOVABLE_END
template <class R>
BOOST_THREAD_FUTURE<R>
async(launch policy, R(*f)())
{
if (int(policy) & int(launch::async))
{
packaged_task<R> pt( f );
BOOST_THREAD_FUTURE<R> ret = pt.get_future();
boost::thread( boost::move(pt) ).detach();
return ::boost::move(ret);
}
else if (int(policy) & int(launch::deferred))
{
packaged_task<R> pt( f );
BOOST_THREAD_FUTURE<R> ret = pt.get_future();
return ::boost::move(ret);
} else {
BOOST_THREAD_FUTURE<R> ret;
return ::boost::move(ret);
}
}
template <class R>
BOOST_THREAD_FUTURE<R>
async(R(*f)())
{
return async(launch::any, f);
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <class F>
BOOST_THREAD_FUTURE<typename boost::result_of<typename decay<F>::type()>::type>
async(launch policy, BOOST_THREAD_FWD_REF(F) f)
{
typedef typename boost::result_of<typename decay<F>::type()>::type R;
if (int(policy) & int(launch::async))
{
packaged_task<R> pt( boost::forward<F>(f) );
BOOST_THREAD_FUTURE<R> ret = pt.get_future();
boost::thread( boost::move(pt) ).detach();
return ::boost::move(ret);
}
else if (int(policy) & int(launch::deferred))
{
packaged_task<R> pt( boost::forward<F>(f) );
BOOST_THREAD_FUTURE<R> ret = pt.get_future();
return ::boost::move(ret);
} else {
BOOST_THREAD_FUTURE<R> ret;
return ::boost::move(ret);
}
}
template <class F>
BOOST_THREAD_FUTURE<typename boost::result_of<F()>::type>
async(BOOST_THREAD_RV_REF(F) f)
{
return async(launch::any, boost::forward<F>(f));
}
#else
// template <class F>
// BOOST_THREAD_FUTURE<typename boost::result_of<typename decay<F>::type()>::type>
// async(launch policy, F const& f)
// {
// typedef typename boost::result_of<typename decay<F>::type()>::type R;
// if (int(policy) & int(launch::async))
// {
// packaged_task<R> pt( f );
//
// BOOST_THREAD_FUTURE<R> ret = pt.get_future();
// boost::thread( boost::move(pt) ).detach();
// return ::boost::move(ret);
// }
// else if (int(policy) & int(launch::deferred))
// {
// packaged_task<R> pt( f );
//
// BOOST_THREAD_FUTURE<R> ret = pt.get_future();
// return ::boost::move(ret);
// } else {
// BOOST_THREAD_FUTURE<R> ret;
// return ::boost::move(ret);
// }
// }
// template <class F>
// BOOST_THREAD_FUTURE<typename boost::result_of<F()>::type>
// async(F const& f)
// {
// return async(launch::any, f);
// }
template <class F>
BOOST_THREAD_FUTURE<typename boost::result_of<typename decay<F>::type()>::type>
async(launch policy, BOOST_THREAD_FWD_REF(F) f)
{
typedef typename boost::result_of<typename decay<F>::type()>::type R;
if (int(policy) & int(launch::async))
{
packaged_task<R> pt( boost::forward<F>(f) );
BOOST_THREAD_FUTURE<R> ret = pt.get_future();
boost::thread( boost::move(pt) ).detach();
return ::boost::move(ret);
}
else if (int(policy) & int(launch::deferred))
{
packaged_task<R> pt( boost::forward<F>(f) );
BOOST_THREAD_FUTURE<R> ret = pt.get_future();
return ::boost::move(ret);
} else {
BOOST_THREAD_FUTURE<R> ret;
return ::boost::move(ret);
}
}
template <class F>
BOOST_THREAD_FUTURE<typename boost::result_of<F()>::type>
async(BOOST_THREAD_FWD_REF(F) f)
{
return async(launch::any, boost::forward<F>(f));
}
#endif
}
#endif // BOOST_NO_EXCEPTION
#endif // header