YouCompleteMe/cpp/BoostParts/boost/unordered/detail/equivalent.hpp
Strahinja Val Markovic 121d88518e Updating to boost 1.52
2013-01-13 14:38:19 -08:00

782 lines
26 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/unordered/detail/table.hpp>
#include <boost/unordered/detail/extract_key.hpp>
namespace boost { namespace unordered { namespace detail {
template <typename A, typename T> struct grouped_node;
template <typename T> struct grouped_ptr_node;
template <typename Types> struct grouped_table_impl;
template <typename A, typename T>
struct grouped_node :
boost::unordered::detail::value_base<T>
{
typedef typename ::boost::unordered::detail::rebind_wrap<
A, grouped_node<A, T> >::type::pointer link_pointer;
link_pointer next_;
link_pointer group_prev_;
std::size_t hash_;
grouped_node() :
next_(),
group_prev_(),
hash_(0)
{}
void init(link_pointer self)
{
group_prev_ = self;
}
private:
grouped_node& operator=(grouped_node const&);
};
template <typename T>
struct grouped_ptr_node :
boost::unordered::detail::value_base<T>,
boost::unordered::detail::ptr_bucket
{
typedef boost::unordered::detail::ptr_bucket bucket_base;
typedef ptr_bucket* link_pointer;
link_pointer group_prev_;
std::size_t hash_;
grouped_ptr_node() :
bucket_base(),
group_prev_(0),
hash_(0)
{}
void init(link_pointer self)
{
group_prev_ = self;
}
private:
grouped_ptr_node& operator=(grouped_ptr_node const&);
};
// If the allocator uses raw pointers use grouped_ptr_node
// Otherwise use grouped_node.
template <typename A, typename T, typename NodePtr, typename BucketPtr>
struct pick_grouped_node2
{
typedef boost::unordered::detail::grouped_node<A, T> node;
typedef typename boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A, node>::type
>::pointer node_pointer;
typedef boost::unordered::detail::bucket<node_pointer> bucket;
typedef node_pointer link_pointer;
};
template <typename A, typename T>
struct pick_grouped_node2<A, T,
boost::unordered::detail::grouped_ptr_node<T>*,
boost::unordered::detail::ptr_bucket*>
{
typedef boost::unordered::detail::grouped_ptr_node<T> node;
typedef boost::unordered::detail::ptr_bucket bucket;
typedef bucket* link_pointer;
};
template <typename A, typename T>
struct pick_grouped_node
{
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::grouped_ptr_node<T> >::type
> tentative_node_traits;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::ptr_bucket >::type
> tentative_bucket_traits;
typedef pick_grouped_node2<A, T,
typename tentative_node_traits::pointer,
typename tentative_bucket_traits::pointer> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
};
template <typename A, typename T, typename H, typename P>
struct multiset
{
typedef boost::unordered::detail::multiset<A, T, H, P> types;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator,
value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::grouped_table_impl<types> table;
typedef boost::unordered::detail::set_extractor<value_type> extractor;
typedef boost::unordered::detail::pick_policy::type policy;
};
template <typename A, typename K, typename M, typename H, typename P>
struct multimap
{
typedef boost::unordered::detail::multimap<A, K, M, H, P> types;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator,
value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::grouped_table_impl<types> table;
typedef boost::unordered::detail::map_extractor<key_type, value_type>
extractor;
typedef boost::unordered::detail::pick_policy::type policy;
};
template <typename Types>
struct grouped_table_impl : boost::unordered::detail::table<Types>
{
typedef boost::unordered::detail::table<Types> table;
typedef typename table::value_type value_type;
typedef typename table::bucket bucket;
typedef typename table::policy policy;
typedef typename table::node_pointer node_pointer;
typedef typename table::node_allocator node_allocator;
typedef typename table::node_allocator_traits node_allocator_traits;
typedef typename table::bucket_pointer bucket_pointer;
typedef typename table::link_pointer link_pointer;
typedef typename table::previous_pointer previous_pointer;
typedef typename table::hasher hasher;
typedef typename table::key_equal key_equal;
typedef typename table::key_type key_type;
typedef typename table::node_constructor node_constructor;
typedef typename table::extractor extractor;
typedef typename table::iterator iterator;
typedef typename table::c_iterator c_iterator;
// Constructors
grouped_table_impl(std::size_t n,
hasher const& hf,
key_equal const& eq,
node_allocator const& a)
: table(n, hf, eq, a)
{}
grouped_table_impl(grouped_table_impl const& x)
: table(x, node_allocator_traits::
select_on_container_copy_construction(x.node_alloc()))
{
this->init(x);
}
grouped_table_impl(grouped_table_impl const& x,
node_allocator const& a)
: table(x, a)
{
this->init(x);
}
grouped_table_impl(grouped_table_impl& x,
boost::unordered::detail::move_tag m)
: table(x, m)
{}
grouped_table_impl(grouped_table_impl& x,
node_allocator const& a,
boost::unordered::detail::move_tag m)
: table(x, a, m)
{
this->move_init(x);
}
// Accessors
template <class Key, class Pred>
iterator find_node_impl(
std::size_t key_hash,
Key const& k,
Pred const& eq) const
{
std::size_t bucket_index =
policy::to_bucket(this->bucket_count_, key_hash);
iterator n = this->begin(bucket_index);
for (;;)
{
if (!n.node_) return n;
std::size_t node_hash = n.node_->hash_;
if (key_hash == node_hash)
{
if (eq(k, this->get_key(*n)))
return n;
}
else
{
if (policy::to_bucket(this->bucket_count_, node_hash)
!= bucket_index)
return iterator();
}
n = iterator(static_cast<node_pointer>(
static_cast<node_pointer>(n.node_->group_prev_)->next_));
}
}
std::size_t count(key_type const& k) const
{
iterator n = this->find_node(k);
if (!n.node_) return 0;
std::size_t x = 0;
node_pointer it = n.node_;
do {
it = static_cast<node_pointer>(it->group_prev_);
++x;
} while(it != n.node_);
return x;
}
std::pair<iterator, iterator>
equal_range(key_type const& k) const
{
iterator n = this->find_node(k);
return std::make_pair(
n, n.node_ ? iterator(
static_cast<node_pointer>(
static_cast<node_pointer>(n.node_->group_prev_)->next_
)) : n);
}
// Equality
bool equals(grouped_table_impl const& other) const
{
if(this->size_ != other.size_) return false;
for(iterator n1 = this->begin(); n1.node_;)
{
iterator n2 = other.find_matching_node(n1);
if (!n2.node_) return false;
iterator end1(static_cast<node_pointer>(
static_cast<node_pointer>(n1.node_->group_prev_)->next_));
iterator end2(static_cast<node_pointer>(
static_cast<node_pointer>(n2.node_->group_prev_)->next_));
if (!group_equals(n1, end1, n2, end2)) return false;
n1 = end1;
}
return true;
}
#if !defined(BOOST_UNORDERED_DEPRECATED_EQUALITY)
static bool group_equals(iterator n1, iterator end1,
iterator n2, iterator end2)
{
for(;;)
{
if (*n1 != *n2) break;
++n1;
++n2;
if (n1 == end1) return n2 == end2;
if (n2 == end2) return false;
}
for(iterator n1a = n1, n2a = n2;;)
{
++n1a;
++n2a;
if (n1a == end1)
{
if (n2a == end2) break;
else return false;
}
if (n2a == end2) return false;
}
iterator start = n1;
for(;n1 != end1; ++n1)
{
value_type const& v = *n1;
if (find(start, n1, v)) continue;
std::size_t matches = count_equal(n2, end2, v);
if (!matches) return false;
iterator next = n1;
++next;
if (matches != 1 + count_equal(next, end1, v)) return false;
}
return true;
}
static bool find(iterator n, iterator end, value_type const& v)
{
for(;n != end; ++n)
if (*n == v)
return true;
return false;
}
static std::size_t count_equal(iterator n, iterator end,
value_type const& v)
{
std::size_t count = 0;
for(;n != end; ++n)
if (*n == v) ++count;
return count;
}
#else
static bool group_equals(iterator n1, iterator end1,
iterator n2, iterator end2)
{
for(;;)
{
if(!extractor::compare_mapped(*n1, *n2))
return false;
++n1;
++n2;
if (n1 == end1) return n2 == end2;
if (n2 == end2) return false;
}
}
#endif
// Emplace/Insert
static inline void add_after_node(
node_pointer n,
node_pointer pos)
{
n->next_ = static_cast<node_pointer>(pos->group_prev_)->next_;
n->group_prev_ = pos->group_prev_;
static_cast<node_pointer>(pos->group_prev_)->next_ =
static_cast<link_pointer>(n);
pos->group_prev_ = static_cast<link_pointer>(n);
}
inline iterator add_node(
node_constructor& a,
std::size_t key_hash,
iterator pos)
{
node_pointer n = a.release();
n->hash_ = key_hash;
if (pos.node_) {
this->add_after_node(n, pos.node_);
if (n->next_) {
std::size_t next_bucket = policy::to_bucket(
this->bucket_count_,
static_cast<node_pointer>(n->next_)->hash_);
if (next_bucket !=
policy::to_bucket(this->bucket_count_, key_hash)) {
this->get_bucket(next_bucket)->next_ = n;
}
}
}
else {
bucket_pointer b = this->get_bucket(
policy::to_bucket(this->bucket_count_, key_hash));
if (!b->next_)
{
previous_pointer start_node = this->get_previous_start();
if (start_node->next_) {
this->get_bucket(policy::to_bucket(this->bucket_count_,
static_cast<node_pointer>(start_node->next_)->hash_
))->next_ = n;
}
b->next_ = start_node;
n->next_ = start_node->next_;
start_node->next_ = static_cast<link_pointer>(n);
}
else
{
n->next_ = b->next_->next_;
b->next_->next_ = static_cast<link_pointer>(n);
}
}
++this->size_;
return iterator(n);
}
iterator emplace_impl(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
std::size_t key_hash = this->hash(k);
iterator position = this->find_node(key_hash, k);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
this->reserve_for_insert(this->size_ + 1);
return this->add_node(a, key_hash, position);
}
void emplace_impl_no_rehash(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
std::size_t key_hash = this->hash(k);
this->add_node(a, key_hash, this->find_node(key_hash, k));
}
#if defined(BOOST_NO_RVALUE_REFERENCES)
# if defined(BOOST_NO_VARIADIC_TEMPLATES)
iterator emplace(boost::unordered::detail::emplace_args1<
boost::unordered::detail::please_ignore_this_overload> const&)
{
BOOST_ASSERT(false);
return iterator();
}
# else
iterator emplace(
boost::unordered::detail::please_ignore_this_overload const&)
{
BOOST_ASSERT(false);
return iterator();
}
# endif
#endif
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace(BOOST_UNORDERED_EMPLACE_ARGS)
{
node_constructor a(this->node_alloc());
a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD);
return iterator(emplace_impl(a));
}
////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception
// safety. Strong otherwise
template <class I>
typename boost::unordered::detail::enable_if_forward<I, void>::type
insert_range(I i, I j)
{
if(i == j) return;
std::size_t distance = boost::unordered::detail::distance(i, j);
if(distance == 1) {
node_constructor a(this->node_alloc());
a.construct_with_value2(*i);
emplace_impl(a);
}
else {
// Only require basic exception safety here
this->reserve_for_insert(this->size_ + distance);
node_constructor a(this->node_alloc());
for (; i != j; ++i) {
a.construct_with_value2(*i);
emplace_impl_no_rehash(a);
}
}
}
template <class I>
typename boost::unordered::detail::disable_if_forward<I, void>::type
insert_range(I i, I j)
{
node_constructor a(this->node_alloc());
for (; i != j; ++i) {
a.construct_with_value2(*i);
emplace_impl(a);
}
}
////////////////////////////////////////////////////////////////////////
// Erase
//
// no throw
std::size_t erase_key(key_type const& k)
{
if(!this->size_) return 0;
std::size_t key_hash = this->hash(k);
std::size_t bucket_index =
policy::to_bucket(this->bucket_count_, key_hash);
bucket_pointer this_bucket = this->get_bucket(bucket_index);
previous_pointer prev = this_bucket->next_;
if (!prev) return 0;
for (;;)
{
if (!prev->next_) return 0;
std::size_t node_hash =
static_cast<node_pointer>(prev->next_)->hash_;
if (policy::to_bucket(this->bucket_count_, node_hash)
!= bucket_index)
return 0;
if (node_hash == key_hash &&
this->key_eq()(k, this->get_key(
static_cast<node_pointer>(prev->next_)->value())))
break;
prev = static_cast<previous_pointer>(
static_cast<node_pointer>(prev->next_)->group_prev_);
}
node_pointer pos = static_cast<node_pointer>(prev->next_);
link_pointer end1 =
static_cast<node_pointer>(pos->group_prev_)->next_;
node_pointer end = static_cast<node_pointer>(end1);
prev->next_ = end1;
this->fix_buckets(this_bucket, prev, end);
return this->delete_nodes(c_iterator(pos), c_iterator(end));
}
iterator erase(c_iterator r)
{
BOOST_ASSERT(r.node_);
iterator next(r.node_);
++next;
bucket_pointer this_bucket = this->get_bucket(
policy::to_bucket(this->bucket_count_, r.node_->hash_));
previous_pointer prev = unlink_node(*this_bucket, r.node_);
this->fix_buckets(this_bucket, prev, next.node_);
this->delete_node(r);
return next;
}
iterator erase_range(c_iterator r1, c_iterator r2)
{
if (r1 == r2) return iterator(r2.node_);
std::size_t bucket_index =
policy::to_bucket(this->bucket_count_, r1.node_->hash_);
previous_pointer prev = unlink_nodes(
*this->get_bucket(bucket_index), r1.node_, r2.node_);
this->fix_buckets_range(bucket_index, prev, r1.node_, r2.node_);
this->delete_nodes(r1, r2);
return iterator(r2.node_);
}
static previous_pointer unlink_node(bucket& b, node_pointer n)
{
node_pointer next = static_cast<node_pointer>(n->next_);
previous_pointer prev =
static_cast<previous_pointer>(n->group_prev_);
if(prev->next_ != n) {
// The node is at the beginning of a group.
// Find the previous node pointer:
prev = b.next_;
while(prev->next_ != n) {
prev = static_cast<previous_pointer>(
static_cast<node_pointer>(prev->next_)->group_prev_);
}
// Remove from group
if (next && next->group_prev_ == static_cast<link_pointer>(n))
{
next->group_prev_ = n->group_prev_;
}
}
else if (next && next->group_prev_ == static_cast<link_pointer>(n))
{
// The deleted node is not at the end of the group, so
// change the link from the next node.
next->group_prev_ = n->group_prev_;
}
else {
// The deleted node is at the end of the group, so the
// first node in the group is pointing to it.
// Find that to change its pointer.
node_pointer x = static_cast<node_pointer>(n->group_prev_);
while(x->group_prev_ != static_cast<link_pointer>(n)) {
x = static_cast<node_pointer>(x->group_prev_);
}
x->group_prev_ = n->group_prev_;
}
prev->next_ = static_cast<link_pointer>(next);
return prev;
}
static previous_pointer unlink_nodes(bucket& b,
node_pointer begin, node_pointer end)
{
previous_pointer prev = static_cast<previous_pointer>(
begin->group_prev_);
if(prev->next_ != static_cast<link_pointer>(begin)) {
// The node is at the beginning of a group.
// Find the previous node pointer:
prev = b.next_;
while(prev->next_ != static_cast<link_pointer>(begin))
prev = static_cast<previous_pointer>(
static_cast<node_pointer>(prev->next_)->group_prev_);
if (end) split_group(end);
}
else {
node_pointer group1 = split_group(begin);
if (end) {
node_pointer group2 = split_group(end);
if(begin == group2) {
link_pointer end1 = group1->group_prev_;
link_pointer end2 = end->group_prev_;
group1->group_prev_ = end2;
end->group_prev_ = end1;
}
}
}
prev->next_ = static_cast<link_pointer>(end);
return prev;
}
// Break a ciruclar list into two, with split as the beginning
// of the second group (if split is at the beginning then don't
// split).
static node_pointer split_group(node_pointer split)
{
// Find first node in group.
node_pointer first = split;
while (static_cast<node_pointer>(first->group_prev_)->next_ ==
static_cast<link_pointer>(first))
first = static_cast<node_pointer>(first->group_prev_);
if(first == split) return split;
link_pointer last = first->group_prev_;
first->group_prev_ = split->group_prev_;
split->group_prev_ = last;
return first;
}
////////////////////////////////////////////////////////////////////////
// fill_buckets
template <class NodeCreator>
static void fill_buckets(iterator n, table& dst,
NodeCreator& creator)
{
previous_pointer prev = dst.get_previous_start();
while (n.node_) {
std::size_t key_hash = n.node_->hash_;
iterator group_end(
static_cast<node_pointer>(
static_cast<node_pointer>(n.node_->group_prev_)->next_
));
node_pointer first_node = creator.create(*n);
node_pointer end = first_node;
first_node->hash_ = key_hash;
prev->next_ = static_cast<link_pointer>(first_node);
++dst.size_;
for (++n; n != group_end; ++n)
{
end = creator.create(*n);
end->hash_ = key_hash;
add_after_node(end, first_node);
++dst.size_;
}
prev = place_in_bucket(dst, prev, end);
}
}
// strong otherwise exception safety
void rehash_impl(std::size_t num_buckets)
{
BOOST_ASSERT(this->buckets_);
this->create_buckets(num_buckets);
previous_pointer prev = this->get_previous_start();
while (prev->next_)
prev = place_in_bucket(*this, prev,
static_cast<node_pointer>(
static_cast<node_pointer>(prev->next_)->group_prev_));
}
// Iterate through the nodes placing them in the correct buckets.
// pre: prev->next_ is not null.
static previous_pointer place_in_bucket(table& dst,
previous_pointer prev, node_pointer end)
{
bucket_pointer b = dst.get_bucket(policy::to_bucket(
dst.bucket_count_, end->hash_));
if (!b->next_) {
b->next_ = static_cast<node_pointer>(prev);
return static_cast<previous_pointer>(end);
}
else {
link_pointer next = end->next_;
end->next_ = b->next_->next_;
b->next_->next_ = prev->next_;
prev->next_ = next;
return prev;
}
}
};
}}}
#endif