YouCompleteMe/cpp/BoostParts/boost/regex/v4/basic_regex_parser.hpp
Strahinja Val Markovic 121d88518e Updating to boost 1.52
2013-01-13 14:38:19 -08:00

2839 lines
97 KiB
C++

/*
*
* Copyright (c) 2004
* John Maddock
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
/*
* LOCATION: see http://www.boost.org for most recent version.
* FILE basic_regex_parser.cpp
* VERSION see <boost/version.hpp>
* DESCRIPTION: Declares template class basic_regex_parser.
*/
#ifndef BOOST_REGEX_V4_BASIC_REGEX_PARSER_HPP
#define BOOST_REGEX_V4_BASIC_REGEX_PARSER_HPP
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4103)
#endif
#ifdef BOOST_HAS_ABI_HEADERS
# include BOOST_ABI_PREFIX
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
namespace boost{
namespace re_detail{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4244 4800)
#endif
template <class charT, class traits>
class basic_regex_parser : public basic_regex_creator<charT, traits>
{
public:
basic_regex_parser(regex_data<charT, traits>* data);
void parse(const charT* p1, const charT* p2, unsigned flags);
void fail(regex_constants::error_type error_code, std::ptrdiff_t position);
void fail(regex_constants::error_type error_code, std::ptrdiff_t position, std::string message, std::ptrdiff_t start_pos);
void fail(regex_constants::error_type error_code, std::ptrdiff_t position, const std::string& message)
{
fail(error_code, position, message, position);
}
bool parse_all();
bool parse_basic();
bool parse_extended();
bool parse_literal();
bool parse_open_paren();
bool parse_basic_escape();
bool parse_extended_escape();
bool parse_match_any();
bool parse_repeat(std::size_t low = 0, std::size_t high = (std::numeric_limits<std::size_t>::max)());
bool parse_repeat_range(bool isbasic);
bool parse_alt();
bool parse_set();
bool parse_backref();
void parse_set_literal(basic_char_set<charT, traits>& char_set);
bool parse_inner_set(basic_char_set<charT, traits>& char_set);
bool parse_QE();
bool parse_perl_extension();
bool add_emacs_code(bool negate);
bool unwind_alts(std::ptrdiff_t last_paren_start);
digraph<charT> get_next_set_literal(basic_char_set<charT, traits>& char_set);
charT unescape_character();
regex_constants::syntax_option_type parse_options();
private:
typedef bool (basic_regex_parser::*parser_proc_type)();
typedef typename traits::string_type string_type;
typedef typename traits::char_class_type char_class_type;
parser_proc_type m_parser_proc; // the main parser to use
const charT* m_base; // the start of the string being parsed
const charT* m_end; // the end of the string being parsed
const charT* m_position; // our current parser position
unsigned m_mark_count; // how many sub-expressions we have
int m_mark_reset; // used to indicate that we're inside a (?|...) block.
unsigned m_max_mark; // largest mark count seen inside a (?|...) block.
std::ptrdiff_t m_paren_start; // where the last seen ')' began (where repeats are inserted).
std::ptrdiff_t m_alt_insert_point; // where to insert the next alternative
bool m_has_case_change; // true if somewhere in the current block the case has changed
#if defined(BOOST_MSVC) && defined(_M_IX86)
// This is an ugly warning suppression workaround (for warnings *inside* std::vector
// that can not otherwise be suppressed)...
BOOST_STATIC_ASSERT(sizeof(long) >= sizeof(void*));
std::vector<long> m_alt_jumps; // list of alternative in the current scope.
#else
std::vector<std::ptrdiff_t> m_alt_jumps; // list of alternative in the current scope.
#endif
basic_regex_parser& operator=(const basic_regex_parser&);
basic_regex_parser(const basic_regex_parser&);
};
template <class charT, class traits>
basic_regex_parser<charT, traits>::basic_regex_parser(regex_data<charT, traits>* data)
: basic_regex_creator<charT, traits>(data), m_mark_count(0), m_mark_reset(-1), m_max_mark(0), m_paren_start(0), m_alt_insert_point(0), m_has_case_change(false)
{
}
template <class charT, class traits>
void basic_regex_parser<charT, traits>::parse(const charT* p1, const charT* p2, unsigned l_flags)
{
// pass l_flags on to base class:
this->init(l_flags);
// set up pointers:
m_position = m_base = p1;
m_end = p2;
// empty strings are errors:
if((p1 == p2) &&
(
((l_flags & regbase::main_option_type) != regbase::perl_syntax_group)
|| (l_flags & regbase::no_empty_expressions)
)
)
{
fail(regex_constants::error_empty, 0);
return;
}
// select which parser to use:
switch(l_flags & regbase::main_option_type)
{
case regbase::perl_syntax_group:
{
m_parser_proc = &basic_regex_parser<charT, traits>::parse_extended;
//
// Add a leading paren with index zero to give recursions a target:
//
re_brace* br = static_cast<re_brace*>(this->append_state(syntax_element_startmark, sizeof(re_brace)));
br->index = 0;
br->icase = this->flags() & regbase::icase;
break;
}
case regbase::basic_syntax_group:
m_parser_proc = &basic_regex_parser<charT, traits>::parse_basic;
break;
case regbase::literal:
m_parser_proc = &basic_regex_parser<charT, traits>::parse_literal;
break;
default:
// Ooops, someone has managed to set more than one of the main option flags,
// so this must be an error:
fail(regex_constants::error_unknown, 0, "An invalid combination of regular expression syntax flags was used.");
return;
}
// parse all our characters:
bool result = parse_all();
//
// Unwind our alternatives:
//
unwind_alts(-1);
// reset l_flags as a global scope (?imsx) may have altered them:
this->flags(l_flags);
// if we haven't gobbled up all the characters then we must
// have had an unexpected ')' :
if(!result)
{
fail(regex_constants::error_paren, ::boost::re_detail::distance(m_base, m_position), "Found a closing ) with no corresponding openening parenthesis.");
return;
}
// if an error has been set then give up now:
if(this->m_pdata->m_status)
return;
// fill in our sub-expression count:
this->m_pdata->m_mark_count = 1 + m_mark_count;
this->finalize(p1, p2);
}
template <class charT, class traits>
void basic_regex_parser<charT, traits>::fail(regex_constants::error_type error_code, std::ptrdiff_t position)
{
// get the error message:
std::string message = this->m_pdata->m_ptraits->error_string(error_code);
fail(error_code, position, message);
}
template <class charT, class traits>
void basic_regex_parser<charT, traits>::fail(regex_constants::error_type error_code, std::ptrdiff_t position, std::string message, std::ptrdiff_t start_pos)
{
if(0 == this->m_pdata->m_status) // update the error code if not already set
this->m_pdata->m_status = error_code;
m_position = m_end; // don't bother parsing anything else
#ifndef BOOST_NO_TEMPLATED_ITERATOR_CONSTRUCTORS
//
// Augment error message with the regular expression text:
//
if(start_pos == position)
start_pos = (std::max)(static_cast<std::ptrdiff_t>(0), position - static_cast<std::ptrdiff_t>(10));
std::ptrdiff_t end_pos = (std::min)(position + static_cast<std::ptrdiff_t>(10), static_cast<std::ptrdiff_t>(m_end - m_base));
if(error_code != regex_constants::error_empty)
{
if((start_pos != 0) || (end_pos != (m_end - m_base)))
message += " The error occurred while parsing the regular expression fragment: '";
else
message += " The error occurred while parsing the regular expression: '";
if(start_pos != end_pos)
{
message += std::string(m_base + start_pos, m_base + position);
message += ">>>HERE>>>";
message += std::string(m_base + position, m_base + end_pos);
}
message += "'.";
}
#endif
#ifndef BOOST_NO_EXCEPTIONS
if(0 == (this->flags() & regex_constants::no_except))
{
boost::regex_error e(message, error_code, position);
e.raise();
}
#else
(void)position; // suppress warnings.
#endif
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_all()
{
bool result = true;
while(result && (m_position != m_end))
{
result = (this->*m_parser_proc)();
}
return result;
}
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4702)
#endif
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_basic()
{
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_escape:
return parse_basic_escape();
case regex_constants::syntax_dot:
return parse_match_any();
case regex_constants::syntax_caret:
++m_position;
this->append_state(syntax_element_start_line);
break;
case regex_constants::syntax_dollar:
++m_position;
this->append_state(syntax_element_end_line);
break;
case regex_constants::syntax_star:
if(!(this->m_last_state) || (this->m_last_state->type == syntax_element_start_line))
return parse_literal();
else
{
++m_position;
return parse_repeat();
}
case regex_constants::syntax_plus:
if(!(this->m_last_state) || (this->m_last_state->type == syntax_element_start_line) || !(this->flags() & regbase::emacs_ex))
return parse_literal();
else
{
++m_position;
return parse_repeat(1);
}
case regex_constants::syntax_question:
if(!(this->m_last_state) || (this->m_last_state->type == syntax_element_start_line) || !(this->flags() & regbase::emacs_ex))
return parse_literal();
else
{
++m_position;
return parse_repeat(0, 1);
}
case regex_constants::syntax_open_set:
return parse_set();
case regex_constants::syntax_newline:
if(this->flags() & regbase::newline_alt)
return parse_alt();
else
return parse_literal();
default:
return parse_literal();
}
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_extended()
{
bool result = true;
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_open_mark:
return parse_open_paren();
case regex_constants::syntax_close_mark:
return false;
case regex_constants::syntax_escape:
return parse_extended_escape();
case regex_constants::syntax_dot:
return parse_match_any();
case regex_constants::syntax_caret:
++m_position;
this->append_state(
(this->flags() & regex_constants::no_mod_m ? syntax_element_buffer_start : syntax_element_start_line));
break;
case regex_constants::syntax_dollar:
++m_position;
this->append_state(
(this->flags() & regex_constants::no_mod_m ? syntax_element_buffer_end : syntax_element_end_line));
break;
case regex_constants::syntax_star:
if(m_position == this->m_base)
{
fail(regex_constants::error_badrepeat, 0, "The repeat operator \"*\" cannot start a regular expression.");
return false;
}
++m_position;
return parse_repeat();
case regex_constants::syntax_question:
if(m_position == this->m_base)
{
fail(regex_constants::error_badrepeat, 0, "The repeat operator \"?\" cannot start a regular expression.");
return false;
}
++m_position;
return parse_repeat(0,1);
case regex_constants::syntax_plus:
if(m_position == this->m_base)
{
fail(regex_constants::error_badrepeat, 0, "The repeat operator \"+\" cannot start a regular expression.");
return false;
}
++m_position;
return parse_repeat(1);
case regex_constants::syntax_open_brace:
++m_position;
return parse_repeat_range(false);
case regex_constants::syntax_close_brace:
fail(regex_constants::error_brace, this->m_position - this->m_base, "Found a closing repetition operator } with no corresponding {.");
return false;
case regex_constants::syntax_or:
return parse_alt();
case regex_constants::syntax_open_set:
return parse_set();
case regex_constants::syntax_newline:
if(this->flags() & regbase::newline_alt)
return parse_alt();
else
return parse_literal();
case regex_constants::syntax_hash:
//
// If we have a mod_x flag set, then skip until
// we get to a newline character:
//
if((this->flags()
& (regbase::no_perl_ex|regbase::mod_x))
== regbase::mod_x)
{
while((m_position != m_end) && !is_separator(*m_position++)){}
return true;
}
// Otherwise fall through:
default:
result = parse_literal();
break;
}
return result;
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_literal()
{
// append this as a literal provided it's not a space character
// or the perl option regbase::mod_x is not set:
if(
((this->flags()
& (regbase::main_option_type|regbase::mod_x|regbase::no_perl_ex))
!= regbase::mod_x)
|| !this->m_traits.isctype(*m_position, this->m_mask_space))
this->append_literal(*m_position);
++m_position;
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_open_paren()
{
//
// skip the '(' and error check:
//
if(++m_position == m_end)
{
fail(regex_constants::error_paren, m_position - m_base);
return false;
}
//
// begin by checking for a perl-style (?...) extension:
//
if(
((this->flags() & (regbase::main_option_type | regbase::no_perl_ex)) == 0)
|| ((this->flags() & (regbase::main_option_type | regbase::emacs_ex)) == (regbase::basic_syntax_group|regbase::emacs_ex))
)
{
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_question)
return parse_perl_extension();
}
//
// update our mark count, and append the required state:
//
unsigned markid = 0;
if(0 == (this->flags() & regbase::nosubs))
{
markid = ++m_mark_count;
#ifndef BOOST_NO_STD_DISTANCE
if(this->flags() & regbase::save_subexpression_location)
this->m_pdata->m_subs.push_back(std::pair<std::size_t, std::size_t>(std::distance(m_base, m_position) - 1, 0));
#else
if(this->flags() & regbase::save_subexpression_location)
this->m_pdata->m_subs.push_back(std::pair<std::size_t, std::size_t>((m_position - m_base) - 1, 0));
#endif
}
re_brace* pb = static_cast<re_brace*>(this->append_state(syntax_element_startmark, sizeof(re_brace)));
pb->index = markid;
pb->icase = this->flags() & regbase::icase;
std::ptrdiff_t last_paren_start = this->getoffset(pb);
// back up insertion point for alternations, and set new point:
std::ptrdiff_t last_alt_point = m_alt_insert_point;
this->m_pdata->m_data.align();
m_alt_insert_point = this->m_pdata->m_data.size();
//
// back up the current flags in case we have a nested (?imsx) group:
//
regex_constants::syntax_option_type opts = this->flags();
bool old_case_change = m_has_case_change;
m_has_case_change = false; // no changes to this scope as yet...
//
// Back up branch reset data in case we have a nested (?|...)
//
int mark_reset = m_mark_reset;
m_mark_reset = -1;
//
// now recursively add more states, this will terminate when we get to a
// matching ')' :
//
parse_all();
//
// Unwind pushed alternatives:
//
if(0 == unwind_alts(last_paren_start))
return false;
//
// restore flags:
//
if(m_has_case_change)
{
// the case has changed in one or more of the alternatives
// within the scoped (...) block: we have to add a state
// to reset the case sensitivity:
static_cast<re_case*>(
this->append_state(syntax_element_toggle_case, sizeof(re_case))
)->icase = opts & regbase::icase;
}
this->flags(opts);
m_has_case_change = old_case_change;
//
// restore branch reset:
//
m_mark_reset = mark_reset;
//
// we either have a ')' or we have run out of characters prematurely:
//
if(m_position == m_end)
{
this->fail(regex_constants::error_paren, ::boost::re_detail::distance(m_base, m_end));
return false;
}
BOOST_ASSERT(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_close_mark);
#ifndef BOOST_NO_STD_DISTANCE
if(markid && (this->flags() & regbase::save_subexpression_location))
this->m_pdata->m_subs.at(markid - 1).second = std::distance(m_base, m_position);
#else
if(markid && (this->flags() & regbase::save_subexpression_location))
this->m_pdata->m_subs.at(markid - 1).second = (m_position - m_base);
#endif
++m_position;
//
// append closing parenthesis state:
//
pb = static_cast<re_brace*>(this->append_state(syntax_element_endmark, sizeof(re_brace)));
pb->index = markid;
pb->icase = this->flags() & regbase::icase;
this->m_paren_start = last_paren_start;
//
// restore the alternate insertion point:
//
this->m_alt_insert_point = last_alt_point;
//
// allow backrefs to this mark:
//
if((markid > 0) && (markid < sizeof(unsigned) * CHAR_BIT))
this->m_backrefs |= 1u << (markid - 1);
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_basic_escape()
{
++m_position;
bool result = true;
switch(this->m_traits.escape_syntax_type(*m_position))
{
case regex_constants::syntax_open_mark:
return parse_open_paren();
case regex_constants::syntax_close_mark:
return false;
case regex_constants::syntax_plus:
if(this->flags() & regex_constants::bk_plus_qm)
{
++m_position;
return parse_repeat(1);
}
else
return parse_literal();
case regex_constants::syntax_question:
if(this->flags() & regex_constants::bk_plus_qm)
{
++m_position;
return parse_repeat(0, 1);
}
else
return parse_literal();
case regex_constants::syntax_open_brace:
if(this->flags() & regbase::no_intervals)
return parse_literal();
++m_position;
return parse_repeat_range(true);
case regex_constants::syntax_close_brace:
if(this->flags() & regbase::no_intervals)
return parse_literal();
fail(regex_constants::error_brace, this->m_position - this->m_base, "Found a closing repetition operator } with no corresponding {.");
return false;
case regex_constants::syntax_or:
if(this->flags() & regbase::bk_vbar)
return parse_alt();
else
result = parse_literal();
break;
case regex_constants::syntax_digit:
return parse_backref();
case regex_constants::escape_type_start_buffer:
if(this->flags() & regbase::emacs_ex)
{
++m_position;
this->append_state(syntax_element_buffer_start);
}
else
result = parse_literal();
break;
case regex_constants::escape_type_end_buffer:
if(this->flags() & regbase::emacs_ex)
{
++m_position;
this->append_state(syntax_element_buffer_end);
}
else
result = parse_literal();
break;
case regex_constants::escape_type_word_assert:
if(this->flags() & regbase::emacs_ex)
{
++m_position;
this->append_state(syntax_element_word_boundary);
}
else
result = parse_literal();
break;
case regex_constants::escape_type_not_word_assert:
if(this->flags() & regbase::emacs_ex)
{
++m_position;
this->append_state(syntax_element_within_word);
}
else
result = parse_literal();
break;
case regex_constants::escape_type_left_word:
if(this->flags() & regbase::emacs_ex)
{
++m_position;
this->append_state(syntax_element_word_start);
}
else
result = parse_literal();
break;
case regex_constants::escape_type_right_word:
if(this->flags() & regbase::emacs_ex)
{
++m_position;
this->append_state(syntax_element_word_end);
}
else
result = parse_literal();
break;
default:
if(this->flags() & regbase::emacs_ex)
{
bool negate = true;
switch(*m_position)
{
case 'w':
negate = false;
// fall through:
case 'W':
{
basic_char_set<charT, traits> char_set;
if(negate)
char_set.negate();
char_set.add_class(this->m_word_mask);
if(0 == this->append_set(char_set))
{
fail(regex_constants::error_ctype, m_position - m_base);
return false;
}
++m_position;
return true;
}
case 's':
negate = false;
// fall through:
case 'S':
return add_emacs_code(negate);
case 'c':
case 'C':
// not supported yet:
fail(regex_constants::error_escape, m_position - m_base, "The \\c and \\C escape sequences are not supported by POSIX basic regular expressions: try the Perl syntax instead.");
return false;
default:
break;
}
}
result = parse_literal();
break;
}
return result;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_extended_escape()
{
++m_position;
if(m_position == m_end)
{
fail(regex_constants::error_escape, m_position - m_base, "Incomplete escape sequence found.");
return false;
}
bool negate = false; // in case this is a character class escape: \w \d etc
switch(this->m_traits.escape_syntax_type(*m_position))
{
case regex_constants::escape_type_not_class:
negate = true;
// fall through:
case regex_constants::escape_type_class:
{
escape_type_class_jump:
typedef typename traits::char_class_type m_type;
m_type m = this->m_traits.lookup_classname(m_position, m_position+1);
if(m != 0)
{
basic_char_set<charT, traits> char_set;
if(negate)
char_set.negate();
char_set.add_class(m);
if(0 == this->append_set(char_set))
{
fail(regex_constants::error_ctype, m_position - m_base);
return false;
}
++m_position;
return true;
}
//
// not a class, just a regular unknown escape:
//
this->append_literal(unescape_character());
break;
}
case regex_constants::syntax_digit:
return parse_backref();
case regex_constants::escape_type_left_word:
++m_position;
this->append_state(syntax_element_word_start);
break;
case regex_constants::escape_type_right_word:
++m_position;
this->append_state(syntax_element_word_end);
break;
case regex_constants::escape_type_start_buffer:
++m_position;
this->append_state(syntax_element_buffer_start);
break;
case regex_constants::escape_type_end_buffer:
++m_position;
this->append_state(syntax_element_buffer_end);
break;
case regex_constants::escape_type_word_assert:
++m_position;
this->append_state(syntax_element_word_boundary);
break;
case regex_constants::escape_type_not_word_assert:
++m_position;
this->append_state(syntax_element_within_word);
break;
case regex_constants::escape_type_Z:
++m_position;
this->append_state(syntax_element_soft_buffer_end);
break;
case regex_constants::escape_type_Q:
return parse_QE();
case regex_constants::escape_type_C:
return parse_match_any();
case regex_constants::escape_type_X:
++m_position;
this->append_state(syntax_element_combining);
break;
case regex_constants::escape_type_G:
++m_position;
this->append_state(syntax_element_restart_continue);
break;
case regex_constants::escape_type_not_property:
negate = true;
// fall through:
case regex_constants::escape_type_property:
{
++m_position;
char_class_type m;
if(m_position == m_end)
{
fail(regex_constants::error_escape, m_position - m_base, "Incomplete property escape found.");
return false;
}
// maybe have \p{ddd}
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_open_brace)
{
const charT* base = m_position;
// skip forward until we find enclosing brace:
while((m_position != m_end) && (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_brace))
++m_position;
if(m_position == m_end)
{
fail(regex_constants::error_escape, m_position - m_base, "Closing } missing from property escape sequence.");
return false;
}
m = this->m_traits.lookup_classname(++base, m_position++);
}
else
{
m = this->m_traits.lookup_classname(m_position, m_position+1);
++m_position;
}
if(m != 0)
{
basic_char_set<charT, traits> char_set;
if(negate)
char_set.negate();
char_set.add_class(m);
if(0 == this->append_set(char_set))
{
fail(regex_constants::error_ctype, m_position - m_base);
return false;
}
return true;
}
fail(regex_constants::error_ctype, m_position - m_base, "Escape sequence was neither a valid property nor a valid character class name.");
return false;
}
case regex_constants::escape_type_reset_start_mark:
if(0 == (this->flags() & (regbase::main_option_type | regbase::no_perl_ex)))
{
re_brace* pb = static_cast<re_brace*>(this->append_state(syntax_element_startmark, sizeof(re_brace)));
pb->index = -5;
pb->icase = this->flags() & regbase::icase;
this->m_pdata->m_data.align();
++m_position;
return true;
}
goto escape_type_class_jump;
case regex_constants::escape_type_line_ending:
if(0 == (this->flags() & (regbase::main_option_type | regbase::no_perl_ex)))
{
const charT* e = get_escape_R_string<charT>();
const charT* old_position = m_position;
const charT* old_end = m_end;
const charT* old_base = m_base;
m_position = e;
m_base = e;
m_end = e + traits::length(e);
bool r = parse_all();
m_position = ++old_position;
m_end = old_end;
m_base = old_base;
return r;
}
goto escape_type_class_jump;
case regex_constants::escape_type_extended_backref:
if(0 == (this->flags() & (regbase::main_option_type | regbase::no_perl_ex)))
{
bool have_brace = false;
bool negative = false;
static const char* incomplete_message = "Incomplete \\g escape found.";
if(++m_position == m_end)
{
fail(regex_constants::error_escape, m_position - m_base, incomplete_message);
return false;
}
// maybe have \g{ddd}
regex_constants::syntax_type syn = this->m_traits.syntax_type(*m_position);
regex_constants::syntax_type syn_end = 0;
if((syn == regex_constants::syntax_open_brace)
|| (syn == regex_constants::escape_type_left_word)
|| (syn == regex_constants::escape_type_end_buffer))
{
if(++m_position == m_end)
{
fail(regex_constants::error_escape, m_position - m_base, incomplete_message);
return false;
}
have_brace = true;
switch(syn)
{
case regex_constants::syntax_open_brace:
syn_end = regex_constants::syntax_close_brace;
break;
case regex_constants::escape_type_left_word:
syn_end = regex_constants::escape_type_right_word;
break;
default:
syn_end = regex_constants::escape_type_end_buffer;
break;
}
}
negative = (*m_position == static_cast<charT>('-'));
if((negative) && (++m_position == m_end))
{
fail(regex_constants::error_escape, m_position - m_base, incomplete_message);
return false;
}
const charT* pc = m_position;
int i = this->m_traits.toi(pc, m_end, 10);
if((i < 0) && syn_end)
{
// Check for a named capture, get the leftmost one if there is more than one:
const charT* base = m_position;
while((m_position != m_end) && (this->m_traits.syntax_type(*m_position) != syn_end))
{
++m_position;
}
i = hash_value_from_capture_name(base, m_position);
pc = m_position;
}
if(negative)
i = 1 + m_mark_count - i;
if(((i > 0) && (this->m_backrefs & (1u << (i-1)))) || ((i > 10000) && (this->m_pdata->get_id(i) > 0) && (this->m_backrefs & (1u << (this->m_pdata->get_id(i)-1)))))
{
m_position = pc;
re_brace* pb = static_cast<re_brace*>(this->append_state(syntax_element_backref, sizeof(re_brace)));
pb->index = i;
pb->icase = this->flags() & regbase::icase;
}
else
{
fail(regex_constants::error_backref, m_position - m_base);
return false;
}
m_position = pc;
if(have_brace)
{
if((m_position == m_end) || (this->m_traits.syntax_type(*m_position) != syn_end))
{
fail(regex_constants::error_escape, m_position - m_base, incomplete_message);
return false;
}
++m_position;
}
return true;
}
goto escape_type_class_jump;
case regex_constants::escape_type_control_v:
if(0 == (this->flags() & (regbase::main_option_type | regbase::no_perl_ex)))
goto escape_type_class_jump;
// fallthrough:
default:
this->append_literal(unescape_character());
break;
}
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_match_any()
{
//
// we have a '.' that can match any character:
//
++m_position;
static_cast<re_dot*>(
this->append_state(syntax_element_wild, sizeof(re_dot))
)->mask = static_cast<unsigned char>(this->flags() & regbase::no_mod_s
? re_detail::force_not_newline
: this->flags() & regbase::mod_s ?
re_detail::force_newline : re_detail::dont_care);
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_repeat(std::size_t low, std::size_t high)
{
bool greedy = true;
bool pocessive = false;
std::size_t insert_point;
//
// when we get to here we may have a non-greedy ? mark still to come:
//
if((m_position != m_end)
&& (
(0 == (this->flags() & (regbase::main_option_type | regbase::no_perl_ex)))
|| ((regbase::basic_syntax_group|regbase::emacs_ex) == (this->flags() & (regbase::main_option_type | regbase::emacs_ex)))
)
)
{
// OK we have a perl or emacs regex, check for a '?':
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_question)
{
greedy = false;
++m_position;
}
// for perl regexes only check for pocessive ++ repeats.
if((m_position != m_end)
&& (0 == (this->flags() & regbase::main_option_type))
&& (this->m_traits.syntax_type(*m_position) == regex_constants::syntax_plus))
{
pocessive = true;
++m_position;
}
}
if(0 == this->m_last_state)
{
fail(regex_constants::error_badrepeat, ::boost::re_detail::distance(m_base, m_position), "Nothing to repeat.");
return false;
}
if(this->m_last_state->type == syntax_element_endmark)
{
// insert a repeat before the '(' matching the last ')':
insert_point = this->m_paren_start;
}
else if((this->m_last_state->type == syntax_element_literal) && (static_cast<re_literal*>(this->m_last_state)->length > 1))
{
// the last state was a literal with more than one character, split it in two:
re_literal* lit = static_cast<re_literal*>(this->m_last_state);
charT c = (static_cast<charT*>(static_cast<void*>(lit+1)))[lit->length - 1];
--(lit->length);
// now append new state:
lit = static_cast<re_literal*>(this->append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
lit->length = 1;
(static_cast<charT*>(static_cast<void*>(lit+1)))[0] = c;
insert_point = this->getoffset(this->m_last_state);
}
else
{
// repeat the last state whatever it was, need to add some error checking here:
switch(this->m_last_state->type)
{
case syntax_element_start_line:
case syntax_element_end_line:
case syntax_element_word_boundary:
case syntax_element_within_word:
case syntax_element_word_start:
case syntax_element_word_end:
case syntax_element_buffer_start:
case syntax_element_buffer_end:
case syntax_element_alt:
case syntax_element_soft_buffer_end:
case syntax_element_restart_continue:
case syntax_element_jump:
case syntax_element_startmark:
case syntax_element_backstep:
// can't legally repeat any of the above:
fail(regex_constants::error_badrepeat, m_position - m_base);
return false;
default:
// do nothing...
break;
}
insert_point = this->getoffset(this->m_last_state);
}
//
// OK we now know what to repeat, so insert the repeat around it:
//
re_repeat* rep = static_cast<re_repeat*>(this->insert_state(insert_point, syntax_element_rep, re_repeater_size));
rep->min = low;
rep->max = high;
rep->greedy = greedy;
rep->leading = false;
// store our repeater position for later:
std::ptrdiff_t rep_off = this->getoffset(rep);
// and append a back jump to the repeat:
re_jump* jmp = static_cast<re_jump*>(this->append_state(syntax_element_jump, sizeof(re_jump)));
jmp->alt.i = rep_off - this->getoffset(jmp);
this->m_pdata->m_data.align();
// now fill in the alt jump for the repeat:
rep = static_cast<re_repeat*>(this->getaddress(rep_off));
rep->alt.i = this->m_pdata->m_data.size() - rep_off;
//
// If the repeat is pocessive then bracket the repeat with a (?>...)
// independent sub-expression construct:
//
if(pocessive)
{
if(m_position != m_end)
{
//
// Check for illegal following quantifier, we have to do this here, because
// the extra states we insert below circumvents our usual error checking :-(
//
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_star:
case regex_constants::syntax_plus:
case regex_constants::syntax_question:
case regex_constants::syntax_open_brace:
fail(regex_constants::error_badrepeat, m_position - m_base);
return false;
}
}
re_brace* pb = static_cast<re_brace*>(this->insert_state(insert_point, syntax_element_startmark, sizeof(re_brace)));
pb->index = -3;
pb->icase = this->flags() & regbase::icase;
jmp = static_cast<re_jump*>(this->insert_state(insert_point + sizeof(re_brace), syntax_element_jump, sizeof(re_jump)));
this->m_pdata->m_data.align();
jmp->alt.i = this->m_pdata->m_data.size() - this->getoffset(jmp);
pb = static_cast<re_brace*>(this->append_state(syntax_element_endmark, sizeof(re_brace)));
pb->index = -3;
pb->icase = this->flags() & regbase::icase;
}
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_repeat_range(bool isbasic)
{
static const char* incomplete_message = "Missing } in quantified repetition.";
//
// parse a repeat-range:
//
std::size_t min, max;
int v;
// skip whitespace:
while((m_position != m_end) && this->m_traits.isctype(*m_position, this->m_mask_space))
++m_position;
// fail if at end:
if(this->m_position == this->m_end)
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
// get min:
v = this->m_traits.toi(m_position, m_end, 10);
// skip whitespace:
while((m_position != m_end) && this->m_traits.isctype(*m_position, this->m_mask_space))
++m_position;
if(v < 0)
{
fail(regex_constants::error_badbrace, this->m_position - this->m_base);
return false;
}
else if(this->m_position == this->m_end)
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
min = v;
// see if we have a comma:
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_comma)
{
// move on and error check:
++m_position;
// skip whitespace:
while((m_position != m_end) && this->m_traits.isctype(*m_position, this->m_mask_space))
++m_position;
if(this->m_position == this->m_end)
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
// get the value if any:
v = this->m_traits.toi(m_position, m_end, 10);
max = (v >= 0) ? v : (std::numeric_limits<std::size_t>::max)();
}
else
{
// no comma, max = min:
max = min;
}
// skip whitespace:
while((m_position != m_end) && this->m_traits.isctype(*m_position, this->m_mask_space))
++m_position;
// OK now check trailing }:
if(this->m_position == this->m_end)
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
if(isbasic)
{
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_escape)
{
++m_position;
if(this->m_position == this->m_end)
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
}
else
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
}
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_close_brace)
++m_position;
else
{
fail(regex_constants::error_brace, this->m_position - this->m_base, incomplete_message);
return false;
}
//
// finally go and add the repeat, unless error:
//
if(min > max)
{
// Backtrack to error location:
m_position -= 2;
while(this->m_traits.isctype(*m_position, this->m_word_mask)) --m_position;
++m_position;
fail(regex_constants::error_badbrace, m_position - m_base);
return false;
}
return parse_repeat(min, max);
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_alt()
{
//
// error check: if there have been no previous states,
// or if the last state was a '(' then error:
//
if(
((this->m_last_state == 0) || (this->m_last_state->type == syntax_element_startmark))
&&
!(
((this->flags() & regbase::main_option_type) == regbase::perl_syntax_group)
&&
((this->flags() & regbase::no_empty_expressions) == 0)
)
)
{
fail(regex_constants::error_empty, this->m_position - this->m_base, "A regular expression can start with the alternation operator |.");
return false;
}
//
// Reset mark count if required:
//
if(m_max_mark < m_mark_count)
m_max_mark = m_mark_count;
if(m_mark_reset >= 0)
m_mark_count = m_mark_reset;
++m_position;
//
// we need to append a trailing jump:
//
re_syntax_base* pj = this->append_state(re_detail::syntax_element_jump, sizeof(re_jump));
std::ptrdiff_t jump_offset = this->getoffset(pj);
//
// now insert the alternative:
//
re_alt* palt = static_cast<re_alt*>(this->insert_state(this->m_alt_insert_point, syntax_element_alt, re_alt_size));
jump_offset += re_alt_size;
this->m_pdata->m_data.align();
palt->alt.i = this->m_pdata->m_data.size() - this->getoffset(palt);
//
// update m_alt_insert_point so that the next alternate gets
// inserted at the start of the second of the two we've just created:
//
this->m_alt_insert_point = this->m_pdata->m_data.size();
//
// the start of this alternative must have a case changes state
// if the current block has messed around with case changes:
//
if(m_has_case_change)
{
static_cast<re_case*>(
this->append_state(syntax_element_toggle_case, sizeof(re_case))
)->icase = this->m_icase;
}
//
// push the alternative onto our stack, a recursive
// implementation here is easier to understand (and faster
// as it happens), but causes all kinds of stack overflow problems
// on programs with small stacks (COM+).
//
m_alt_jumps.push_back(jump_offset);
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_set()
{
static const char* incomplete_message = "Character set declaration starting with [ terminated prematurely - either no ] was found or the set had no content.";
++m_position;
if(m_position == m_end)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
basic_char_set<charT, traits> char_set;
const charT* base = m_position; // where the '[' was
const charT* item_base = m_position; // where the '[' or '^' was
while(m_position != m_end)
{
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_caret:
if(m_position == base)
{
char_set.negate();
++m_position;
item_base = m_position;
}
else
parse_set_literal(char_set);
break;
case regex_constants::syntax_close_set:
if(m_position == item_base)
{
parse_set_literal(char_set);
break;
}
else
{
++m_position;
if(0 == this->append_set(char_set))
{
fail(regex_constants::error_ctype, m_position - m_base);
return false;
}
}
return true;
case regex_constants::syntax_open_set:
if(parse_inner_set(char_set))
break;
return true;
case regex_constants::syntax_escape:
{
//
// look ahead and see if this is a character class shortcut
// \d \w \s etc...
//
++m_position;
if(this->m_traits.escape_syntax_type(*m_position)
== regex_constants::escape_type_class)
{
char_class_type m = this->m_traits.lookup_classname(m_position, m_position+1);
if(m != 0)
{
char_set.add_class(m);
++m_position;
break;
}
}
else if(this->m_traits.escape_syntax_type(*m_position)
== regex_constants::escape_type_not_class)
{
// negated character class:
char_class_type m = this->m_traits.lookup_classname(m_position, m_position+1);
if(m != 0)
{
char_set.add_negated_class(m);
++m_position;
break;
}
}
// not a character class, just a regular escape:
--m_position;
parse_set_literal(char_set);
break;
}
default:
parse_set_literal(char_set);
break;
}
}
return m_position != m_end;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_inner_set(basic_char_set<charT, traits>& char_set)
{
static const char* incomplete_message = "Character class declaration starting with [ terminated prematurely - either no ] was found or the set had no content.";
//
// we have either a character class [:name:]
// a collating element [.name.]
// or an equivalence class [=name=]
//
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_dot:
//
// a collating element is treated as a literal:
//
--m_position;
parse_set_literal(char_set);
return true;
case regex_constants::syntax_colon:
{
// check that character classes are actually enabled:
if((this->flags() & (regbase::main_option_type | regbase::no_char_classes))
== (regbase::basic_syntax_group | regbase::no_char_classes))
{
--m_position;
parse_set_literal(char_set);
return true;
}
// skip the ':'
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
const charT* name_first = m_position;
// skip at least one character, then find the matching ':]'
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
while((m_position != m_end)
&& (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_colon))
++m_position;
const charT* name_last = m_position;
if(m_end == m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
if((m_end == ++m_position)
|| (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_set))
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
//
// check for negated class:
//
bool negated = false;
if(this->m_traits.syntax_type(*name_first) == regex_constants::syntax_caret)
{
++name_first;
negated = true;
}
typedef typename traits::char_class_type m_type;
m_type m = this->m_traits.lookup_classname(name_first, name_last);
if(m == 0)
{
if(char_set.empty() && (name_last - name_first == 1))
{
// maybe a special case:
++m_position;
if( (m_position != m_end)
&& (this->m_traits.syntax_type(*m_position)
== regex_constants::syntax_close_set))
{
if(this->m_traits.escape_syntax_type(*name_first)
== regex_constants::escape_type_left_word)
{
++m_position;
this->append_state(syntax_element_word_start);
return false;
}
if(this->m_traits.escape_syntax_type(*name_first)
== regex_constants::escape_type_right_word)
{
++m_position;
this->append_state(syntax_element_word_end);
return false;
}
}
}
fail(regex_constants::error_ctype, name_first - m_base);
return false;
}
if(negated == false)
char_set.add_class(m);
else
char_set.add_negated_class(m);
++m_position;
break;
}
case regex_constants::syntax_equal:
{
// skip the '='
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
const charT* name_first = m_position;
// skip at least one character, then find the matching '=]'
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
while((m_position != m_end)
&& (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_equal))
++m_position;
const charT* name_last = m_position;
if(m_end == m_position)
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
if((m_end == ++m_position)
|| (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_set))
{
fail(regex_constants::error_brack, m_position - m_base, incomplete_message);
return false;
}
string_type m = this->m_traits.lookup_collatename(name_first, name_last);
if((0 == m.size()) || (m.size() > 2))
{
fail(regex_constants::error_collate, name_first - m_base);
return false;
}
digraph<charT> d;
d.first = m[0];
if(m.size() > 1)
d.second = m[1];
else
d.second = 0;
char_set.add_equivalent(d);
++m_position;
break;
}
default:
--m_position;
parse_set_literal(char_set);
break;
}
return true;
}
template <class charT, class traits>
void basic_regex_parser<charT, traits>::parse_set_literal(basic_char_set<charT, traits>& char_set)
{
digraph<charT> start_range(get_next_set_literal(char_set));
if(m_end == m_position)
{
fail(regex_constants::error_brack, m_position - m_base);
return;
}
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_dash)
{
// we have a range:
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base);
return;
}
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_set)
{
digraph<charT> end_range = get_next_set_literal(char_set);
char_set.add_range(start_range, end_range);
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_dash)
{
if(m_end == ++m_position)
{
fail(regex_constants::error_brack, m_position - m_base);
return;
}
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_close_set)
{
// trailing - :
--m_position;
return;
}
fail(regex_constants::error_range, m_position - m_base);
return;
}
return;
}
--m_position;
}
char_set.add_single(start_range);
}
template <class charT, class traits>
digraph<charT> basic_regex_parser<charT, traits>::get_next_set_literal(basic_char_set<charT, traits>& char_set)
{
digraph<charT> result;
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_dash:
if(!char_set.empty())
{
// see if we are at the end of the set:
if((++m_position == m_end) || (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_set))
{
fail(regex_constants::error_range, m_position - m_base);
return result;
}
--m_position;
}
result.first = *m_position++;
return result;
case regex_constants::syntax_escape:
// check to see if escapes are supported first:
if(this->flags() & regex_constants::no_escape_in_lists)
{
result = *m_position++;
break;
}
++m_position;
result = unescape_character();
break;
case regex_constants::syntax_open_set:
{
if(m_end == ++m_position)
{
fail(regex_constants::error_collate, m_position - m_base);
return result;
}
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_dot)
{
--m_position;
result.first = *m_position;
++m_position;
return result;
}
if(m_end == ++m_position)
{
fail(regex_constants::error_collate, m_position - m_base);
return result;
}
const charT* name_first = m_position;
// skip at least one character, then find the matching ':]'
if(m_end == ++m_position)
{
fail(regex_constants::error_collate, name_first - m_base);
return result;
}
while((m_position != m_end)
&& (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_dot))
++m_position;
const charT* name_last = m_position;
if(m_end == m_position)
{
fail(regex_constants::error_collate, name_first - m_base);
return result;
}
if((m_end == ++m_position)
|| (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_set))
{
fail(regex_constants::error_collate, name_first - m_base);
return result;
}
++m_position;
string_type s = this->m_traits.lookup_collatename(name_first, name_last);
if(s.empty() || (s.size() > 2))
{
fail(regex_constants::error_collate, name_first - m_base);
return result;
}
result.first = s[0];
if(s.size() > 1)
result.second = s[1];
else
result.second = 0;
return result;
}
default:
result = *m_position++;
}
return result;
}
//
// does a value fit in the specified charT type?
//
template <class charT>
bool valid_value(charT, int v, const mpl::true_&)
{
return (v >> (sizeof(charT) * CHAR_BIT)) == 0;
}
template <class charT>
bool valid_value(charT, int, const mpl::false_&)
{
return true; // v will alsways fit in a charT
}
template <class charT>
bool valid_value(charT c, int v)
{
return valid_value(c, v, mpl::bool_<(sizeof(charT) < sizeof(int))>());
}
template <class charT, class traits>
charT basic_regex_parser<charT, traits>::unescape_character()
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
charT result(0);
if(m_position == m_end)
{
fail(regex_constants::error_escape, m_position - m_base, "Escape sequence terminated prematurely.");
return false;
}
switch(this->m_traits.escape_syntax_type(*m_position))
{
case regex_constants::escape_type_control_a:
result = charT('\a');
break;
case regex_constants::escape_type_e:
result = charT(27);
break;
case regex_constants::escape_type_control_f:
result = charT('\f');
break;
case regex_constants::escape_type_control_n:
result = charT('\n');
break;
case regex_constants::escape_type_control_r:
result = charT('\r');
break;
case regex_constants::escape_type_control_t:
result = charT('\t');
break;
case regex_constants::escape_type_control_v:
result = charT('\v');
break;
case regex_constants::escape_type_word_assert:
result = charT('\b');
break;
case regex_constants::escape_type_ascii_control:
++m_position;
if(m_position == m_end)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base, "ASCII escape sequence terminated prematurely.");
return result;
}
result = static_cast<charT>(*m_position % 32);
break;
case regex_constants::escape_type_hex:
++m_position;
if(m_position == m_end)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base, "Hexadecimal escape sequence terminated prematurely.");
return result;
}
// maybe have \x{ddd}
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_open_brace)
{
++m_position;
if(m_position == m_end)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base, "Missing } in hexadecimal escape sequence.");
return result;
}
int i = this->m_traits.toi(m_position, m_end, 16);
if((m_position == m_end)
|| (i < 0)
|| ((std::numeric_limits<charT>::is_specialized) && (i > (int)(std::numeric_limits<charT>::max)()))
|| (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_brace))
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_badbrace, m_position - m_base, "Hexadecimal escape sequence was invalid.");
return result;
}
++m_position;
result = charT(i);
}
else
{
std::ptrdiff_t len = (std::min)(static_cast<std::ptrdiff_t>(2), static_cast<std::ptrdiff_t>(m_end - m_position));
int i = this->m_traits.toi(m_position, m_position + len, 16);
if((i < 0)
|| !valid_value(charT(0), i))
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base, "Escape sequence did not encode a valid character.");
return result;
}
result = charT(i);
}
return result;
case regex_constants::syntax_digit:
{
// an octal escape sequence, the first character must be a zero
// followed by up to 3 octal digits:
std::ptrdiff_t len = (std::min)(::boost::re_detail::distance(m_position, m_end), static_cast<std::ptrdiff_t>(4));
const charT* bp = m_position;
int val = this->m_traits.toi(bp, bp + 1, 8);
if(val != 0)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
// Oops not an octal escape after all:
fail(regex_constants::error_escape, m_position - m_base, "Invalid octal escape sequence.");
return result;
}
val = this->m_traits.toi(m_position, m_position + len, 8);
if(val < 0)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base, "Octal escape sequence is invalid.");
return result;
}
return static_cast<charT>(val);
}
case regex_constants::escape_type_named_char:
{
++m_position;
if(m_position == m_end)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base);
return false;
}
// maybe have \N{name}
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_open_brace)
{
const charT* base = m_position;
// skip forward until we find enclosing brace:
while((m_position != m_end) && (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_brace))
++m_position;
if(m_position == m_end)
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base);
return false;
}
string_type s = this->m_traits.lookup_collatename(++base, m_position++);
if(s.empty())
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_collate, m_position - m_base);
return false;
}
if(s.size() == 1)
{
return s[0];
}
}
// fall through is a failure:
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base);
return false;
}
default:
result = *m_position;
break;
}
++m_position;
return result;
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_backref()
{
BOOST_ASSERT(m_position != m_end);
const charT* pc = m_position;
int i = this->m_traits.toi(pc, pc + 1, 10);
if((i == 0) || (((this->flags() & regbase::main_option_type) == regbase::perl_syntax_group) && (this->flags() & regbase::no_bk_refs)))
{
// not a backref at all but an octal escape sequence:
charT c = unescape_character();
this->append_literal(c);
}
else if((i > 0) && (this->m_backrefs & (1u << (i-1))))
{
m_position = pc;
re_brace* pb = static_cast<re_brace*>(this->append_state(syntax_element_backref, sizeof(re_brace)));
pb->index = i;
pb->icase = this->flags() & regbase::icase;
}
else
{
// Rewind to start of escape:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_backref, m_position - m_base);
return false;
}
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_QE()
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
//
// parse a \Q...\E sequence:
//
++m_position; // skip the Q
const charT* start = m_position;
const charT* end;
do
{
while((m_position != m_end)
&& (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape))
++m_position;
if(m_position == m_end)
{
// a \Q...\E sequence may terminate with the end of the expression:
end = m_position;
break;
}
if(++m_position == m_end) // skip the escape
{
fail(regex_constants::error_escape, m_position - m_base, "Unterminated \\Q...\\E sequence.");
return false;
}
// check to see if it's a \E:
if(this->m_traits.escape_syntax_type(*m_position) == regex_constants::escape_type_E)
{
++m_position;
end = m_position - 2;
break;
}
// otherwise go round again:
}while(true);
//
// now add all the character between the two escapes as literals:
//
while(start != end)
{
this->append_literal(*start);
++start;
}
return true;
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::parse_perl_extension()
{
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
//
// treat comments as a special case, as these
// are the only ones that don't start with a leading
// startmark state:
//
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_hash)
{
while((m_position != m_end)
&& (this->m_traits.syntax_type(*m_position++) != regex_constants::syntax_close_mark))
{}
return true;
}
//
// backup some state, and prepare the way:
//
int markid = 0;
std::ptrdiff_t jump_offset = 0;
re_brace* pb = static_cast<re_brace*>(this->append_state(syntax_element_startmark, sizeof(re_brace)));
pb->icase = this->flags() & regbase::icase;
std::ptrdiff_t last_paren_start = this->getoffset(pb);
// back up insertion point for alternations, and set new point:
std::ptrdiff_t last_alt_point = m_alt_insert_point;
this->m_pdata->m_data.align();
m_alt_insert_point = this->m_pdata->m_data.size();
std::ptrdiff_t expected_alt_point = m_alt_insert_point;
bool restore_flags = true;
regex_constants::syntax_option_type old_flags = this->flags();
bool old_case_change = m_has_case_change;
m_has_case_change = false;
charT name_delim;
int mark_reset = m_mark_reset;
int max_mark = m_max_mark;
m_mark_reset = -1;
m_max_mark = m_mark_count;
int v;
//
// select the actual extension used:
//
switch(this->m_traits.syntax_type(*m_position))
{
case regex_constants::syntax_or:
m_mark_reset = m_mark_count;
// fall through:
case regex_constants::syntax_colon:
//
// a non-capturing mark:
//
pb->index = markid = 0;
++m_position;
break;
case regex_constants::syntax_digit:
{
//
// a recursive subexpression:
//
v = this->m_traits.toi(m_position, m_end, 10);
if((v < 0) || (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base, "The recursive sub-expression refers to an invalid marking group, or is unterminated.");
return false;
}
insert_recursion:
pb->index = markid = 0;
re_recurse* pr = static_cast<re_recurse*>(this->append_state(syntax_element_recurse, sizeof(re_recurse)));
pr->alt.i = v;
pr->state_id = 0;
static_cast<re_case*>(
this->append_state(syntax_element_toggle_case, sizeof(re_case))
)->icase = this->flags() & regbase::icase;
break;
}
case regex_constants::syntax_plus:
//
// A forward-relative recursive subexpression:
//
++m_position;
v = this->m_traits.toi(m_position, m_end, 10);
if((v <= 0) || (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base, "An invalid or unterminated recursive sub-expression.");
return false;
}
v += m_mark_count;
goto insert_recursion;
case regex_constants::syntax_dash:
//
// Possibly a backward-relative recursive subexpression:
//
++m_position;
v = this->m_traits.toi(m_position, m_end, 10);
if(v <= 0)
{
--m_position;
// Oops not a relative recursion at all, but a (?-imsx) group:
goto option_group_jump;
}
v = m_mark_count + 1 - v;
if(v <= 0)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base, "An invalid or unterminated recursive sub-expression.");
return false;
}
goto insert_recursion;
case regex_constants::syntax_equal:
pb->index = markid = -1;
++m_position;
jump_offset = this->getoffset(this->append_state(syntax_element_jump, sizeof(re_jump)));
this->m_pdata->m_data.align();
m_alt_insert_point = this->m_pdata->m_data.size();
break;
case regex_constants::syntax_not:
pb->index = markid = -2;
++m_position;
jump_offset = this->getoffset(this->append_state(syntax_element_jump, sizeof(re_jump)));
this->m_pdata->m_data.align();
m_alt_insert_point = this->m_pdata->m_data.size();
break;
case regex_constants::escape_type_left_word:
{
// a lookbehind assertion:
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
regex_constants::syntax_type t = this->m_traits.syntax_type(*m_position);
if(t == regex_constants::syntax_not)
pb->index = markid = -2;
else if(t == regex_constants::syntax_equal)
pb->index = markid = -1;
else
{
// Probably a named capture which also starts (?< :
name_delim = '>';
--m_position;
goto named_capture_jump;
}
++m_position;
jump_offset = this->getoffset(this->append_state(syntax_element_jump, sizeof(re_jump)));
this->append_state(syntax_element_backstep, sizeof(re_brace));
this->m_pdata->m_data.align();
m_alt_insert_point = this->m_pdata->m_data.size();
break;
}
case regex_constants::escape_type_right_word:
//
// an independent sub-expression:
//
pb->index = markid = -3;
++m_position;
jump_offset = this->getoffset(this->append_state(syntax_element_jump, sizeof(re_jump)));
this->m_pdata->m_data.align();
m_alt_insert_point = this->m_pdata->m_data.size();
break;
case regex_constants::syntax_open_mark:
{
// a conditional expression:
pb->index = markid = -4;
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
v = this->m_traits.toi(m_position, m_end, 10);
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(*m_position == charT('R'))
{
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(*m_position == charT('&'))
{
const charT* base = ++m_position;
while((m_position != m_end) && (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark))
++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
v = -static_cast<int>(hash_value_from_capture_name(base, m_position));
}
else
{
v = -this->m_traits.toi(m_position, m_end, 10);
}
re_brace* br = static_cast<re_brace*>(this->append_state(syntax_element_assert_backref, sizeof(re_brace)));
br->index = v < 0 ? (v - 1) : 0;
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
}
else if((*m_position == charT('\'')) || (*m_position == charT('<')))
{
const charT* base = ++m_position;
while((m_position != m_end) && (*m_position != charT('>')) && (*m_position != charT('\'')))
++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
v = static_cast<int>(hash_value_from_capture_name(base, m_position));
re_brace* br = static_cast<re_brace*>(this->append_state(syntax_element_assert_backref, sizeof(re_brace)));
br->index = v;
if(((*m_position != charT('>')) && (*m_position != charT('\''))) || (++m_position == m_end))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base, "Unterminated named capture.");
return false;
}
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
}
else if(*m_position == charT('D'))
{
const char* def = "DEFINE";
while(*def && (m_position != m_end) && (*m_position == charT(*def)))
++m_position, ++def;
if((m_position == m_end) || *def)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
re_brace* br = static_cast<re_brace*>(this->append_state(syntax_element_assert_backref, sizeof(re_brace)));
br->index = 9999; // special magic value!
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
}
else if(v > 0)
{
re_brace* br = static_cast<re_brace*>(this->append_state(syntax_element_assert_backref, sizeof(re_brace)));
br->index = v;
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
}
else
{
// verify that we have a lookahead or lookbehind assert:
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_question)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(this->m_traits.syntax_type(*m_position) == regex_constants::escape_type_left_word)
{
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if((this->m_traits.syntax_type(*m_position) != regex_constants::syntax_equal)
&& (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_not))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
m_position -= 3;
}
else
{
if((this->m_traits.syntax_type(*m_position) != regex_constants::syntax_equal)
&& (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_not))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
m_position -= 2;
}
}
break;
}
case regex_constants::syntax_close_mark:
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
case regex_constants::escape_type_end_buffer:
{
name_delim = *m_position;
named_capture_jump:
markid = 0;
if(0 == (this->flags() & regbase::nosubs))
{
markid = ++m_mark_count;
#ifndef BOOST_NO_STD_DISTANCE
if(this->flags() & regbase::save_subexpression_location)
this->m_pdata->m_subs.push_back(std::pair<std::size_t, std::size_t>(std::distance(m_base, m_position) - 2, 0));
#else
if(this->flags() & regbase::save_subexpression_location)
this->m_pdata->m_subs.push_back(std::pair<std::size_t, std::size_t>((m_position - m_base) - 2, 0));
#endif
}
pb->index = markid;
const charT* base = ++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
while((m_position != m_end) && (*m_position != name_delim))
++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
this->m_pdata->set_name(base, m_position, markid);
++m_position;
break;
}
default:
if(*m_position == charT('R'))
{
++m_position;
v = 0;
if(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
goto insert_recursion;
}
if(*m_position == charT('&'))
{
++m_position;
const charT* base = m_position;
while((m_position != m_end) && (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark))
++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
v = static_cast<int>(hash_value_from_capture_name(base, m_position));
goto insert_recursion;
}
if(*m_position == charT('P'))
{
++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
if(*m_position == charT('>'))
{
++m_position;
const charT* base = m_position;
while((m_position != m_end) && (this->m_traits.syntax_type(*m_position) != regex_constants::syntax_close_mark))
++m_position;
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
v = static_cast<int>(hash_value_from_capture_name(base, m_position));
goto insert_recursion;
}
}
//
// lets assume that we have a (?imsx) group and try and parse it:
//
option_group_jump:
regex_constants::syntax_option_type opts = parse_options();
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
// make a note of whether we have a case change:
m_has_case_change = ((opts & regbase::icase) != (this->flags() & regbase::icase));
pb->index = markid = 0;
if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_close_mark)
{
// update flags and carry on as normal:
this->flags(opts);
restore_flags = false;
old_case_change |= m_has_case_change; // defer end of scope by one ')'
}
else if(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_colon)
{
// update flags and carry on until the matching ')' is found:
this->flags(opts);
++m_position;
}
else
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base);
return false;
}
// finally append a case change state if we need it:
if(m_has_case_change)
{
static_cast<re_case*>(
this->append_state(syntax_element_toggle_case, sizeof(re_case))
)->icase = opts & regbase::icase;
}
}
//
// now recursively add more states, this will terminate when we get to a
// matching ')' :
//
parse_all();
//
// Unwind alternatives:
//
if(0 == unwind_alts(last_paren_start))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base, "Invalid alternation operators within (?...) block.");
return false;
}
//
// we either have a ')' or we have run out of characters prematurely:
//
if(m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
this->fail(regex_constants::error_paren, ::boost::re_detail::distance(m_base, m_end));
return false;
}
BOOST_ASSERT(this->m_traits.syntax_type(*m_position) == regex_constants::syntax_close_mark);
++m_position;
//
// restore the flags:
//
if(restore_flags)
{
// append a case change state if we need it:
if(m_has_case_change)
{
static_cast<re_case*>(
this->append_state(syntax_element_toggle_case, sizeof(re_case))
)->icase = old_flags & regbase::icase;
}
this->flags(old_flags);
}
//
// set up the jump pointer if we have one:
//
if(jump_offset)
{
this->m_pdata->m_data.align();
re_jump* jmp = static_cast<re_jump*>(this->getaddress(jump_offset));
jmp->alt.i = this->m_pdata->m_data.size() - this->getoffset(jmp);
if((this->m_last_state == jmp) && (markid != -2))
{
// Oops... we didn't have anything inside the assertion.
// Note we don't get here for negated forward lookahead as (?!)
// does have some uses.
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_perl_extension, m_position - m_base, "Invalid or empty zero width assertion.");
return false;
}
}
//
// verify that if this is conditional expression, that we do have
// an alternative, if not add one:
//
if(markid == -4)
{
re_syntax_base* b = this->getaddress(expected_alt_point);
// Make sure we have exactly one alternative following this state:
if(b->type != syntax_element_alt)
{
re_alt* alt = static_cast<re_alt*>(this->insert_state(expected_alt_point, syntax_element_alt, sizeof(re_alt)));
alt->alt.i = this->m_pdata->m_data.size() - this->getoffset(alt);
}
else if(this->getaddress(static_cast<re_alt*>(b)->alt.i, b)->type == syntax_element_alt)
{
// Can't have seen more than one alternative:
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_bad_pattern, m_position - m_base, "More than one alternation operator | was encountered inside a conditional expression.");
return false;
}
else
{
// We must *not* have seen an alternative inside a (DEFINE) block:
b = this->getaddress(b->next.i, b);
if((b->type == syntax_element_assert_backref) && (static_cast<re_brace*>(b)->index == 9999))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_bad_pattern, m_position - m_base, "Alternation operators are not allowed inside a DEFINE block.");
return false;
}
}
// check for invalid repetition of next state:
b = this->getaddress(expected_alt_point);
b = this->getaddress(static_cast<re_alt*>(b)->next.i, b);
if((b->type != syntax_element_assert_backref)
&& (b->type != syntax_element_startmark))
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_badrepeat, m_position - m_base, "A repetition operator cannot be applied to a zero-width assertion.");
return false;
}
}
//
// append closing parenthesis state:
//
pb = static_cast<re_brace*>(this->append_state(syntax_element_endmark, sizeof(re_brace)));
pb->index = markid;
pb->icase = this->flags() & regbase::icase;
this->m_paren_start = last_paren_start;
//
// restore the alternate insertion point:
//
this->m_alt_insert_point = last_alt_point;
//
// and the case change data:
//
m_has_case_change = old_case_change;
//
// And the mark_reset data:
//
if(m_max_mark > m_mark_count)
{
m_mark_count = m_max_mark;
}
m_mark_reset = mark_reset;
m_max_mark = max_mark;
if(markid > 0)
{
#ifndef BOOST_NO_STD_DISTANCE
if(this->flags() & regbase::save_subexpression_location)
this->m_pdata->m_subs.at(markid - 1).second = std::distance(m_base, m_position) - 1;
#else
if(this->flags() & regbase::save_subexpression_location)
this->m_pdata->m_subs.at(markid - 1).second = (m_position - m_base) - 1;
#endif
//
// allow backrefs to this mark:
//
if((markid > 0) && (markid < (int)(sizeof(unsigned) * CHAR_BIT)))
this->m_backrefs |= 1u << (markid - 1);
}
return true;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::add_emacs_code(bool negate)
{
//
// parses an emacs style \sx or \Sx construct.
//
if(++m_position == m_end)
{
// Rewind to start of sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_escape) --m_position;
fail(regex_constants::error_escape, m_position - m_base);
return false;
}
basic_char_set<charT, traits> char_set;
if(negate)
char_set.negate();
static const charT s_punct[5] = { 'p', 'u', 'n', 'c', 't', };
switch(*m_position)
{
case 's':
case ' ':
char_set.add_class(this->m_mask_space);
break;
case 'w':
char_set.add_class(this->m_word_mask);
break;
case '_':
char_set.add_single(digraph<charT>(charT('$')));
char_set.add_single(digraph<charT>(charT('&')));
char_set.add_single(digraph<charT>(charT('*')));
char_set.add_single(digraph<charT>(charT('+')));
char_set.add_single(digraph<charT>(charT('-')));
char_set.add_single(digraph<charT>(charT('_')));
char_set.add_single(digraph<charT>(charT('<')));
char_set.add_single(digraph<charT>(charT('>')));
break;
case '.':
char_set.add_class(this->m_traits.lookup_classname(s_punct, s_punct+5));
break;
case '(':
char_set.add_single(digraph<charT>(charT('(')));
char_set.add_single(digraph<charT>(charT('[')));
char_set.add_single(digraph<charT>(charT('{')));
break;
case ')':
char_set.add_single(digraph<charT>(charT(')')));
char_set.add_single(digraph<charT>(charT(']')));
char_set.add_single(digraph<charT>(charT('}')));
break;
case '"':
char_set.add_single(digraph<charT>(charT('"')));
char_set.add_single(digraph<charT>(charT('\'')));
char_set.add_single(digraph<charT>(charT('`')));
break;
case '\'':
char_set.add_single(digraph<charT>(charT('\'')));
char_set.add_single(digraph<charT>(charT(',')));
char_set.add_single(digraph<charT>(charT('#')));
break;
case '<':
char_set.add_single(digraph<charT>(charT(';')));
break;
case '>':
char_set.add_single(digraph<charT>(charT('\n')));
char_set.add_single(digraph<charT>(charT('\f')));
break;
default:
fail(regex_constants::error_ctype, m_position - m_base);
return false;
}
if(0 == this->append_set(char_set))
{
fail(regex_constants::error_ctype, m_position - m_base);
return false;
}
++m_position;
return true;
}
template <class charT, class traits>
regex_constants::syntax_option_type basic_regex_parser<charT, traits>::parse_options()
{
// we have a (?imsx-imsx) group, convert it into a set of flags:
regex_constants::syntax_option_type f = this->flags();
bool breakout = false;
do
{
switch(*m_position)
{
case 's':
f |= regex_constants::mod_s;
f &= ~regex_constants::no_mod_s;
break;
case 'm':
f &= ~regex_constants::no_mod_m;
break;
case 'i':
f |= regex_constants::icase;
break;
case 'x':
f |= regex_constants::mod_x;
break;
default:
breakout = true;
continue;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_paren, m_position - m_base);
return false;
}
}
while(!breakout);
breakout = false;
if(*m_position == static_cast<charT>('-'))
{
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_paren, m_position - m_base);
return false;
}
do
{
switch(*m_position)
{
case 's':
f &= ~regex_constants::mod_s;
f |= regex_constants::no_mod_s;
break;
case 'm':
f |= regex_constants::no_mod_m;
break;
case 'i':
f &= ~regex_constants::icase;
break;
case 'x':
f &= ~regex_constants::mod_x;
break;
default:
breakout = true;
continue;
}
if(++m_position == m_end)
{
// Rewind to start of (? sequence:
--m_position;
while(this->m_traits.syntax_type(*m_position) != regex_constants::syntax_open_mark) --m_position;
fail(regex_constants::error_paren, m_position - m_base);
return false;
}
}
while(!breakout);
}
return f;
}
template <class charT, class traits>
bool basic_regex_parser<charT, traits>::unwind_alts(std::ptrdiff_t last_paren_start)
{
//
// If we didn't actually add any states after the last
// alternative then that's an error:
//
if((this->m_alt_insert_point == static_cast<std::ptrdiff_t>(this->m_pdata->m_data.size()))
&& m_alt_jumps.size() && (m_alt_jumps.back() > last_paren_start)
&&
!(
((this->flags() & regbase::main_option_type) == regbase::perl_syntax_group)
&&
((this->flags() & regbase::no_empty_expressions) == 0)
)
)
{
fail(regex_constants::error_empty, this->m_position - this->m_base, "Can't terminate a sub-expression with an alternation operator |.");
return false;
}
//
// Fix up our alternatives:
//
while(m_alt_jumps.size() && (m_alt_jumps.back() > last_paren_start))
{
//
// fix up the jump to point to the end of the states
// that we've just added:
//
std::ptrdiff_t jump_offset = m_alt_jumps.back();
m_alt_jumps.pop_back();
this->m_pdata->m_data.align();
re_jump* jmp = static_cast<re_jump*>(this->getaddress(jump_offset));
BOOST_ASSERT(jmp->type == syntax_element_jump);
jmp->alt.i = this->m_pdata->m_data.size() - jump_offset;
}
return true;
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
} // namespace re_detail
} // namespace boost
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4103)
#endif
#ifdef BOOST_HAS_ABI_HEADERS
# include BOOST_ABI_SUFFIX
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#endif