YouCompleteMe/cpp/BoostParts/boost/atomic/detail/gcc-alpha.hpp
2013-03-16 11:00:13 -07:00

360 lines
9.2 KiB
C++

#ifndef BOOST_ATOMIC_DETAIL_GCC_ALPHA_HPP
#define BOOST_ATOMIC_DETAIL_GCC_ALPHA_HPP
// Copyright (c) 2009 Helge Bahmann
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/atomic/detail/config.hpp>
#include <boost/atomic/detail/base.hpp>
#include <boost/atomic/detail/builder.hpp>
#ifdef BOOST_ATOMIC_HAS_PRAGMA_ONCE
#pragma once
#endif
/*
Refer to http://h71000.www7.hp.com/doc/82final/5601/5601pro_004.html
(HP OpenVMS systems documentation) and the alpha reference manual.
*/
/*
NB: The most natural thing would be to write the increment/decrement
operators along the following lines:
__asm__ __volatile__(
"1: ldl_l %0,%1 \n"
"addl %0,1,%0 \n"
"stl_c %0,%1 \n"
"beq %0,1b\n"
: "=&b" (tmp)
: "m" (value)
: "cc"
);
However according to the comments on the HP website and matching
comments in the Linux kernel sources this defies branch prediction,
as the cpu assumes that backward branches are always taken; so
instead copy the trick from the Linux kernel, introduce a forward
branch and back again.
I have, however, had a hard time measuring the difference between
the two versions in microbenchmarks -- I am leaving it in nevertheless
as it apparently does not hurt either.
*/
namespace boost {
namespace atomics {
namespace detail {
inline void fence_before(memory_order order)
{
switch(order) {
case memory_order_consume:
case memory_order_release:
case memory_order_acq_rel:
case memory_order_seq_cst:
__asm__ __volatile__ ("mb" ::: "memory");
default:;
}
}
inline void fence_after(memory_order order)
{
switch(order) {
case memory_order_acquire:
case memory_order_acq_rel:
case memory_order_seq_cst:
__asm__ __volatile__ ("mb" ::: "memory");
default:;
}
}
template<>
inline void platform_atomic_thread_fence(memory_order order)
{
switch(order) {
case memory_order_acquire:
case memory_order_consume:
case memory_order_release:
case memory_order_acq_rel:
case memory_order_seq_cst:
__asm__ __volatile__ ("mb" ::: "memory");
default:;
}
}
template<typename T>
class atomic_alpha_32 {
public:
typedef T integral_type;
explicit atomic_alpha_32(T v) : i(v) {}
atomic_alpha_32() {}
T load(memory_order order=memory_order_seq_cst) const volatile
{
T v=*reinterpret_cast<volatile const int *>(&i);
fence_after(order);
return v;
}
void store(T v, memory_order order=memory_order_seq_cst) volatile
{
fence_before(order);
*reinterpret_cast<volatile int *>(&i)=(int)v;
}
bool compare_exchange_weak(
T &expected,
T desired,
memory_order success_order,
memory_order failure_order) volatile
{
fence_before(success_order);
int current, success;
__asm__ __volatile__(
"1: ldl_l %2, %4\n"
"cmpeq %2, %0, %3\n"
"mov %2, %0\n"
"beq %3, 3f\n"
"stl_c %1, %4\n"
"2:\n"
".subsection 2\n"
"3: mov %3, %1\n"
"br 2b\n"
".previous\n"
: "+&r" (expected), "+&r" (desired), "=&r"(current), "=&r"(success)
: "m" (i)
:
);
if (desired) fence_after(success_order);
else fence_after(failure_order);
return desired;
}
bool is_lock_free(void) const volatile {return true;}
protected:
inline T fetch_add_var(T c, memory_order order) volatile
{
fence_before(order);
T original, modified;
__asm__ __volatile__(
"1: ldl_l %0, %2\n"
"addl %0, %3, %1\n"
"stl_c %1, %2\n"
"beq %1, 2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous\n"
: "=&r" (original), "=&r" (modified)
: "m" (i), "r" (c)
:
);
fence_after(order);
return original;
}
inline T fetch_inc(memory_order order) volatile
{
fence_before(order);
int original, modified;
__asm__ __volatile__(
"1: ldl_l %0, %2\n"
"addl %0, 1, %1\n"
"stl_c %1, %2\n"
"beq %1, 2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous\n"
: "=&r" (original), "=&r" (modified)
: "m" (i)
:
);
fence_after(order);
return original;
}
inline T fetch_dec(memory_order order) volatile
{
fence_before(order);
int original, modified;
__asm__ __volatile__(
"1: ldl_l %0, %2\n"
"subl %0, 1, %1\n"
"stl_c %1, %2\n"
"beq %1, 2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous\n"
: "=&r" (original), "=&r" (modified)
: "m" (i)
:
);
fence_after(order);
return original;
}
private:
T i;
};
template<typename T>
class atomic_alpha_64 {
public:
typedef T integral_type;
explicit atomic_alpha_64(T v) : i(v) {}
atomic_alpha_64() {}
T load(memory_order order=memory_order_seq_cst) const volatile
{
T v=*reinterpret_cast<volatile const T *>(&i);
fence_after(order);
return v;
}
void store(T v, memory_order order=memory_order_seq_cst) volatile
{
fence_before(order);
*reinterpret_cast<volatile T *>(&i)=v;
}
bool compare_exchange_weak(
T &expected,
T desired,
memory_order success_order,
memory_order failure_order) volatile
{
fence_before(success_order);
int current, success;
__asm__ __volatile__(
"1: ldq_l %2, %4\n"
"cmpeq %2, %0, %3\n"
"mov %2, %0\n"
"beq %3, 3f\n"
"stq_c %1, %4\n"
"2:\n"
".subsection 2\n"
"3: mov %3, %1\n"
"br 2b\n"
".previous\n"
: "+&r" (expected), "+&r" (desired), "=&r"(current), "=&r"(success)
: "m" (i)
:
);
if (desired) fence_after(success_order);
else fence_after(failure_order);
return desired;
}
bool is_lock_free(void) const volatile {return true;}
protected:
inline T fetch_add_var(T c, memory_order order) volatile
{
fence_before(order);
T original, modified;
__asm__ __volatile__(
"1: ldq_l %0, %2\n"
"addq %0, %3, %1\n"
"stq_c %1, %2\n"
"beq %1, 2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous\n"
: "=&r" (original), "=&r" (modified)
: "m" (i), "r" (c)
:
);
fence_after(order);
return original;
}
inline T fetch_inc(memory_order order) volatile
{
fence_before(order);
T original, modified;
__asm__ __volatile__(
"1: ldq_l %0, %2\n"
"addq %0, 1, %1\n"
"stq_c %1, %2\n"
"beq %1, 2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous\n"
: "=&r" (original), "=&r" (modified)
: "m" (i)
:
);
fence_after(order);
return original;
}
inline T fetch_dec(memory_order order) volatile
{
fence_before(order);
T original, modified;
__asm__ __volatile__(
"1: ldq_l %0, %2\n"
"subq %0, 1, %1\n"
"stq_c %1, %2\n"
"beq %1, 2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous\n"
: "=&r" (original), "=&r" (modified)
: "m" (i)
:
);
fence_after(order);
return original;
}
private:
T i;
};
template<typename T>
class platform_atomic_integral<T, 4> : public build_atomic_from_typical<build_exchange<atomic_alpha_32<T> > > {
public:
typedef build_atomic_from_typical<build_exchange<atomic_alpha_32<T> > > super;
explicit platform_atomic_integral(T v) : super(v) {}
platform_atomic_integral(void) {}
};
template<typename T>
class platform_atomic_integral<T, 8> : public build_atomic_from_typical<build_exchange<atomic_alpha_64<T> > > {
public:
typedef build_atomic_from_typical<build_exchange<atomic_alpha_64<T> > > super;
explicit platform_atomic_integral(T v) : super(v) {}
platform_atomic_integral(void) {}
};
template<typename T>
class platform_atomic_integral<T, 1>: public build_atomic_from_larger_type<atomic_alpha_32<uint32_t>, T> {
public:
typedef build_atomic_from_larger_type<atomic_alpha_32<uint32_t>, T> super;
explicit platform_atomic_integral(T v) : super(v) {}
platform_atomic_integral(void) {}
};
template<typename T>
class platform_atomic_integral<T, 2>: public build_atomic_from_larger_type<atomic_alpha_32<uint32_t>, T> {
public:
typedef build_atomic_from_larger_type<atomic_alpha_32<uint32_t>, T> super;
explicit platform_atomic_integral(T v) : super(v) {}
platform_atomic_integral(void) {}
};
}
}
}
#endif