2012-05-09 21:45:30 -07:00

700 lines
21 KiB
C++

/*
*
* Copyright (c) 1998-2009
* John Maddock
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
/*
* LOCATION: see http://www.boost.org for most recent version.
* FILE match_results.cpp
* VERSION see <boost/version.hpp>
* DESCRIPTION: Declares template class match_results.
*/
#ifndef BOOST_REGEX_V4_MATCH_RESULTS_HPP
#define BOOST_REGEX_V4_MATCH_RESULTS_HPP
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4103)
#endif
#ifdef BOOST_HAS_ABI_HEADERS
# include BOOST_ABI_PREFIX
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
namespace boost{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4251 4231 4660)
#endif
namespace re_detail{
class named_subexpressions;
}
template <class BidiIterator, class Allocator>
class match_results
{
private:
#ifndef BOOST_NO_STD_ALLOCATOR
typedef std::vector<sub_match<BidiIterator>, Allocator> vector_type;
#else
typedef std::vector<sub_match<BidiIterator> > vector_type;
#endif
public:
typedef sub_match<BidiIterator> value_type;
#if !defined(BOOST_NO_STD_ALLOCATOR) && !(defined(BOOST_MSVC) && defined(_STLPORT_VERSION))
typedef typename Allocator::const_reference const_reference;
#else
typedef const value_type& const_reference;
#endif
typedef const_reference reference;
typedef typename vector_type::const_iterator const_iterator;
typedef const_iterator iterator;
typedef typename re_detail::regex_iterator_traits<
BidiIterator>::difference_type difference_type;
typedef typename Allocator::size_type size_type;
typedef Allocator allocator_type;
typedef typename re_detail::regex_iterator_traits<
BidiIterator>::value_type char_type;
typedef std::basic_string<char_type> string_type;
typedef re_detail::named_subexpressions named_sub_type;
// construct/copy/destroy:
explicit match_results(const Allocator& a = Allocator())
#ifndef BOOST_NO_STD_ALLOCATOR
: m_subs(a), m_base(), m_last_closed_paren(0), m_is_singular(true) {}
#else
: m_subs(), m_base(), m_last_closed_paren(0), m_is_singular(true) { (void)a; }
#endif
match_results(const match_results& m)
: m_subs(m.m_subs), m_named_subs(m.m_named_subs), m_last_closed_paren(m.m_last_closed_paren), m_is_singular(m.m_is_singular)
{
if(!m_is_singular)
{
m_base = m.m_base;
m_null = m.m_null;
}
}
match_results& operator=(const match_results& m)
{
m_subs = m.m_subs;
m_named_subs = m.m_named_subs;
m_last_closed_paren = m.m_last_closed_paren;
m_is_singular = m.m_is_singular;
if(!m_is_singular)
{
m_base = m.m_base;
m_null = m.m_null;
}
return *this;
}
~match_results(){}
// size:
size_type size() const
{ return empty() ? 0 : m_subs.size() - 2; }
size_type max_size() const
{ return m_subs.max_size(); }
bool empty() const
{ return m_subs.size() < 2; }
// element access:
difference_type length(int sub = 0) const
{
if(m_is_singular)
raise_logic_error();
sub += 2;
if((sub < (int)m_subs.size()) && (sub > 0))
return m_subs[sub].length();
return 0;
}
difference_type length(const char_type* sub) const
{
if(m_is_singular)
raise_logic_error();
const char_type* sub_end = sub;
while(*sub_end) ++sub_end;
return length(named_subexpression_index(sub, sub_end));
}
template <class charT>
difference_type length(const charT* sub) const
{
if(m_is_singular)
raise_logic_error();
const charT* sub_end = sub;
while(*sub_end) ++sub_end;
return length(named_subexpression_index(sub, sub_end));
}
template <class charT, class Traits, class A>
difference_type length(const std::basic_string<charT, Traits, A>& sub) const
{
return length(sub.c_str());
}
difference_type position(size_type sub = 0) const
{
if(m_is_singular)
raise_logic_error();
sub += 2;
if(sub < m_subs.size())
{
const sub_match<BidiIterator>& s = m_subs[sub];
if(s.matched || (sub == 2))
{
return ::boost::re_detail::distance((BidiIterator)(m_base), (BidiIterator)(s.first));
}
}
return ~static_cast<difference_type>(0);
}
difference_type position(const char_type* sub) const
{
const char_type* sub_end = sub;
while(*sub_end) ++sub_end;
return position(named_subexpression_index(sub, sub_end));
}
template <class charT>
difference_type position(const charT* sub) const
{
const charT* sub_end = sub;
while(*sub_end) ++sub_end;
return position(named_subexpression_index(sub, sub_end));
}
template <class charT, class Traits, class A>
difference_type position(const std::basic_string<charT, Traits, A>& sub) const
{
return position(sub.c_str());
}
string_type str(int sub = 0) const
{
if(m_is_singular)
raise_logic_error();
sub += 2;
string_type result;
if(sub < (int)m_subs.size() && (sub > 0))
{
const sub_match<BidiIterator>& s = m_subs[sub];
if(s.matched)
{
result = s.str();
}
}
return result;
}
string_type str(const char_type* sub) const
{
return (*this)[sub].str();
}
template <class Traits, class A>
string_type str(const std::basic_string<char_type, Traits, A>& sub) const
{
return (*this)[sub].str();
}
template <class charT>
string_type str(const charT* sub) const
{
return (*this)[sub].str();
}
template <class charT, class Traits, class A>
string_type str(const std::basic_string<charT, Traits, A>& sub) const
{
return (*this)[sub].str();
}
const_reference operator[](int sub) const
{
if(m_is_singular && m_subs.empty())
raise_logic_error();
sub += 2;
if(sub < (int)m_subs.size() && (sub >= 0))
{
return m_subs[sub];
}
return m_null;
}
//
// Named sub-expressions:
//
const_reference named_subexpression(const char_type* i, const char_type* j) const
{
//
// Scan for the leftmost *matched* subexpression with the specified named:
//
if(m_is_singular)
raise_logic_error();
re_detail::named_subexpressions::range_type r = m_named_subs->equal_range(i, j);
while((r.first != r.second) && ((*this)[r.first->index].matched == false))
++r.first;
return r.first != r.second ? (*this)[r.first->index] : m_null;
}
template <class charT>
const_reference named_subexpression(const charT* i, const charT* j) const
{
BOOST_STATIC_ASSERT(sizeof(charT) <= sizeof(char_type));
if(i == j)
return m_null;
std::vector<char_type> s;
while(i != j)
s.insert(s.end(), *i++);
return named_subexpression(&*s.begin(), &*s.begin() + s.size());
}
int named_subexpression_index(const char_type* i, const char_type* j) const
{
//
// Scan for the leftmost *matched* subexpression with the specified named.
// If none found then return the leftmost expression with that name,
// otherwise an invalid index:
//
if(m_is_singular)
raise_logic_error();
re_detail::named_subexpressions::range_type s, r;
s = r = m_named_subs->equal_range(i, j);
while((r.first != r.second) && ((*this)[r.first->index].matched == false))
++r.first;
if(r.first == r.second)
r = s;
return r.first != r.second ? r.first->index : -20;
}
template <class charT>
int named_subexpression_index(const charT* i, const charT* j) const
{
BOOST_STATIC_ASSERT(sizeof(charT) <= sizeof(char_type));
if(i == j)
return -20;
std::vector<char_type> s;
while(i != j)
s.insert(s.end(), *i++);
return named_subexpression_index(&*s.begin(), &*s.begin() + s.size());
}
template <class Traits, class A>
const_reference operator[](const std::basic_string<char_type, Traits, A>& s) const
{
return named_subexpression(s.c_str(), s.c_str() + s.size());
}
const_reference operator[](const char_type* p) const
{
const char_type* e = p;
while(*e) ++e;
return named_subexpression(p, e);
}
template <class charT>
const_reference operator[](const charT* p) const
{
BOOST_STATIC_ASSERT(sizeof(charT) <= sizeof(char_type));
if(*p == 0)
return m_null;
std::vector<char_type> s;
while(*p)
s.insert(s.end(), *p++);
return named_subexpression(&*s.begin(), &*s.begin() + s.size());
}
template <class charT, class Traits, class A>
const_reference operator[](const std::basic_string<charT, Traits, A>& ns) const
{
BOOST_STATIC_ASSERT(sizeof(charT) <= sizeof(char_type));
if(ns.empty())
return m_null;
std::vector<char_type> s;
for(unsigned i = 0; i < ns.size(); ++i)
s.insert(s.end(), ns[i]);
return named_subexpression(&*s.begin(), &*s.begin() + s.size());
}
const_reference prefix() const
{
if(m_is_singular)
raise_logic_error();
return (*this)[-1];
}
const_reference suffix() const
{
if(m_is_singular)
raise_logic_error();
return (*this)[-2];
}
const_iterator begin() const
{
return (m_subs.size() > 2) ? (m_subs.begin() + 2) : m_subs.end();
}
const_iterator end() const
{
return m_subs.end();
}
// format:
template <class OutputIterator, class Functor>
OutputIterator format(OutputIterator out,
Functor fmt,
match_flag_type flags = format_default) const
{
if(m_is_singular)
raise_logic_error();
typedef typename re_detail::compute_functor_type<Functor, match_results<BidiIterator, Allocator>, OutputIterator>::type F;
F func(fmt);
return func(*this, out, flags);
}
template <class Functor>
string_type format(Functor fmt, match_flag_type flags = format_default) const
{
if(m_is_singular)
raise_logic_error();
std::basic_string<char_type> result;
re_detail::string_out_iterator<std::basic_string<char_type> > i(result);
typedef typename re_detail::compute_functor_type<Functor, match_results<BidiIterator, Allocator>, re_detail::string_out_iterator<std::basic_string<char_type> > >::type F;
F func(fmt);
func(*this, i, flags);
return result;
}
// format with locale:
template <class OutputIterator, class Functor, class RegexT>
OutputIterator format(OutputIterator out,
Functor fmt,
match_flag_type flags,
const RegexT& re) const
{
if(m_is_singular)
raise_logic_error();
typedef ::boost::regex_traits_wrapper<typename RegexT::traits_type> traits_type;
typedef typename re_detail::compute_functor_type<Functor, match_results<BidiIterator, Allocator>, OutputIterator, traits_type>::type F;
F func(fmt);
return func(*this, out, flags, re.get_traits());
}
template <class RegexT, class Functor>
string_type format(Functor fmt,
match_flag_type flags,
const RegexT& re) const
{
if(m_is_singular)
raise_logic_error();
typedef ::boost::regex_traits_wrapper<typename RegexT::traits_type> traits_type;
std::basic_string<char_type> result;
re_detail::string_out_iterator<std::basic_string<char_type> > i(result);
typedef typename re_detail::compute_functor_type<Functor, match_results<BidiIterator, Allocator>, re_detail::string_out_iterator<std::basic_string<char_type> >, traits_type >::type F;
F func(fmt);
func(*this, i, flags, re.get_traits());
return result;
}
const_reference get_last_closed_paren()const
{
if(m_is_singular)
raise_logic_error();
return m_last_closed_paren == 0 ? m_null : (*this)[m_last_closed_paren];
}
allocator_type get_allocator() const
{
#ifndef BOOST_NO_STD_ALLOCATOR
return m_subs.get_allocator();
#else
return allocator_type();
#endif
}
void swap(match_results& that)
{
std::swap(m_subs, that.m_subs);
std::swap(m_named_subs, that.m_named_subs);
std::swap(m_last_closed_paren, that.m_last_closed_paren);
if(m_is_singular)
{
if(!that.m_is_singular)
{
m_base = that.m_base;
m_null = that.m_null;
}
}
else if(that.m_is_singular)
{
that.m_base = m_base;
that.m_null = m_null;
}
else
{
std::swap(m_base, that.m_base);
std::swap(m_null, that.m_null);
}
std::swap(m_is_singular, that.m_is_singular);
}
bool operator==(const match_results& that)const
{
if(m_is_singular)
{
return that.m_is_singular;
}
else if(that.m_is_singular)
{
return false;
}
return (m_subs == that.m_subs) && (m_base == that.m_base) && (m_last_closed_paren == that.m_last_closed_paren);
}
bool operator!=(const match_results& that)const
{ return !(*this == that); }
#ifdef BOOST_REGEX_MATCH_EXTRA
typedef typename sub_match<BidiIterator>::capture_sequence_type capture_sequence_type;
const capture_sequence_type& captures(int i)const
{
if(m_is_singular)
raise_logic_error();
return (*this)[i].captures();
}
#endif
//
// private access functions:
void BOOST_REGEX_CALL set_second(BidiIterator i)
{
BOOST_ASSERT(m_subs.size() > 2);
m_subs[2].second = i;
m_subs[2].matched = true;
m_subs[0].first = i;
m_subs[0].matched = (m_subs[0].first != m_subs[0].second);
m_null.first = i;
m_null.second = i;
m_null.matched = false;
m_is_singular = false;
}
void BOOST_REGEX_CALL set_second(BidiIterator i, size_type pos, bool m = true, bool escape_k = false)
{
if(pos)
m_last_closed_paren = static_cast<int>(pos);
pos += 2;
BOOST_ASSERT(m_subs.size() > pos);
m_subs[pos].second = i;
m_subs[pos].matched = m;
if((pos == 2) && !escape_k)
{
m_subs[0].first = i;
m_subs[0].matched = (m_subs[0].first != m_subs[0].second);
m_null.first = i;
m_null.second = i;
m_null.matched = false;
m_is_singular = false;
}
}
void BOOST_REGEX_CALL set_size(size_type n, BidiIterator i, BidiIterator j)
{
value_type v(j);
size_type len = m_subs.size();
if(len > n + 2)
{
m_subs.erase(m_subs.begin()+n+2, m_subs.end());
std::fill(m_subs.begin(), m_subs.end(), v);
}
else
{
std::fill(m_subs.begin(), m_subs.end(), v);
if(n+2 != len)
m_subs.insert(m_subs.end(), n+2-len, v);
}
m_subs[1].first = i;
m_last_closed_paren = 0;
}
void BOOST_REGEX_CALL set_base(BidiIterator pos)
{
m_base = pos;
}
BidiIterator base()const
{
return m_base;
}
void BOOST_REGEX_CALL set_first(BidiIterator i)
{
BOOST_ASSERT(m_subs.size() > 2);
// set up prefix:
m_subs[1].second = i;
m_subs[1].matched = (m_subs[1].first != i);
// set up $0:
m_subs[2].first = i;
// zero out everything else:
for(size_type n = 3; n < m_subs.size(); ++n)
{
m_subs[n].first = m_subs[n].second = m_subs[0].second;
m_subs[n].matched = false;
}
}
void BOOST_REGEX_CALL set_first(BidiIterator i, size_type pos, bool escape_k = false)
{
BOOST_ASSERT(pos+2 < m_subs.size());
if(pos || escape_k)
{
m_subs[pos+2].first = i;
if(escape_k)
{
m_subs[1].second = i;
m_subs[1].matched = (m_subs[1].first != m_subs[1].second);
}
}
else
set_first(i);
}
void BOOST_REGEX_CALL maybe_assign(const match_results<BidiIterator, Allocator>& m);
void BOOST_REGEX_CALL set_named_subs(boost::shared_ptr<named_sub_type> subs)
{
m_named_subs = subs;
}
private:
//
// Error handler called when an uninitialized match_results is accessed:
//
static void raise_logic_error()
{
std::logic_error e("Attempt to access an uninitialzed boost::match_results<> class.");
boost::throw_exception(e);
}
vector_type m_subs; // subexpressions
BidiIterator m_base; // where the search started from
sub_match<BidiIterator> m_null; // a null match
boost::shared_ptr<named_sub_type> m_named_subs; // Shared copy of named subs in the regex object
int m_last_closed_paren; // Last ) to be seen - used for formatting
bool m_is_singular; // True if our stored iterators are singular
};
template <class BidiIterator, class Allocator>
void BOOST_REGEX_CALL match_results<BidiIterator, Allocator>::maybe_assign(const match_results<BidiIterator, Allocator>& m)
{
if(m_is_singular)
{
*this = m;
return;
}
const_iterator p1, p2;
p1 = begin();
p2 = m.begin();
//
// Distances are measured from the start of *this* match, unless this isn't
// a valid match in which case we use the start of the whole sequence. Note that
// no subsequent match-candidate can ever be to the left of the first match found.
// This ensures that when we are using bidirectional iterators, that distances
// measured are as short as possible, and therefore as efficient as possible
// to compute. Finally note that we don't use the "matched" data member to test
// whether a sub-expression is a valid match, because partial matches set this
// to false for sub-expression 0.
//
BidiIterator l_end = this->suffix().second;
BidiIterator l_base = (p1->first == l_end) ? this->prefix().first : (*this)[0].first;
difference_type len1 = 0;
difference_type len2 = 0;
difference_type base1 = 0;
difference_type base2 = 0;
std::size_t i;
for(i = 0; i < size(); ++i, ++p1, ++p2)
{
//
// Leftmost takes priority over longest; handle special cases
// where distances need not be computed first (an optimisation
// for bidirectional iterators: ensure that we don't accidently
// compute the length of the whole sequence, as this can be really
// expensive).
//
if(p1->first == l_end)
{
if(p2->first != l_end)
{
// p2 must be better than p1, and no need to calculate
// actual distances:
base1 = 1;
base2 = 0;
break;
}
else
{
// *p1 and *p2 are either unmatched or match end-of sequence,
// either way no need to calculate distances:
if((p1->matched == false) && (p2->matched == true))
break;
if((p1->matched == true) && (p2->matched == false))
return;
continue;
}
}
else if(p2->first == l_end)
{
// p1 better than p2, and no need to calculate distances:
return;
}
base1 = ::boost::re_detail::distance(l_base, p1->first);
base2 = ::boost::re_detail::distance(l_base, p2->first);
BOOST_ASSERT(base1 >= 0);
BOOST_ASSERT(base2 >= 0);
if(base1 < base2) return;
if(base2 < base1) break;
len1 = ::boost::re_detail::distance((BidiIterator)p1->first, (BidiIterator)p1->second);
len2 = ::boost::re_detail::distance((BidiIterator)p2->first, (BidiIterator)p2->second);
BOOST_ASSERT(len1 >= 0);
BOOST_ASSERT(len2 >= 0);
if((len1 != len2) || ((p1->matched == false) && (p2->matched == true)))
break;
if((p1->matched == true) && (p2->matched == false))
return;
}
if(i == size())
return;
if(base2 < base1)
*this = m;
else if((len2 > len1) || ((p1->matched == false) && (p2->matched == true)) )
*this = m;
}
template <class BidiIterator, class Allocator>
void swap(match_results<BidiIterator, Allocator>& a, match_results<BidiIterator, Allocator>& b)
{
a.swap(b);
}
#ifndef BOOST_NO_STD_LOCALE
template <class charT, class traits, class BidiIterator, class Allocator>
std::basic_ostream<charT, traits>&
operator << (std::basic_ostream<charT, traits>& os,
const match_results<BidiIterator, Allocator>& s)
{
return (os << s.str());
}
#else
template <class BidiIterator, class Allocator>
std::ostream& operator << (std::ostream& os,
const match_results<BidiIterator, Allocator>& s)
{
return (os << s.str());
}
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
} // namespace boost
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4103)
#endif
#ifdef BOOST_HAS_ABI_HEADERS
# include BOOST_ABI_SUFFIX
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#endif