YouCompleteMe/cpp/ycm/ClangCompleter.cpp
Strahinja Val Markovic cdb8dfc86b Loading .ycm_clang_options files now
These files can contain flags that are passed to clang.
2012-07-22 15:19:28 -07:00

587 lines
16 KiB
C++

// Copyright (C) 2011, 2012 Strahinja Val Markovic <val@markovic.io>
//
// This file is part of YouCompleteMe.
//
// YouCompleteMe is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// YouCompleteMe is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with YouCompleteMe. If not, see <http://www.gnu.org/licenses/>.
#include "ClangCompleter.h"
#include "Candidate.h"
#include "CompletionData.h"
#include "standard.h"
#include "CandidateRepository.h"
#include "ConcurrentLatestValue.h"
#include "Utils.h"
#include "ClangUtils.h"
#include <clang-c/Index.h>
#include <boost/make_shared.hpp>
namespace fs = boost::filesystem;
using boost::packaged_task;
using boost::bind;
using boost::unique_future;
using boost::make_shared;
using boost::shared_ptr;
using boost::bind;
using boost::thread;
namespace YouCompleteMe
{
typedef boost::function< std::vector< CompletionData >() >
FunctionReturnsCompletionDataVector;
extern const unsigned int MAX_ASYNC_THREADS;
extern const unsigned int MIN_ASYNC_THREADS;
namespace
{
struct CompletionDataAndResult
{
CompletionDataAndResult( const CompletionData *completion_data,
const Result &result )
: completion_data_( completion_data ), result_( result ) {}
bool operator< ( const CompletionDataAndResult &other ) const
{
return result_ < other.result_;
}
const CompletionData *completion_data_;
Result result_;
};
std::vector< CXUnsavedFile > ToCXUnsavedFiles(
const std::vector< UnsavedFile > &unsaved_files )
{
std::vector< CXUnsavedFile > clang_unsaved_files( unsaved_files.size() );
for ( uint i = 0; i < unsaved_files.size(); ++i )
{
// TODO: assert non-null
clang_unsaved_files[ i ].Filename = unsaved_files[ i ].filename_;
clang_unsaved_files[ i ].Contents = unsaved_files[ i ].contents_;
clang_unsaved_files[ i ].Length = unsaved_files[ i ].length_;
}
return clang_unsaved_files;
}
std::string CXStringToString( CXString text )
{
std::string final_string( clang_getCString( text ) );
clang_disposeString( text );
return final_string;
}
std::string ChunkToString( CXCompletionString completion_string, int chunk_num )
{
return CXStringToString(
clang_getCompletionChunkText( completion_string, chunk_num ) );
}
// Returns true when the provided completion string is available to the user;
// unavailable completion strings refer to entities that are private/protected,
// deprecated etc.
bool CompletionStringAvailable( CXCompletionString completion_string )
{
return clang_getCompletionAvailability( completion_string ) ==
CXAvailability_Available;
}
bool IsChunkKindForExtraMenuInfo( CXCompletionChunkKind kind )
{
return
kind == CXCompletionChunk_Optional ||
kind == CXCompletionChunk_TypedText ||
kind == CXCompletionChunk_Placeholder ||
kind == CXCompletionChunk_LeftParen ||
kind == CXCompletionChunk_RightParen ||
kind == CXCompletionChunk_RightBracket ||
kind == CXCompletionChunk_LeftBracket ||
kind == CXCompletionChunk_LeftBrace ||
kind == CXCompletionChunk_RightBrace ||
kind == CXCompletionChunk_RightAngle ||
kind == CXCompletionChunk_LeftAngle ||
kind == CXCompletionChunk_Comma ||
kind == CXCompletionChunk_ResultType ||
kind == CXCompletionChunk_Colon ||
kind == CXCompletionChunk_SemiColon ||
kind == CXCompletionChunk_Equal ||
kind == CXCompletionChunk_HorizontalSpace;
}
char CursorKindToVimKind( CXCursorKind kind )
{
// TODO: actually it appears that Vim will show returned kinds even when they
// do not match the "approved" list, so let's use that
switch ( kind )
{
case CXCursor_UnexposedDecl:
case CXCursor_StructDecl:
case CXCursor_UnionDecl:
case CXCursor_ClassDecl:
case CXCursor_EnumDecl:
case CXCursor_TypedefDecl:
return 't';
case CXCursor_FieldDecl:
return 'm';
case CXCursor_FunctionDecl:
case CXCursor_CXXMethod:
case CXCursor_FunctionTemplate:
return 'f';
case CXCursor_VarDecl:
return 'v';
case CXCursor_MacroDefinition:
return 'd';
default:
return 'u'; // for 'unknown', 'unsupported'... whatever you like
}
}
CompletionData CompletionResultToCompletionData(
const CXCompletionResult &completion_result )
{
CompletionData data;
CXCompletionString completion_string = completion_result.CompletionString;
uint num_chunks = clang_getNumCompletionChunks( completion_string );
for ( uint j = 0; j < num_chunks; ++j )
{
CXCompletionChunkKind kind = clang_getCompletionChunkKind(
completion_string, j );
if ( IsChunkKindForExtraMenuInfo( kind ) )
{
data.extra_menu_info_.append( ChunkToString( completion_string, j ) );
// by default, there's no space after the return type
if ( kind == CXCompletionChunk_ResultType )
data.extra_menu_info_.append( " " );
}
if ( kind == CXCompletionChunk_TypedText )
data.original_string_ = ChunkToString( completion_string, j );
if ( kind == CXCompletionChunk_Informative )
data.detailed_info_ = ChunkToString( completion_string, j );
}
data.kind_ = CursorKindToVimKind( completion_result.CursorKind );
return data;
}
std::vector< CompletionData > ToCompletionDataVector(
CXCodeCompleteResults *results )
{
std::vector< CompletionData > completions;
completions.reserve( results->NumResults );
for ( uint i = 0; i < results->NumResults; ++i )
{
CXCompletionResult completion_result = results->Results[ i ];
if ( !CompletionStringAvailable( completion_result.CompletionString ) )
continue;
completions.push_back(
CompletionResultToCompletionData( completion_result ) );
}
return completions;
}
} // unnamed namespace
ClangCompleter::ClangCompleter()
: candidate_repository_( CandidateRepository::Instance() ),
threading_enabled_( false ),
clang_data_ready_( false )
{
clang_index_ = clang_createIndex( 0, 0 );
}
ClangCompleter::~ClangCompleter()
{
foreach ( const TranslationUnitForFilename::value_type &filename_unit,
filename_to_translation_unit_ )
{
clang_disposeTranslationUnit( filename_unit.second );
}
clang_disposeIndex( clang_index_ );
}
// We need this mostly so that we can not use it in tests. Apparently the
// GoogleTest framework goes apeshit on us if we enable threads by default.
void ClangCompleter::EnableThreading()
{
threading_enabled_ = true;
InitThreads();
}
void ClangCompleter::SetGlobalCompileFlags(
const std::vector< std::string > &flags )
{
global_flags_ = flags;
}
void ClangCompleter::SetFileCompileFlags(
const std::string &filename,
const std::vector< std::string > &flags )
{
flags_for_file_[ filename ] =
make_shared< std::vector< std::string > >( flags );
}
void ClangCompleter::UpdateTranslationUnit(
const std::string &filename,
const std::vector< UnsavedFile > &unsaved_files )
{
TranslationUnitForFilename::iterator it =
filename_to_translation_unit_.find( filename );
if ( it != filename_to_translation_unit_.end() )
{
std::vector< CXUnsavedFile > cxunsaved_files = ToCXUnsavedFiles(
unsaved_files );
clang_reparseTranslationUnit(
it->second,
cxunsaved_files.size(),
&cxunsaved_files[ 0 ],
clang_defaultEditingTranslationUnitOptions() );
}
else
{
filename_to_translation_unit_[ filename ] =
CreateTranslationUnit( filename, unsaved_files );
}
}
std::vector< CompletionData > ClangCompleter::CandidatesForLocationInFile(
const std::string &filename,
int line,
int column,
const std::vector< UnsavedFile > &unsaved_files )
{
std::vector< CXUnsavedFile > cxunsaved_files = ToCXUnsavedFiles(
unsaved_files );
// codeCompleteAt reparses the TU if the underlying source file has changed on
// disk since the last time the TU was updated and there are no unsaved files.
// If there are unsaved files, then codeCompleteAt will parse the in-memory
// file contents we are giving it. In short, it is NEVER a good idea to call
// clang_reparseTranslationUnit right before a call to clang_codeCompleteAt.
// This only makes clang reparse the whole file TWICE, which has a huge impact
// on latency. At the time of writing, it seems that most users of libclang
// in the open-source world don't realize this (I checked). Some don't even
// call reparse*, but parse* which is even less efficient.
CXCodeCompleteResults *results =
clang_codeCompleteAt( GetTranslationUnitForFile( filename, unsaved_files ),
filename.c_str(),
line,
column,
&cxunsaved_files[ 0 ],
cxunsaved_files.size(),
clang_defaultCodeCompleteOptions());
std::vector< CompletionData > candidates = ToCompletionDataVector( results );
clang_disposeCodeCompleteResults( results );
return candidates;
}
Future< AsyncCompletions >
ClangCompleter::CandidatesForQueryAndLocationInFileAsync(
const std::string &query,
const std::string &filename,
int line,
int column,
const std::vector< UnsavedFile > &unsaved_files )
{
// TODO: throw exception when threading is not enabled and this is called
if ( !threading_enabled_ )
return Future< AsyncCompletions >();
if ( query.empty() )
{
{
boost::lock_guard< boost::mutex > lock( clang_data_ready_mutex_ );
clang_data_ready_ = false;
}
// Needed to "reset" the sorting threads to the start of their loop. This
// way any threads blocking on a read in sorting_task_.Get() are reset to
// wait on the clang_data_ready_condition_variable_.
sorting_threads_.interrupt_all();
}
// the sorting task needs to be set before the clang task (if any) just in
// case the clang task finishes (and therefore notifies a sorting thread to
// consume a sorting task) before the sorting task is set
FunctionReturnsCompletionDataVector sort_candidates_for_query_functor =
bind( &ClangCompleter::SortCandidatesForQuery,
boost::ref( *this ),
query,
boost::cref( latest_clang_results_ ) );
shared_ptr< packaged_task< AsyncCompletions > > task =
make_shared< packaged_task< AsyncCompletions > >(
bind( ReturnValueAsShared< std::vector< CompletionData > >,
sort_candidates_for_query_functor ) );
unique_future< AsyncCompletions > future = task->get_future();
sorting_task_.Set( task );
if ( query.empty() )
{
FunctionReturnsCompletionDataVector
candidates_for_location_in_file_functor =
bind( &ClangCompleter::CandidatesForLocationInFile,
boost::ref( *this ),
filename,
line,
column,
unsaved_files );
shared_ptr< packaged_task< AsyncCompletions > > task =
make_shared< packaged_task< AsyncCompletions > >(
bind( ReturnValueAsShared< std::vector< CompletionData > >,
candidates_for_location_in_file_functor ) );
clang_task_.Set( task );
}
return Future< AsyncCompletions >( boost::move( future ) );
}
CXTranslationUnit ClangCompleter::CreateTranslationUnit(
const std::string &filename,
const std::vector< UnsavedFile > &unsaved_files )
{
std::vector< const char* > flags = FlagsForFilename( filename );
flags.reserve( flags.size() + global_flags_.size() );
foreach ( const std::string &flag, global_flags_ )
{
flags.push_back( flag.c_str() );
}
std::vector< CXUnsavedFile > cxunsaved_files = ToCXUnsavedFiles(
unsaved_files );
return clang_parseTranslationUnit(
clang_index_,
filename.c_str(),
&flags[ 0 ],
flags.size(),
&cxunsaved_files[ 0 ],
cxunsaved_files.size(),
clang_defaultEditingTranslationUnitOptions() );
}
// The implementation of this function is somewhat non-obvious because we need
// to make sure that the data pointed to by the const char* pointers returned
// outlives this function. We want to make sure that we are calling c_str on the
// string objects that are actually stored in flags_for_file_
std::vector< const char* > ClangCompleter::FlagsForFilename(
const std::string &filename)
{
FlagsForFile::iterator it =
flags_for_file_.find( filename );
if ( it == flags_for_file_.end() )
{
flags_for_file_[ filename ] = make_shared< std::vector< std::string > >(
SanitizeClangFlags(
SplitFlags(
GetNearestClangOptions( filename ) ) ) );
it = flags_for_file_.find( filename );
}
// TODO: assert it != end
std::vector< const char* > flags;
foreach ( const std::string &flag, *it->second )
{
flags.push_back( flag.c_str() );
}
return flags;
}
CXTranslationUnit ClangCompleter::GetTranslationUnitForFile(
const std::string &filename,
const std::vector< UnsavedFile > &unsaved_files )
{
TranslationUnitForFilename::iterator it =
filename_to_translation_unit_.find( filename );
if ( it != filename_to_translation_unit_.end() )
return it->second;
CXTranslationUnit unit = CreateTranslationUnit( filename, unsaved_files );
filename_to_translation_unit_[ filename ] = unit;
return unit;
}
std::vector< CompletionData > ClangCompleter::SortCandidatesForQuery(
const std::string &query,
const std::vector< CompletionData > &completion_datas )
{
Bitset query_bitset = LetterBitsetFromString( query );
std::vector< const Candidate* > repository_candidates =
candidate_repository_.GetCandidatesForStrings( completion_datas );
std::vector< CompletionDataAndResult > data_and_results;
for ( uint i = 0; i < repository_candidates.size(); ++i )
{
const Candidate* candidate = repository_candidates[ i ];
if ( !candidate->MatchesQueryBitset( query_bitset ) )
continue;
Result result = candidate->QueryMatchResult( query );
if ( result.IsSubsequence() )
{
CompletionDataAndResult data_and_result( &completion_datas[ i ], result );
data_and_results.push_back( data_and_result );
}
}
std::sort( data_and_results.begin(), data_and_results.end() );
std::vector< CompletionData > sorted_completion_datas;
sorted_completion_datas.reserve( data_and_results.size() );
foreach ( const CompletionDataAndResult& data_and_result, data_and_results )
{
sorted_completion_datas.push_back( *data_and_result.completion_data_ );
}
return sorted_completion_datas;
}
void ClangCompleter::InitThreads()
{
int threads_to_create =
std::max( MIN_ASYNC_THREADS,
std::min( MAX_ASYNC_THREADS, thread::hardware_concurrency() ) );
for ( int i = 0; i < threads_to_create; ++i )
{
sorting_threads_.create_thread(
bind( &ClangCompleter::SortingThreadMain,
boost::ref( *this ),
boost::ref( sorting_task_ ) ) );
}
clang_thread_ = boost::thread( &ClangCompleter::ClangThreadMain,
boost::ref( *this ),
boost::ref( clang_task_ ) );
}
void ClangCompleter::ClangThreadMain( LatestTask &clang_task )
{
while ( true )
{
shared_ptr< packaged_task< AsyncCompletions > > task = clang_task.Get();
( *task )();
unique_future< AsyncCompletions > future = task->get_future();
{
boost::unique_lock< boost::shared_mutex > writer_lock(
latest_clang_results_shared_mutex_ );
latest_clang_results_ = *future.get();
}
{
boost::lock_guard< boost::mutex > lock( clang_data_ready_mutex_ );
clang_data_ready_ = true;
}
clang_data_ready_condition_variable_.notify_all();
}
}
void ClangCompleter::SortingThreadMain( LatestTask &sorting_task )
{
while ( true )
{
try
{
{
boost::unique_lock< boost::mutex > lock( clang_data_ready_mutex_ );
while ( !clang_data_ready_ )
{
clang_data_ready_condition_variable_.wait( lock );
}
}
shared_ptr< packaged_task< AsyncCompletions > > task = sorting_task.Get();
{
boost::shared_lock< boost::shared_mutex > reader_lock(
latest_clang_results_shared_mutex_ );
( *task )();
}
}
catch ( boost::thread_interrupted& )
{
// Do nothing and re-enter the loop
}
}
}
} // namespace YouCompleteMe