YouCompleteMe/cpp/tests/gmock/test/gmock-matchers_test.cc
2012-04-15 17:12:02 -07:00

4166 lines
128 KiB
C++

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests some commonly used argument matchers.
#include "gmock/gmock-matchers.h"
#include <string.h>
#include <functional>
#include <iostream>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"
namespace testing {
namespace internal {
GTEST_API_ string JoinAsTuple(const Strings& fields);
} // namespace internal
namespace gmock_matchers_test {
using std::greater;
using std::less;
using std::list;
using std::make_pair;
using std::map;
using std::multimap;
using std::multiset;
using std::ostream;
using std::pair;
using std::set;
using std::stringstream;
using std::tr1::get;
using std::tr1::make_tuple;
using std::tr1::tuple;
using std::vector;
using testing::A;
using testing::AllArgs;
using testing::AllOf;
using testing::An;
using testing::AnyOf;
using testing::ByRef;
using testing::ContainsRegex;
using testing::DoubleEq;
using testing::EndsWith;
using testing::Eq;
using testing::ExplainMatchResult;
using testing::Field;
using testing::FloatEq;
using testing::Ge;
using testing::Gt;
using testing::HasSubstr;
using testing::IsNull;
using testing::Key;
using testing::Le;
using testing::Lt;
using testing::MakeMatcher;
using testing::MakePolymorphicMatcher;
using testing::MatchResultListener;
using testing::Matcher;
using testing::MatcherCast;
using testing::MatcherInterface;
using testing::Matches;
using testing::MatchesRegex;
using testing::NanSensitiveDoubleEq;
using testing::NanSensitiveFloatEq;
using testing::Ne;
using testing::Not;
using testing::NotNull;
using testing::Pair;
using testing::Pointee;
using testing::Pointwise;
using testing::PolymorphicMatcher;
using testing::Property;
using testing::Ref;
using testing::ResultOf;
using testing::StartsWith;
using testing::StrCaseEq;
using testing::StrCaseNe;
using testing::StrEq;
using testing::StrNe;
using testing::Truly;
using testing::TypedEq;
using testing::Value;
using testing::WhenSorted;
using testing::WhenSortedBy;
using testing::_;
using testing::internal::DummyMatchResultListener;
using testing::internal::ExplainMatchFailureTupleTo;
using testing::internal::FloatingEqMatcher;
using testing::internal::FormatMatcherDescription;
using testing::internal::IsReadableTypeName;
using testing::internal::JoinAsTuple;
using testing::internal::RE;
using testing::internal::StreamMatchResultListener;
using testing::internal::String;
using testing::internal::StringMatchResultListener;
using testing::internal::Strings;
using testing::internal::linked_ptr;
using testing::internal::scoped_ptr;
using testing::internal::string;
// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> {
public:
explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
virtual void DescribeTo(ostream* os) const {
*os << "is > " << rhs_;
}
virtual bool MatchAndExplain(int lhs,
MatchResultListener* listener) const {
const int diff = lhs - rhs_;
if (diff > 0) {
*listener << "which is " << diff << " more than " << rhs_;
} else if (diff == 0) {
*listener << "which is the same as " << rhs_;
} else {
*listener << "which is " << -diff << " less than " << rhs_;
}
return lhs > rhs_;
}
private:
int rhs_;
};
Matcher<int> GreaterThan(int n) {
return MakeMatcher(new GreaterThanMatcher(n));
}
string OfType(const string& type_name) {
#if GTEST_HAS_RTTI
return " (of type " + type_name + ")";
#else
return "";
#endif
}
// Returns the description of the given matcher.
template <typename T>
string Describe(const Matcher<T>& m) {
stringstream ss;
m.DescribeTo(&ss);
return ss.str();
}
// Returns the description of the negation of the given matcher.
template <typename T>
string DescribeNegation(const Matcher<T>& m) {
stringstream ss;
m.DescribeNegationTo(&ss);
return ss.str();
}
// Returns the reason why x matches, or doesn't match, m.
template <typename MatcherType, typename Value>
string Explain(const MatcherType& m, const Value& x) {
StringMatchResultListener listener;
ExplainMatchResult(m, x, &listener);
return listener.str();
}
TEST(MatchResultListenerTest, StreamingWorks) {
StringMatchResultListener listener;
listener << "hi" << 5;
EXPECT_EQ("hi5", listener.str());
// Streaming shouldn't crash when the underlying ostream is NULL.
DummyMatchResultListener dummy;
dummy << "hi" << 5;
}
TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
EXPECT_TRUE(DummyMatchResultListener().stream() == NULL);
EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL);
EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
}
TEST(MatchResultListenerTest, IsInterestedWorks) {
EXPECT_TRUE(StringMatchResultListener().IsInterested());
EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
EXPECT_FALSE(DummyMatchResultListener().IsInterested());
EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested());
}
// Makes sure that the MatcherInterface<T> interface doesn't
// change.
class EvenMatcherImpl : public MatcherInterface<int> {
public:
virtual bool MatchAndExplain(int x,
MatchResultListener* /* listener */) const {
return x % 2 == 0;
}
virtual void DescribeTo(ostream* os) const {
*os << "is an even number";
}
// We deliberately don't define DescribeNegationTo() and
// ExplainMatchResultTo() here, to make sure the definition of these
// two methods is optional.
};
// Makes sure that the MatcherInterface API doesn't change.
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
EvenMatcherImpl m;
}
// Tests implementing a monomorphic matcher using MatchAndExplain().
class NewEvenMatcherImpl : public MatcherInterface<int> {
public:
virtual bool MatchAndExplain(int x, MatchResultListener* listener) const {
const bool match = x % 2 == 0;
// Verifies that we can stream to a listener directly.
*listener << "value % " << 2;
if (listener->stream() != NULL) {
// Verifies that we can stream to a listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2);
}
return match;
}
virtual void DescribeTo(ostream* os) const {
*os << "is an even number";
}
};
TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(3));
EXPECT_EQ("value % 2 == 0", Explain(m, 2));
EXPECT_EQ("value % 2 == 1", Explain(m, 3));
}
// Tests default-constructing a matcher.
TEST(MatcherTest, CanBeDefaultConstructed) {
Matcher<double> m;
}
// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
const MatcherInterface<int>* impl = new EvenMatcherImpl;
Matcher<int> m(impl);
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(5));
}
// Tests that value can be used in place of Eq(value).
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
Matcher<int> m1 = 5;
EXPECT_TRUE(m1.Matches(5));
EXPECT_FALSE(m1.Matches(6));
}
// Tests that NULL can be used in place of Eq(NULL).
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
Matcher<int*> m1 = NULL;
EXPECT_TRUE(m1.Matches(NULL));
int n = 0;
EXPECT_FALSE(m1.Matches(&n));
}
// Tests that matchers are copyable.
TEST(MatcherTest, IsCopyable) {
// Tests the copy constructor.
Matcher<bool> m1 = Eq(false);
EXPECT_TRUE(m1.Matches(false));
EXPECT_FALSE(m1.Matches(true));
// Tests the assignment operator.
m1 = Eq(true);
EXPECT_TRUE(m1.Matches(true));
EXPECT_FALSE(m1.Matches(false));
}
// Tests that Matcher<T>::DescribeTo() calls
// MatcherInterface<T>::DescribeTo().
TEST(MatcherTest, CanDescribeItself) {
EXPECT_EQ("is an even number",
Describe(Matcher<int>(new EvenMatcherImpl)));
}
// Tests Matcher<T>::MatchAndExplain().
TEST(MatcherTest, MatchAndExplain) {
Matcher<int> m = GreaterThan(0);
StringMatchResultListener listener1;
EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
EXPECT_EQ("which is 42 more than 0", listener1.str());
StringMatchResultListener listener2;
EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
EXPECT_EQ("which is 9 less than 0", listener2.str());
}
// Tests that a C-string literal can be implicitly converted to a
// Matcher<string> or Matcher<const string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
Matcher<string> m1 = "hi";
EXPECT_TRUE(m1.Matches("hi"));
EXPECT_FALSE(m1.Matches("hello"));
Matcher<const string&> m2 = "hi";
EXPECT_TRUE(m2.Matches("hi"));
EXPECT_FALSE(m2.Matches("hello"));
}
// Tests that a string object can be implicitly converted to a
// Matcher<string> or Matcher<const string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
Matcher<string> m1 = string("hi");
EXPECT_TRUE(m1.Matches("hi"));
EXPECT_FALSE(m1.Matches("hello"));
Matcher<const string&> m2 = string("hi");
EXPECT_TRUE(m2.Matches("hi"));
EXPECT_FALSE(m2.Matches("hello"));
}
// Tests that MakeMatcher() constructs a Matcher<T> from a
// MatcherInterface* without requiring the user to explicitly
// write the type.
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
const MatcherInterface<int>* dummy_impl = NULL;
Matcher<int> m = MakeMatcher(dummy_impl);
}
// Tests that MakePolymorphicMatcher() can construct a polymorphic
// matcher from its implementation using the old API.
const int g_bar = 1;
class ReferencesBarOrIsZeroImpl {
public:
template <typename T>
bool MatchAndExplain(const T& x,
MatchResultListener* /* listener */) const {
const void* p = &x;
return p == &g_bar || x == 0;
}
void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
void DescribeNegationTo(ostream* os) const {
*os << "doesn't reference g_bar and is not zero";
}
};
// This function verifies that MakePolymorphicMatcher() returns a
// PolymorphicMatcher<T> where T is the argument's type.
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
}
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
// Using a polymorphic matcher to match a reference type.
Matcher<const int&> m1 = ReferencesBarOrIsZero();
EXPECT_TRUE(m1.Matches(0));
// Verifies that the identity of a by-reference argument is preserved.
EXPECT_TRUE(m1.Matches(g_bar));
EXPECT_FALSE(m1.Matches(1));
EXPECT_EQ("g_bar or zero", Describe(m1));
// Using a polymorphic matcher to match a value type.
Matcher<double> m2 = ReferencesBarOrIsZero();
EXPECT_TRUE(m2.Matches(0.0));
EXPECT_FALSE(m2.Matches(0.1));
EXPECT_EQ("g_bar or zero", Describe(m2));
}
// Tests implementing a polymorphic matcher using MatchAndExplain().
class PolymorphicIsEvenImpl {
public:
void DescribeTo(ostream* os) const { *os << "is even"; }
void DescribeNegationTo(ostream* os) const {
*os << "is odd";
}
template <typename T>
bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
// Verifies that we can stream to the listener directly.
*listener << "% " << 2;
if (listener->stream() != NULL) {
// Verifies that we can stream to the listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2);
}
return (x % 2) == 0;
}
};
PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
}
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
// Using PolymorphicIsEven() as a Matcher<int>.
const Matcher<int> m1 = PolymorphicIsEven();
EXPECT_TRUE(m1.Matches(42));
EXPECT_FALSE(m1.Matches(43));
EXPECT_EQ("is even", Describe(m1));
const Matcher<int> not_m1 = Not(m1);
EXPECT_EQ("is odd", Describe(not_m1));
EXPECT_EQ("% 2 == 0", Explain(m1, 42));
// Using PolymorphicIsEven() as a Matcher<char>.
const Matcher<char> m2 = PolymorphicIsEven();
EXPECT_TRUE(m2.Matches('\x42'));
EXPECT_FALSE(m2.Matches('\x43'));
EXPECT_EQ("is even", Describe(m2));
const Matcher<char> not_m2 = Not(m2);
EXPECT_EQ("is odd", Describe(not_m2));
EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
}
// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
TEST(MatcherCastTest, FromPolymorphicMatcher) {
Matcher<int> m = MatcherCast<int>(Eq(5));
EXPECT_TRUE(m.Matches(5));
EXPECT_FALSE(m.Matches(6));
}
// For testing casting matchers between compatible types.
class IntValue {
public:
// An int can be statically (although not implicitly) cast to a
// IntValue.
explicit IntValue(int a_value) : value_(a_value) {}
int value() const { return value_; }
private:
int value_;
};
// For testing casting matchers between compatible types.
bool IsPositiveIntValue(const IntValue& foo) {
return foo.value() > 0;
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
// can be statically converted to U.
TEST(MatcherCastTest, FromCompatibleType) {
Matcher<double> m1 = Eq(2.0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(2));
EXPECT_FALSE(m2.Matches(3));
Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
Matcher<int> m4 = MatcherCast<int>(m3);
// In the following, the arguments 1 and 0 are statically converted
// to IntValue objects, and then tested by the IsPositiveIntValue()
// predicate.
EXPECT_TRUE(m4.Matches(1));
EXPECT_FALSE(m4.Matches(0));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
TEST(MatcherCastTest, FromConstReferenceToNonReference) {
Matcher<const int&> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
TEST(MatcherCastTest, FromReferenceToNonReference) {
Matcher<int&> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToConstReference) {
Matcher<int> m1 = Eq(0);
Matcher<const int&> m2 = MatcherCast<const int&>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToReference) {
Matcher<int> m1 = Eq(0);
Matcher<int&> m2 = MatcherCast<int&>(m1);
int n = 0;
EXPECT_TRUE(m2.Matches(n));
n = 1;
EXPECT_FALSE(m2.Matches(n));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromSameType) {
Matcher<int> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Implicitly convertible form any type.
struct ConvertibleFromAny {
ConvertibleFromAny(int a_value) : value(a_value) {}
template <typename T>
ConvertibleFromAny(const T& a_value) : value(-1) {
ADD_FAILURE() << "Conversion constructor called";
}
int value;
};
bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
return a.value == b.value;
}
ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
return os << a.value;
}
TEST(MatcherCastTest, ConversionConstructorIsUsed) {
Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(MatcherCastTest, FromConvertibleFromAny) {
Matcher<ConvertibleFromAny> m =
MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
class Base {};
class Derived : public Base {};
// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
Matcher<char> m2 = SafeMatcherCast<char>(Eq(32));
EXPECT_TRUE(m2.Matches(' '));
EXPECT_FALSE(m2.Matches('\n'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
// T and U are arithmetic types and T can be losslessly converted to
// U.
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
Matcher<double> m1 = DoubleEq(1.0);
Matcher<float> m2 = SafeMatcherCast<float>(m1);
EXPECT_TRUE(m2.Matches(1.0f));
EXPECT_FALSE(m2.Matches(2.0f));
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
EXPECT_TRUE(m3.Matches('a'));
EXPECT_FALSE(m3.Matches('b'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
// are pointers or references to a derived and a base class, correspondingly.
TEST(SafeMatcherCastTest, FromBaseClass) {
Derived d, d2;
Matcher<Base*> m1 = Eq(&d);
Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
EXPECT_TRUE(m2.Matches(&d));
EXPECT_FALSE(m2.Matches(&d2));
Matcher<Base&> m3 = Ref(d);
Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
EXPECT_TRUE(m4.Matches(d));
EXPECT_FALSE(m4.Matches(d2));
}
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
int n = 0;
Matcher<const int&> m1 = Ref(n);
Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
int n1 = 0;
EXPECT_TRUE(m2.Matches(n));
EXPECT_FALSE(m2.Matches(n1));
}
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
Matcher<int> m1 = Eq(0);
Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
Matcher<int> m1 = Eq(0);
Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
int n = 0;
EXPECT_TRUE(m2.Matches(n));
n = 1;
EXPECT_FALSE(m2.Matches(n));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromSameType) {
Matcher<int> m1 = Eq(0);
Matcher<int> m2 = SafeMatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
Matcher<ConvertibleFromAny> m =
SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
// Tests that A<T>() matches any value of type T.
TEST(ATest, MatchesAnyValue) {
// Tests a matcher for a value type.
Matcher<double> m1 = A<double>();
EXPECT_TRUE(m1.Matches(91.43));
EXPECT_TRUE(m1.Matches(-15.32));
// Tests a matcher for a reference type.
int a = 2;
int b = -6;
Matcher<int&> m2 = A<int&>();
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that A<T>() describes itself properly.
TEST(ATest, CanDescribeSelf) {
EXPECT_EQ("is anything", Describe(A<bool>()));
}
// Tests that An<T>() matches any value of type T.
TEST(AnTest, MatchesAnyValue) {
// Tests a matcher for a value type.
Matcher<int> m1 = An<int>();
EXPECT_TRUE(m1.Matches(9143));
EXPECT_TRUE(m1.Matches(-1532));
// Tests a matcher for a reference type.
int a = 2;
int b = -6;
Matcher<int&> m2 = An<int&>();
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that An<T>() describes itself properly.
TEST(AnTest, CanDescribeSelf) {
EXPECT_EQ("is anything", Describe(An<int>()));
}
// Tests that _ can be used as a matcher for any type and matches any
// value of that type.
TEST(UnderscoreTest, MatchesAnyValue) {
// Uses _ as a matcher for a value type.
Matcher<int> m1 = _;
EXPECT_TRUE(m1.Matches(123));
EXPECT_TRUE(m1.Matches(-242));
// Uses _ as a matcher for a reference type.
bool a = false;
const bool b = true;
Matcher<const bool&> m2 = _;
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that _ describes itself properly.
TEST(UnderscoreTest, CanDescribeSelf) {
Matcher<int> m = _;
EXPECT_EQ("is anything", Describe(m));
}
// Tests that Eq(x) matches any value equal to x.
TEST(EqTest, MatchesEqualValue) {
// 2 C-strings with same content but different addresses.
const char a1[] = "hi";
const char a2[] = "hi";
Matcher<const char*> m1 = Eq(a1);
EXPECT_TRUE(m1.Matches(a1));
EXPECT_FALSE(m1.Matches(a2));
}
// Tests that Eq(v) describes itself properly.
class Unprintable {
public:
Unprintable() : c_('a') {}
bool operator==(const Unprintable& /* rhs */) { return true; }
private:
char c_;
};
TEST(EqTest, CanDescribeSelf) {
Matcher<Unprintable> m = Eq(Unprintable());
EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
}
// Tests that Eq(v) can be used to match any type that supports
// comparing with type T, where T is v's type.
TEST(EqTest, IsPolymorphic) {
Matcher<int> m1 = Eq(1);
EXPECT_TRUE(m1.Matches(1));
EXPECT_FALSE(m1.Matches(2));
Matcher<char> m2 = Eq(1);
EXPECT_TRUE(m2.Matches('\1'));
EXPECT_FALSE(m2.Matches('a'));
}
// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
TEST(TypedEqTest, ChecksEqualityForGivenType) {
Matcher<char> m1 = TypedEq<char>('a');
EXPECT_TRUE(m1.Matches('a'));
EXPECT_FALSE(m1.Matches('b'));
Matcher<int> m2 = TypedEq<int>(6);
EXPECT_TRUE(m2.Matches(6));
EXPECT_FALSE(m2.Matches(7));
}
// Tests that TypedEq(v) describes itself properly.
TEST(TypedEqTest, CanDescribeSelf) {
EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
}
// Tests that TypedEq<T>(v) has type Matcher<T>.
// Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T
// is a "bare" type (i.e. not in the form of const U or U&). If v's
// type is not T, the compiler will generate a message about
// "undefined referece".
template <typename T>
struct Type {
static bool IsTypeOf(const T& /* v */) { return true; }
template <typename T2>
static void IsTypeOf(T2 v);
};
TEST(TypedEqTest, HasSpecifiedType) {
// Verfies that the type of TypedEq<T>(v) is Matcher<T>.
Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5));
Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5));
}
// Tests that Ge(v) matches anything >= v.
TEST(GeTest, ImplementsGreaterThanOrEqual) {
Matcher<int> m1 = Ge(0);
EXPECT_TRUE(m1.Matches(1));
EXPECT_TRUE(m1.Matches(0));
EXPECT_FALSE(m1.Matches(-1));
}
// Tests that Ge(v) describes itself properly.
TEST(GeTest, CanDescribeSelf) {
Matcher<int> m = Ge(5);
EXPECT_EQ("is >= 5", Describe(m));
}
// Tests that Gt(v) matches anything > v.
TEST(GtTest, ImplementsGreaterThan) {
Matcher<double> m1 = Gt(0);
EXPECT_TRUE(m1.Matches(1.0));
EXPECT_FALSE(m1.Matches(0.0));
EXPECT_FALSE(m1.Matches(-1.0));
}
// Tests that Gt(v) describes itself properly.
TEST(GtTest, CanDescribeSelf) {
Matcher<int> m = Gt(5);
EXPECT_EQ("is > 5", Describe(m));
}
// Tests that Le(v) matches anything <= v.
TEST(LeTest, ImplementsLessThanOrEqual) {
Matcher<char> m1 = Le('b');
EXPECT_TRUE(m1.Matches('a'));
EXPECT_TRUE(m1.Matches('b'));
EXPECT_FALSE(m1.Matches('c'));
}
// Tests that Le(v) describes itself properly.
TEST(LeTest, CanDescribeSelf) {
Matcher<int> m = Le(5);
EXPECT_EQ("is <= 5", Describe(m));
}
// Tests that Lt(v) matches anything < v.
TEST(LtTest, ImplementsLessThan) {
Matcher<const string&> m1 = Lt("Hello");
EXPECT_TRUE(m1.Matches("Abc"));
EXPECT_FALSE(m1.Matches("Hello"));
EXPECT_FALSE(m1.Matches("Hello, world!"));
}
// Tests that Lt(v) describes itself properly.
TEST(LtTest, CanDescribeSelf) {
Matcher<int> m = Lt(5);
EXPECT_EQ("is < 5", Describe(m));
}
// Tests that Ne(v) matches anything != v.
TEST(NeTest, ImplementsNotEqual) {
Matcher<int> m1 = Ne(0);
EXPECT_TRUE(m1.Matches(1));
EXPECT_TRUE(m1.Matches(-1));
EXPECT_FALSE(m1.Matches(0));
}
// Tests that Ne(v) describes itself properly.
TEST(NeTest, CanDescribeSelf) {
Matcher<int> m = Ne(5);
EXPECT_EQ("isn't equal to 5", Describe(m));
}
// Tests that IsNull() matches any NULL pointer of any type.
TEST(IsNullTest, MatchesNullPointer) {
Matcher<int*> m1 = IsNull();
int* p1 = NULL;
int n = 0;
EXPECT_TRUE(m1.Matches(p1));
EXPECT_FALSE(m1.Matches(&n));
Matcher<const char*> m2 = IsNull();
const char* p2 = NULL;
EXPECT_TRUE(m2.Matches(p2));
EXPECT_FALSE(m2.Matches("hi"));
#if !GTEST_OS_SYMBIAN
// Nokia's Symbian compiler generates:
// gmock-matchers.h: ambiguous access to overloaded function
// gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)'
// gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing::
// MatcherInterface<void *> *)'
// gmock-matchers.h: (point of instantiation: 'testing::
// gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()')
// gmock-matchers.h: (instantiating: 'testing::PolymorphicMatc
Matcher<void*> m3 = IsNull();
void* p3 = NULL;
EXPECT_TRUE(m3.Matches(p3));
EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
#endif
}
TEST(IsNullTest, LinkedPtr) {
const Matcher<linked_ptr<int> > m = IsNull();
const linked_ptr<int> null_p;
const linked_ptr<int> non_null_p(new int);
EXPECT_TRUE(m.Matches(null_p));
EXPECT_FALSE(m.Matches(non_null_p));
}
TEST(IsNullTest, ReferenceToConstLinkedPtr) {
const Matcher<const linked_ptr<double>&> m = IsNull();
const linked_ptr<double> null_p;
const linked_ptr<double> non_null_p(new double);
EXPECT_TRUE(m.Matches(null_p));
EXPECT_FALSE(m.Matches(non_null_p));
}
TEST(IsNullTest, ReferenceToConstScopedPtr) {
const Matcher<const scoped_ptr<double>&> m = IsNull();
const scoped_ptr<double> null_p;
const scoped_ptr<double> non_null_p(new double);
EXPECT_TRUE(m.Matches(null_p));
EXPECT_FALSE(m.Matches(non_null_p));
}
// Tests that IsNull() describes itself properly.
TEST(IsNullTest, CanDescribeSelf) {
Matcher<int*> m = IsNull();
EXPECT_EQ("is NULL", Describe(m));
EXPECT_EQ("isn't NULL", DescribeNegation(m));
}
// Tests that NotNull() matches any non-NULL pointer of any type.
TEST(NotNullTest, MatchesNonNullPointer) {
Matcher<int*> m1 = NotNull();
int* p1 = NULL;
int n = 0;
EXPECT_FALSE(m1.Matches(p1));
EXPECT_TRUE(m1.Matches(&n));
Matcher<const char*> m2 = NotNull();
const char* p2 = NULL;
EXPECT_FALSE(m2.Matches(p2));
EXPECT_TRUE(m2.Matches("hi"));
}
TEST(NotNullTest, LinkedPtr) {
const Matcher<linked_ptr<int> > m = NotNull();
const linked_ptr<int> null_p;
const linked_ptr<int> non_null_p(new int);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
TEST(NotNullTest, ReferenceToConstLinkedPtr) {
const Matcher<const linked_ptr<double>&> m = NotNull();
const linked_ptr<double> null_p;
const linked_ptr<double> non_null_p(new double);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
TEST(NotNullTest, ReferenceToConstScopedPtr) {
const Matcher<const scoped_ptr<double>&> m = NotNull();
const scoped_ptr<double> null_p;
const scoped_ptr<double> non_null_p(new double);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
// Tests that NotNull() describes itself properly.
TEST(NotNullTest, CanDescribeSelf) {
Matcher<int*> m = NotNull();
EXPECT_EQ("isn't NULL", Describe(m));
}
// Tests that Ref(variable) matches an argument that references
// 'variable'.
TEST(RefTest, MatchesSameVariable) {
int a = 0;
int b = 0;
Matcher<int&> m = Ref(a);
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that Ref(variable) describes itself properly.
TEST(RefTest, CanDescribeSelf) {
int n = 5;
Matcher<int&> m = Ref(n);
stringstream ss;
ss << "references the variable @" << &n << " 5";
EXPECT_EQ(string(ss.str()), Describe(m));
}
// Test that Ref(non_const_varialbe) can be used as a matcher for a
// const reference.
TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
int a = 0;
int b = 0;
Matcher<const int&> m = Ref(a);
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
// used wherever Ref(base) can be used (Ref(derived) is a sub-type
// of Ref(base), but not vice versa.
TEST(RefTest, IsCovariant) {
Base base, base2;
Derived derived;
Matcher<const Base&> m1 = Ref(base);
EXPECT_TRUE(m1.Matches(base));
EXPECT_FALSE(m1.Matches(base2));
EXPECT_FALSE(m1.Matches(derived));
m1 = Ref(derived);
EXPECT_TRUE(m1.Matches(derived));
EXPECT_FALSE(m1.Matches(base));
EXPECT_FALSE(m1.Matches(base2));
}
TEST(RefTest, ExplainsResult) {
int n = 0;
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
StartsWith("which is located @"));
int m = 0;
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
StartsWith("which is located @"));
}
// Tests string comparison matchers.
TEST(StrEqTest, MatchesEqualString) {
Matcher<const char*> m = StrEq(string("Hello"));
EXPECT_TRUE(m.Matches("Hello"));
EXPECT_FALSE(m.Matches("hello"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const string&> m2 = StrEq("Hello");
EXPECT_TRUE(m2.Matches("Hello"));
EXPECT_FALSE(m2.Matches("Hi"));
}
TEST(StrEqTest, CanDescribeSelf) {
Matcher<string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
Describe(m));
string str("01204500800");
str[3] = '\0';
Matcher<string> m2 = StrEq(str);
EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
Matcher<string> m3 = StrEq(str);
EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
}
TEST(StrNeTest, MatchesUnequalString) {
Matcher<const char*> m = StrNe("Hello");
EXPECT_TRUE(m.Matches(""));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches("Hello"));
Matcher<string> m2 = StrNe(string("Hello"));
EXPECT_TRUE(m2.Matches("hello"));
EXPECT_FALSE(m2.Matches("Hello"));
}
TEST(StrNeTest, CanDescribeSelf) {
Matcher<const char*> m = StrNe("Hi");
EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
}
TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const char*> m = StrCaseEq(string("Hello"));
EXPECT_TRUE(m.Matches("Hello"));
EXPECT_TRUE(m.Matches("hello"));
EXPECT_FALSE(m.Matches("Hi"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const string&> m2 = StrCaseEq("Hello");
EXPECT_TRUE(m2.Matches("hello"));
EXPECT_FALSE(m2.Matches("Hi"));
}
TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
string str1("oabocdooeoo");
string str2("OABOCDOOEOO");
Matcher<const string&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + string(1, '\0')));
str1[3] = str2[3] = '\0';
Matcher<const string&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = '\0';
str2[0] = str2[6] = str2[7] = str2[10] = '\0';
Matcher<const string&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = '\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const string&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + "x"));
str2.append(1, '\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(string(str2, 0, 9)));
}
TEST(StrCaseEqTest, CanDescribeSelf) {
Matcher<string> m = StrCaseEq("Hi");
EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
}
TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const char*> m = StrCaseNe("Hello");
EXPECT_TRUE(m.Matches("Hi"));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches("Hello"));
EXPECT_FALSE(m.Matches("hello"));
Matcher<string> m2 = StrCaseNe(string("Hello"));
EXPECT_TRUE(m2.Matches(""));
EXPECT_FALSE(m2.Matches("Hello"));
}
TEST(StrCaseNeTest, CanDescribeSelf) {
Matcher<const char*> m = StrCaseNe("Hi");
EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching string-typed values.
TEST(HasSubstrTest, WorksForStringClasses) {
const Matcher<string> m1 = HasSubstr("foo");
EXPECT_TRUE(m1.Matches(string("I love food.")));
EXPECT_FALSE(m1.Matches(string("tofo")));
const Matcher<const std::string&> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches(std::string("I love food.")));
EXPECT_FALSE(m2.Matches(std::string("tofo")));
}
// Tests that HasSubstr() works for matching C-string-typed values.
TEST(HasSubstrTest, WorksForCStrings) {
const Matcher<char*> m1 = HasSubstr("foo");
EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const char*> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches("I love food."));
EXPECT_FALSE(m2.Matches("tofo"));
EXPECT_FALSE(m2.Matches(NULL));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(HasSubstrTest, CanDescribeSelf) {
Matcher<string> m = HasSubstr("foo\n\"");
EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
}
TEST(KeyTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m = Key("foo");
EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
}
TEST(KeyTest, ExplainsResult) {
Matcher<pair<int, bool> > m = Key(GreaterThan(10));
EXPECT_EQ("whose first field is a value which is 5 less than 10",
Explain(m, make_pair(5, true)));
EXPECT_EQ("whose first field is a value which is 5 more than 10",
Explain(m, make_pair(15, true)));
}
TEST(KeyTest, MatchesCorrectly) {
pair<int, std::string> p(25, "foo");
EXPECT_THAT(p, Key(25));
EXPECT_THAT(p, Not(Key(42)));
EXPECT_THAT(p, Key(Ge(20)));
EXPECT_THAT(p, Not(Key(Lt(25))));
}
TEST(KeyTest, SafelyCastsInnerMatcher) {
Matcher<int> is_positive = Gt(0);
Matcher<int> is_negative = Lt(0);
pair<char, bool> p('a', true);
EXPECT_THAT(p, Key(is_positive));
EXPECT_THAT(p, Not(Key(is_negative)));
}
TEST(KeyTest, InsideContainsUsingMap) {
map<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3))));
}
TEST(KeyTest, InsideContainsUsingMultimap) {
multimap<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Not(Contains(Key(25))));
container.insert(make_pair(25, 'd'));
EXPECT_THAT(container, Contains(Key(25)));
container.insert(make_pair(25, 'e'));
EXPECT_THAT(container, Contains(Key(25)));
EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3))));
}
TEST(PairTest, Typing) {
// Test verifies the following type conversions can be compiled.
Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
Matcher<const pair<const char*, int> > m2 = Pair("foo", 42);
Matcher<pair<const char*, int> > m3 = Pair("foo", 42);
Matcher<pair<int, const std::string> > m4 = Pair(25, "42");
Matcher<pair<const std::string, int> > m5 = Pair("25", 42);
}
TEST(PairTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
EXPECT_EQ("has a first field that is equal to \"foo\""
", and has a second field that is equal to 42",
Describe(m1));
EXPECT_EQ("has a first field that isn't equal to \"foo\""
", or has a second field that isn't equal to 42",
DescribeNegation(m1));
// Double and triple negation (1 or 2 times not and description of negation).
Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
EXPECT_EQ("has a first field that isn't equal to 13"
", and has a second field that is equal to 42",
DescribeNegation(m2));
}
TEST(PairTest, CanExplainMatchResultTo) {
// If neither field matches, Pair() should explain about the first
// field.
const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0));
EXPECT_EQ("whose first field does not match, which is 1 less than 0",
Explain(m, make_pair(-1, -2)));
// If the first field matches but the second doesn't, Pair() should
// explain about the second field.
EXPECT_EQ("whose second field does not match, which is 2 less than 0",
Explain(m, make_pair(1, -2)));
// If the first field doesn't match but the second does, Pair()
// should explain about the first field.
EXPECT_EQ("whose first field does not match, which is 1 less than 0",
Explain(m, make_pair(-1, 2)));
// If both fields match, Pair() should explain about them both.
EXPECT_EQ("whose both fields match, where the first field is a value "
"which is 1 more than 0, and the second field is a value "
"which is 2 more than 0",
Explain(m, make_pair(1, 2)));
// If only the first match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0);
EXPECT_EQ("whose both fields match, where the first field is a value "
"which is 1 more than 0",
Explain(explain_first, make_pair(1, 0)));
// If only the second match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0));
EXPECT_EQ("whose both fields match, where the second field is a value "
"which is 1 more than 0",
Explain(explain_second, make_pair(0, 1)));
}
TEST(PairTest, MatchesCorrectly) {
pair<int, std::string> p(25, "foo");
// Both fields match.
EXPECT_THAT(p, Pair(25, "foo"));
EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
// 'first' doesnt' match, but 'second' matches.
EXPECT_THAT(p, Not(Pair(42, "foo")));
EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
// 'first' matches, but 'second' doesn't match.
EXPECT_THAT(p, Not(Pair(25, "bar")));
EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
// Neither field matches.
EXPECT_THAT(p, Not(Pair(13, "bar")));
EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
}
TEST(PairTest, SafelyCastsInnerMatchers) {
Matcher<int> is_positive = Gt(0);
Matcher<int> is_negative = Lt(0);
pair<char, bool> p('a', true);
EXPECT_THAT(p, Pair(is_positive, _));
EXPECT_THAT(p, Not(Pair(is_negative, _)));
EXPECT_THAT(p, Pair(_, is_positive));
EXPECT_THAT(p, Not(Pair(_, is_negative)));
}
TEST(PairTest, InsideContainsUsingMap) {
map<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Pair(1, 'a')));
EXPECT_THAT(container, Contains(Pair(1, _)));
EXPECT_THAT(container, Contains(Pair(_, 'a')));
EXPECT_THAT(container, Not(Contains(Pair(3, _))));
}
// Tests StartsWith(s).
TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const char*> m1 = StartsWith(string(""));
EXPECT_TRUE(m1.Matches("Hi"));
EXPECT_TRUE(m1.Matches(""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = StartsWith("Hi");
EXPECT_TRUE(m2.Matches("Hi"));
EXPECT_TRUE(m2.Matches("Hi Hi!"));
EXPECT_TRUE(m2.Matches("High"));
EXPECT_FALSE(m2.Matches("H"));
EXPECT_FALSE(m2.Matches(" Hi"));
}
TEST(StartsWithTest, CanDescribeSelf) {
Matcher<const std::string> m = StartsWith("Hi");
EXPECT_EQ("starts with \"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const char*> m1 = EndsWith("");
EXPECT_TRUE(m1.Matches("Hi"));
EXPECT_TRUE(m1.Matches(""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = EndsWith(string("Hi"));
EXPECT_TRUE(m2.Matches("Hi"));
EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
EXPECT_TRUE(m2.Matches("Super Hi"));
EXPECT_FALSE(m2.Matches("i"));
EXPECT_FALSE(m2.Matches("Hi "));
}
TEST(EndsWithTest, CanDescribeSelf) {
Matcher<const std::string> m = EndsWith("Hi");
EXPECT_EQ("ends with \"Hi\"", Describe(m));
}
// Tests MatchesRegex().
TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
const Matcher<const char*> m1 = MatchesRegex("a.*z");
EXPECT_TRUE(m1.Matches("az"));
EXPECT_TRUE(m1.Matches("abcz"));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = MatchesRegex(new RE("a.*z"));
EXPECT_TRUE(m2.Matches("azbz"));
EXPECT_FALSE(m2.Matches("az1"));
EXPECT_FALSE(m2.Matches("1az"));
}
TEST(MatchesRegexTest, CanDescribeSelf) {
Matcher<const std::string> m1 = MatchesRegex(string("Hi.*"));
EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
}
// Tests ContainsRegex().
TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
const Matcher<const char*> m1 = ContainsRegex(string("a.*z"));
EXPECT_TRUE(m1.Matches("az"));
EXPECT_TRUE(m1.Matches("0abcz1"));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = ContainsRegex(new RE("a.*z"));
EXPECT_TRUE(m2.Matches("azbz"));
EXPECT_TRUE(m2.Matches("az1"));
EXPECT_FALSE(m2.Matches("1a"));
}
TEST(ContainsRegexTest, CanDescribeSelf) {
Matcher<const std::string> m1 = ContainsRegex("Hi.*");
EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
}
// Tests for wide strings.
#if GTEST_HAS_STD_WSTRING
TEST(StdWideStrEqTest, MatchesEqual) {
Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"Hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
::std::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::std::wstring&> m4 = StrEq(str);
EXPECT_TRUE(m4.Matches(str));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::std::wstring&> m5 = StrEq(str);
EXPECT_TRUE(m5.Matches(str));
}
TEST(StdWideStrEqTest, CanDescribeSelf) {
Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
Describe(m));
Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
Describe(m2));
::std::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::std::wstring&> m4 = StrEq(str);
EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::std::wstring&> m5 = StrEq(str);
EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
}
TEST(StdWideStrNeTest, MatchesUnequalString) {
Matcher<const wchar_t*> m = StrNe(L"Hello");
EXPECT_TRUE(m.Matches(L""));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(StdWideStrNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrNe(L"Hi");
EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
}
TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_TRUE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(L"Hi"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
}
TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
::std::wstring str1(L"oabocdooeoo");
::std::wstring str2(L"OABOCDOOEOO");
Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
str1[3] = str2[3] = L'\0';
Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = L'\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + L"x"));
str2.append(1, L'\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
}
TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
Matcher< ::std::wstring> m = StrCaseEq(L"Hi");
EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
}
TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
EXPECT_TRUE(m.Matches(L"Hi"));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L""));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching wstring-typed values.
TEST(StdWideHasSubstrTest, WorksForStringClasses) {
const Matcher< ::std::wstring> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
}
// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(StdWideHasSubstrTest, WorksForCStrings) {
const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(L"I love food."));
EXPECT_FALSE(m2.Matches(L"tofo"));
EXPECT_FALSE(m2.Matches(NULL));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(StdWideHasSubstrTest, CanDescribeSelf) {
Matcher< ::std::wstring> m = HasSubstr(L"foo\n\"");
EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
}
// Tests StartsWith(s).
TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
EXPECT_TRUE(m2.Matches(L"High"));
EXPECT_FALSE(m2.Matches(L"H"));
EXPECT_FALSE(m2.Matches(L" Hi"));
}
TEST(StdWideStartsWithTest, CanDescribeSelf) {
Matcher<const ::std::wstring> m = StartsWith(L"Hi");
EXPECT_EQ("starts with L\"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const wchar_t*> m1 = EndsWith(L"");
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
EXPECT_TRUE(m2.Matches(L"Super Hi"));
EXPECT_FALSE(m2.Matches(L"i"));
EXPECT_FALSE(m2.Matches(L"Hi "));
}
TEST(StdWideEndsWithTest, CanDescribeSelf) {
Matcher<const ::std::wstring> m = EndsWith(L"Hi");
EXPECT_EQ("ends with L\"Hi\"", Describe(m));
}
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_WSTRING
TEST(GlobalWideStrEqTest, MatchesEqual) {
Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::wstring&> m2 = StrEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"Hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::wstring&> m4 = StrEq(str);
EXPECT_TRUE(m4.Matches(str));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::wstring&> m5 = StrEq(str);
EXPECT_TRUE(m5.Matches(str));
}
TEST(GlobalWideStrEqTest, CanDescribeSelf) {
Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
Describe(m));
Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
Describe(m2));
::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::wstring&> m4 = StrEq(str);
EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::wstring&> m5 = StrEq(str);
EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
}
TEST(GlobalWideStrNeTest, MatchesUnequalString) {
Matcher<const wchar_t*> m = StrNe(L"Hello");
EXPECT_TRUE(m.Matches(L""));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(GlobalWideStrNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrNe(L"Hi");
EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
}
TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_TRUE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(L"Hi"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
}
TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
::wstring str1(L"oabocdooeoo");
::wstring str2(L"OABOCDOOEOO");
Matcher<const ::wstring&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0')));
str1[3] = str2[3] = L'\0';
Matcher<const ::wstring&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
Matcher<const ::wstring&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = L'\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const ::wstring&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + L"x"));
str2.append(1, L'\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9)));
}
TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) {
Matcher< ::wstring> m = StrCaseEq(L"Hi");
EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
}
TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
EXPECT_TRUE(m.Matches(L"Hi"));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L""));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching wstring-typed values.
TEST(GlobalWideHasSubstrTest, WorksForStringClasses) {
const Matcher< ::wstring> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(::wstring(L"I love food.")));
EXPECT_FALSE(m1.Matches(::wstring(L"tofo")));
const Matcher<const ::wstring&> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(::wstring(L"I love food.")));
EXPECT_FALSE(m2.Matches(::wstring(L"tofo")));
}
// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(GlobalWideHasSubstrTest, WorksForCStrings) {
const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(L"I love food."));
EXPECT_FALSE(m2.Matches(L"tofo"));
EXPECT_FALSE(m2.Matches(NULL));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(GlobalWideHasSubstrTest, CanDescribeSelf) {
Matcher< ::wstring> m = HasSubstr(L"foo\n\"");
EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
}
// Tests StartsWith(s).
TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L""));
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::wstring&> m2 = StartsWith(L"Hi");
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
EXPECT_TRUE(m2.Matches(L"High"));
EXPECT_FALSE(m2.Matches(L"H"));
EXPECT_FALSE(m2.Matches(L" Hi"));
}
TEST(GlobalWideStartsWithTest, CanDescribeSelf) {
Matcher<const ::wstring> m = StartsWith(L"Hi");
EXPECT_EQ("starts with L\"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const wchar_t*> m1 = EndsWith(L"");
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
EXPECT_TRUE(m2.Matches(L"Super Hi"));
EXPECT_FALSE(m2.Matches(L"i"));
EXPECT_FALSE(m2.Matches(L"Hi "));
}
TEST(GlobalWideEndsWithTest, CanDescribeSelf) {
Matcher<const ::wstring> m = EndsWith(L"Hi");
EXPECT_EQ("ends with L\"Hi\"", Describe(m));
}
#endif // GTEST_HAS_GLOBAL_WSTRING
typedef ::std::tr1::tuple<long, int> Tuple2; // NOLINT
// Tests that Eq() matches a 2-tuple where the first field == the
// second field.
TEST(Eq2Test, MatchesEqualArguments) {
Matcher<const Tuple2&> m = Eq();
EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
}
// Tests that Eq() describes itself properly.
TEST(Eq2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Eq();
EXPECT_EQ("are an equal pair", Describe(m));
}
// Tests that Ge() matches a 2-tuple where the first field >= the
// second field.
TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) {
Matcher<const Tuple2&> m = Ge();
EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
}
// Tests that Ge() describes itself properly.
TEST(Ge2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Ge();
EXPECT_EQ("are a pair where the first >= the second", Describe(m));
}
// Tests that Gt() matches a 2-tuple where the first field > the
// second field.
TEST(Gt2Test, MatchesGreaterThanArguments) {
Matcher<const Tuple2&> m = Gt();
EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
}
// Tests that Gt() describes itself properly.
TEST(Gt2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Gt();
EXPECT_EQ("are a pair where the first > the second", Describe(m));
}
// Tests that Le() matches a 2-tuple where the first field <= the
// second field.
TEST(Le2Test, MatchesLessThanOrEqualArguments) {
Matcher<const Tuple2&> m = Le();
EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
}
// Tests that Le() describes itself properly.
TEST(Le2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Le();
EXPECT_EQ("are a pair where the first <= the second", Describe(m));
}
// Tests that Lt() matches a 2-tuple where the first field < the
// second field.
TEST(Lt2Test, MatchesLessThanArguments) {
Matcher<const Tuple2&> m = Lt();
EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
}
// Tests that Lt() describes itself properly.
TEST(Lt2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Lt();
EXPECT_EQ("are a pair where the first < the second", Describe(m));
}
// Tests that Ne() matches a 2-tuple where the first field != the
// second field.
TEST(Ne2Test, MatchesUnequalArguments) {
Matcher<const Tuple2&> m = Ne();
EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
}
// Tests that Ne() describes itself properly.
TEST(Ne2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Ne();
EXPECT_EQ("are an unequal pair", Describe(m));
}
// Tests that Not(m) matches any value that doesn't match m.
TEST(NotTest, NegatesMatcher) {
Matcher<int> m;
m = Not(Eq(2));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
}
// Tests that Not(m) describes itself properly.
TEST(NotTest, CanDescribeSelf) {
Matcher<int> m = Not(Eq(5));
EXPECT_EQ("isn't equal to 5", Describe(m));
}
// Tests that monomorphic matchers are safely cast by the Not matcher.
TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) {
// greater_than_5 is a monomorphic matcher.
Matcher<int> greater_than_5 = Gt(5);
Matcher<const int&> m = Not(greater_than_5);
Matcher<int&> m2 = Not(greater_than_5);
Matcher<int&> m3 = Not(m);
}
// Helper to allow easy testing of AllOf matchers with num parameters.
void AllOfMatches(int num, const Matcher<int>& m) {
SCOPED_TRACE(Describe(m));
EXPECT_TRUE(m.Matches(0));
for (int i = 1; i <= num; ++i) {
EXPECT_FALSE(m.Matches(i));
}
EXPECT_TRUE(m.Matches(num + 1));
}
// Tests that AllOf(m1, ..., mn) matches any value that matches all of
// the given matchers.
TEST(AllOfTest, MatchesWhenAllMatch) {
Matcher<int> m;
m = AllOf(Le(2), Ge(1));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(0));
EXPECT_FALSE(m.Matches(3));
m = AllOf(Gt(0), Ne(1), Ne(2));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
EXPECT_FALSE(m.Matches(1));
EXPECT_FALSE(m.Matches(0));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
EXPECT_FALSE(m.Matches(1));
EXPECT_FALSE(m.Matches(0));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
EXPECT_TRUE(m.Matches(0));
EXPECT_TRUE(m.Matches(1));
EXPECT_FALSE(m.Matches(3));
// The following tests for varying number of sub-matchers. Due to the way
// the sub-matchers are handled it is enough to test every sub-matcher once
// with sub-matchers using the same matcher type. Varying matcher types are
// checked for above.
AllOfMatches(2, AllOf(Ne(1), Ne(2)));
AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3)));
AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4)));
AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5)));
AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6)));
AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7)));
AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
Ne(8)));
AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
Ne(8), Ne(9)));
AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
Ne(9), Ne(10)));
}
// Tests that AllOf(m1, ..., mn) describes itself properly.
TEST(AllOfTest, CanDescribeSelf) {
Matcher<int> m;
m = AllOf(Le(2), Ge(1));
EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m));
m = AllOf(Gt(0), Ne(1), Ne(2));
EXPECT_EQ("(is > 0) and "
"((isn't equal to 1) and "
"(isn't equal to 2))",
Describe(m));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
EXPECT_EQ("((is > 0) and "
"(isn't equal to 1)) and "
"((isn't equal to 2) and "
"(isn't equal to 3))",
Describe(m));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
EXPECT_EQ("((is >= 0) and "
"(is < 10)) and "
"((isn't equal to 3) and "
"((isn't equal to 5) and "
"(isn't equal to 7)))",
Describe(m));
}
// Tests that AllOf(m1, ..., mn) describes its negation properly.
TEST(AllOfTest, CanDescribeNegation) {
Matcher<int> m;
m = AllOf(Le(2), Ge(1));
EXPECT_EQ("(isn't <= 2) or "
"(isn't >= 1)",
DescribeNegation(m));
m = AllOf(Gt(0), Ne(1), Ne(2));
EXPECT_EQ("(isn't > 0) or "
"((is equal to 1) or "
"(is equal to 2))",
DescribeNegation(m));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
EXPECT_EQ("((isn't > 0) or "
"(is equal to 1)) or "
"((is equal to 2) or "
"(is equal to 3))",
DescribeNegation(m));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
EXPECT_EQ("((isn't >= 0) or "
"(isn't < 10)) or "
"((is equal to 3) or "
"((is equal to 5) or "
"(is equal to 7)))",
DescribeNegation(m));
}
// Tests that monomorphic matchers are safely cast by the AllOf matcher.
TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) {
// greater_than_5 and less_than_10 are monomorphic matchers.
Matcher<int> greater_than_5 = Gt(5);
Matcher<int> less_than_10 = Lt(10);
Matcher<const int&> m = AllOf(greater_than_5, less_than_10);
Matcher<int&> m2 = AllOf(greater_than_5, less_than_10);
Matcher<int&> m3 = AllOf(greater_than_5, m2);
// Tests that BothOf works when composing itself.
Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10);
Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10);
}
TEST(AllOfTest, ExplainsResult) {
Matcher<int> m;
// Successful match. Both matchers need to explain. The second
// matcher doesn't give an explanation, so only the first matcher's
// explanation is printed.
m = AllOf(GreaterThan(10), Lt(30));
EXPECT_EQ("which is 15 more than 10", Explain(m, 25));
// Successful match. Both matchers need to explain.
m = AllOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20",
Explain(m, 30));
// Successful match. All matchers need to explain. The second
// matcher doesn't given an explanation.
m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20));
EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20",
Explain(m, 25));
// Successful match. All matchers need to explain.
m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, "
"and which is 10 more than 30",
Explain(m, 40));
// Failed match. The first matcher, which failed, needs to
// explain.
m = AllOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
// Failed match. The second matcher, which failed, needs to
// explain. Since it doesn't given an explanation, nothing is
// printed.
m = AllOf(GreaterThan(10), Lt(30));
EXPECT_EQ("", Explain(m, 40));
// Failed match. The second matcher, which failed, needs to
// explain.
m = AllOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 less than 20", Explain(m, 15));
}
// Helper to allow easy testing of AnyOf matchers with num parameters.
void AnyOfMatches(int num, const Matcher<int>& m) {
SCOPED_TRACE(Describe(m));
EXPECT_FALSE(m.Matches(0));
for (int i = 1; i <= num; ++i) {
EXPECT_TRUE(m.Matches(i));
}
EXPECT_FALSE(m.Matches(num + 1));
}
// Tests that AnyOf(m1, ..., mn) matches any value that matches at
// least one of the given matchers.
TEST(AnyOfTest, MatchesWhenAnyMatches) {
Matcher<int> m;
m = AnyOf(Le(1), Ge(3));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(2));
m = AnyOf(Lt(0), Eq(1), Eq(2));
EXPECT_TRUE(m.Matches(-1));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(0));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
EXPECT_TRUE(m.Matches(-1));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(2));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(0));
m = AnyOf(Le(0), Gt(10), 3, 5, 7);
EXPECT_TRUE(m.Matches(0));
EXPECT_TRUE(m.Matches(11));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
// The following tests for varying number of sub-matchers. Due to the way
// the sub-matchers are handled it is enough to test every sub-matcher once
// with sub-matchers using the same matcher type. Varying matcher types are
// checked for above.
AnyOfMatches(2, AnyOf(1, 2));
AnyOfMatches(3, AnyOf(1, 2, 3));
AnyOfMatches(4, AnyOf(1, 2, 3, 4));
AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5));
AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6));
AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7));
AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8));
AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9));
AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
}
// Tests that AnyOf(m1, ..., mn) describes itself properly.
TEST(AnyOfTest, CanDescribeSelf) {
Matcher<int> m;
m = AnyOf(Le(1), Ge(3));
EXPECT_EQ("(is <= 1) or (is >= 3)",
Describe(m));
m = AnyOf(Lt(0), Eq(1), Eq(2));
EXPECT_EQ("(is < 0) or "
"((is equal to 1) or (is equal to 2))",
Describe(m));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
EXPECT_EQ("((is < 0) or "
"(is equal to 1)) or "
"((is equal to 2) or "
"(is equal to 3))",
Describe(m));
m = AnyOf(Le(0), Gt(10), 3, 5, 7);
EXPECT_EQ("((is <= 0) or "
"(is > 10)) or "
"((is equal to 3) or "
"((is equal to 5) or "
"(is equal to 7)))",
Describe(m));
}
// Tests that AnyOf(m1, ..., mn) describes its negation properly.
TEST(AnyOfTest, CanDescribeNegation) {
Matcher<int> m;
m = AnyOf(Le(1), Ge(3));
EXPECT_EQ("(isn't <= 1) and (isn't >= 3)",
DescribeNegation(m));
m = AnyOf(Lt(0), Eq(1), Eq(2));
EXPECT_EQ("(isn't < 0) and "
"((isn't equal to 1) and (isn't equal to 2))",
DescribeNegation(m));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
EXPECT_EQ("((isn't < 0) and "
"(isn't equal to 1)) and "
"((isn't equal to 2) and "
"(isn't equal to 3))",
DescribeNegation(m));
m = AnyOf(Le(0), Gt(10), 3, 5, 7);
EXPECT_EQ("((isn't <= 0) and "
"(isn't > 10)) and "
"((isn't equal to 3) and "
"((isn't equal to 5) and "
"(isn't equal to 7)))",
DescribeNegation(m));
}
// Tests that monomorphic matchers are safely cast by the AnyOf matcher.
TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) {
// greater_than_5 and less_than_10 are monomorphic matchers.
Matcher<int> greater_than_5 = Gt(5);
Matcher<int> less_than_10 = Lt(10);
Matcher<const int&> m = AnyOf(greater_than_5, less_than_10);
Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10);
Matcher<int&> m3 = AnyOf(greater_than_5, m2);
// Tests that EitherOf works when composing itself.
Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10);
Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10);
}
TEST(AnyOfTest, ExplainsResult) {
Matcher<int> m;
// Failed match. Both matchers need to explain. The second
// matcher doesn't give an explanation, so only the first matcher's
// explanation is printed.
m = AnyOf(GreaterThan(10), Lt(0));
EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
// Failed match. Both matchers need to explain.
m = AnyOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20",
Explain(m, 5));
// Failed match. All matchers need to explain. The second
// matcher doesn't given an explanation.
m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30));
EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30",
Explain(m, 5));
// Failed match. All matchers need to explain.
m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, "
"and which is 25 less than 30",
Explain(m, 5));
// Successful match. The first matcher, which succeeded, needs to
// explain.
m = AnyOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 more than 10", Explain(m, 15));
// Successful match. The second matcher, which succeeded, needs to
// explain. Since it doesn't given an explanation, nothing is
// printed.
m = AnyOf(GreaterThan(10), Lt(30));
EXPECT_EQ("", Explain(m, 0));
// Successful match. The second matcher, which succeeded, needs to
// explain.
m = AnyOf(GreaterThan(30), GreaterThan(20));
EXPECT_EQ("which is 5 more than 20", Explain(m, 25));
}
// The following predicate function and predicate functor are for
// testing the Truly(predicate) matcher.
// Returns non-zero if the input is positive. Note that the return
// type of this function is not bool. It's OK as Truly() accepts any
// unary function or functor whose return type can be implicitly
// converted to bool.
int IsPositive(double x) {
return x > 0 ? 1 : 0;
}
// This functor returns true if the input is greater than the given
// number.
class IsGreaterThan {
public:
explicit IsGreaterThan(int threshold) : threshold_(threshold) {}
bool operator()(int n) const { return n > threshold_; }
private:
int threshold_;
};
// For testing Truly().
const int foo = 0;
// This predicate returns true iff the argument references foo and has
// a zero value.
bool ReferencesFooAndIsZero(const int& n) {
return (&n == &foo) && (n == 0);
}
// Tests that Truly(predicate) matches what satisfies the given
// predicate.
TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) {
Matcher<double> m = Truly(IsPositive);
EXPECT_TRUE(m.Matches(2.0));
EXPECT_FALSE(m.Matches(-1.5));
}
// Tests that Truly(predicate_functor) works too.
TEST(TrulyTest, CanBeUsedWithFunctor) {
Matcher<int> m = Truly(IsGreaterThan(5));
EXPECT_TRUE(m.Matches(6));
EXPECT_FALSE(m.Matches(4));
}
// A class that can be implicitly converted to bool.
class ConvertibleToBool {
public:
explicit ConvertibleToBool(int number) : number_(number) {}
operator bool() const { return number_ != 0; }
private:
int number_;
};
ConvertibleToBool IsNotZero(int number) {
return ConvertibleToBool(number);
}
// Tests that the predicate used in Truly() may return a class that's
// implicitly convertible to bool, even when the class has no
// operator!().
TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) {
Matcher<int> m = Truly(IsNotZero);
EXPECT_TRUE(m.Matches(1));
EXPECT_FALSE(m.Matches(0));
}
// Tests that Truly(predicate) can describe itself properly.
TEST(TrulyTest, CanDescribeSelf) {
Matcher<double> m = Truly(IsPositive);
EXPECT_EQ("satisfies the given predicate",
Describe(m));
}
// Tests that Truly(predicate) works when the matcher takes its
// argument by reference.
TEST(TrulyTest, WorksForByRefArguments) {
Matcher<const int&> m = Truly(ReferencesFooAndIsZero);
EXPECT_TRUE(m.Matches(foo));
int n = 0;
EXPECT_FALSE(m.Matches(n));
}
// Tests that Matches(m) is a predicate satisfied by whatever that
// matches matcher m.
TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) {
EXPECT_TRUE(Matches(Ge(0))(1));
EXPECT_FALSE(Matches(Eq('a'))('b'));
}
// Tests that Matches(m) works when the matcher takes its argument by
// reference.
TEST(MatchesTest, WorksOnByRefArguments) {
int m = 0, n = 0;
EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n));
EXPECT_FALSE(Matches(Ref(m))(n));
}
// Tests that a Matcher on non-reference type can be used in
// Matches().
TEST(MatchesTest, WorksWithMatcherOnNonRefType) {
Matcher<int> eq5 = Eq(5);
EXPECT_TRUE(Matches(eq5)(5));
EXPECT_FALSE(Matches(eq5)(2));
}
// Tests Value(value, matcher). Since Value() is a simple wrapper for
// Matches(), which has been tested already, we don't spend a lot of
// effort on testing Value().
TEST(ValueTest, WorksWithPolymorphicMatcher) {
EXPECT_TRUE(Value("hi", StartsWith("h")));
EXPECT_FALSE(Value(5, Gt(10)));
}
TEST(ValueTest, WorksWithMonomorphicMatcher) {
const Matcher<int> is_zero = Eq(0);
EXPECT_TRUE(Value(0, is_zero));
EXPECT_FALSE(Value('a', is_zero));
int n = 0;
const Matcher<const int&> ref_n = Ref(n);
EXPECT_TRUE(Value(n, ref_n));
EXPECT_FALSE(Value(1, ref_n));
}
TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) {
StringMatchResultListener listener1;
EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1));
EXPECT_EQ("% 2 == 0", listener1.str());
StringMatchResultListener listener2;
EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2));
EXPECT_EQ("", listener2.str());
}
TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) {
const Matcher<int> is_even = PolymorphicIsEven();
StringMatchResultListener listener1;
EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1));
EXPECT_EQ("% 2 == 0", listener1.str());
const Matcher<const double&> is_zero = Eq(0);
StringMatchResultListener listener2;
EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2));
EXPECT_EQ("", listener2.str());
}
MATCHER_P(Really, inner_matcher, "") {
return ExplainMatchResult(inner_matcher, arg, result_listener);
}
TEST(ExplainMatchResultTest, WorksInsideMATCHER) {
EXPECT_THAT(0, Really(Eq(0)));
}
TEST(AllArgsTest, WorksForTuple) {
EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt()));
EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt())));
}
TEST(AllArgsTest, WorksForNonTuple) {
EXPECT_THAT(42, AllArgs(Gt(0)));
EXPECT_THAT('a', Not(AllArgs(Eq('b'))));
}
class AllArgsHelper {
public:
AllArgsHelper() {}
MOCK_METHOD2(Helper, int(char x, int y));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper);
};
TEST(AllArgsTest, WorksInWithClause) {
AllArgsHelper helper;
ON_CALL(helper, Helper(_, _))
.With(AllArgs(Lt()))
.WillByDefault(Return(1));
EXPECT_CALL(helper, Helper(_, _));
EXPECT_CALL(helper, Helper(_, _))
.With(AllArgs(Gt()))
.WillOnce(Return(2));
EXPECT_EQ(1, helper.Helper('\1', 2));
EXPECT_EQ(2, helper.Helper('a', 1));
}
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
// matches the matcher.
TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) {
ASSERT_THAT(5, Ge(2)) << "This should succeed.";
ASSERT_THAT("Foo", EndsWith("oo"));
EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too.";
EXPECT_THAT("Hello", StartsWith("Hell"));
}
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
// doesn't match the matcher.
TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) {
// 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(),
// which cannot reference auto variables.
static unsigned short n; // NOLINT
n = 5;
// VC++ prior to version 8.0 SP1 has a bug where it will not see any
// functions declared in the namespace scope from within nested classes.
// EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all
// namespace-level functions invoked inside them need to be explicitly
// resolved.
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)),
"Value of: n\n"
"Expected: is > 10\n"
" Actual: 5" + OfType("unsigned short"));
n = 0;
EXPECT_NONFATAL_FAILURE(
EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))),
"Value of: n\n"
"Expected: (is <= 7) and (is >= 5)\n"
" Actual: 0" + OfType("unsigned short"));
}
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument
// has a reference type.
TEST(MatcherAssertionTest, WorksForByRefArguments) {
// We use a static variable here as EXPECT_FATAL_FAILURE() cannot
// reference auto variables.
static int n;
n = 0;
EXPECT_THAT(n, AllOf(Le(7), Ref(n)));
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
"Value of: n\n"
"Expected: does not reference the variable @");
// Tests the "Actual" part.
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
"Actual: 0" + OfType("int") + ", which is located @");
}
#if !GTEST_OS_SYMBIAN
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is
// monomorphic.
// ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's
// Symbian compiler: it tries to compile
// template<T, U> class MatcherCastImpl { ...
// virtual bool MatchAndExplain(T x, ...) const {
// return source_matcher_.MatchAndExplain(static_cast<U>(x), ...);
// with U == string and T == const char*
// With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... )
// the compiler silently crashes with no output.
// If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x)
// the code compiles but the converted string is bogus.
TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) {
Matcher<const char*> starts_with_he = StartsWith("he");
ASSERT_THAT("hello", starts_with_he);
Matcher<const string&> ends_with_ok = EndsWith("ok");
ASSERT_THAT("book", ends_with_ok);
const string bad = "bad";
EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok),
"Value of: bad\n"
"Expected: ends with \"ok\"\n"
" Actual: \"bad\"");
Matcher<int> is_greater_than_5 = Gt(5);
EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5),
"Value of: 5\n"
"Expected: is > 5\n"
" Actual: 5" + OfType("int"));
}
#endif // !GTEST_OS_SYMBIAN
// Tests floating-point matchers.
template <typename RawType>
class FloatingPointTest : public testing::Test {
protected:
typedef typename testing::internal::FloatingPoint<RawType> Floating;
typedef typename Floating::Bits Bits;
virtual void SetUp() {
const size_t max_ulps = Floating::kMaxUlps;
// The bits that represent 0.0.
const Bits zero_bits = Floating(0).bits();
// Makes some numbers close to 0.0.
close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2);
close_to_negative_zero_ = -Floating::ReinterpretBits(
zero_bits + max_ulps - max_ulps/2);
further_from_negative_zero_ = -Floating::ReinterpretBits(
zero_bits + max_ulps + 1 - max_ulps/2);
// The bits that represent 1.0.
const Bits one_bits = Floating(1).bits();
// Makes some numbers close to 1.0.
close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps);
further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1);
// +infinity.
infinity_ = Floating::Infinity();
// The bits that represent +infinity.
const Bits infinity_bits = Floating(infinity_).bits();
// Makes some numbers close to infinity.
close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps);
further_from_infinity_ = Floating::ReinterpretBits(
infinity_bits - max_ulps - 1);
// Makes some NAN's.
nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1);
nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200);
}
void TestSize() {
EXPECT_EQ(sizeof(RawType), sizeof(Bits));
}
// A battery of tests for FloatingEqMatcher::Matches.
// matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
void TestMatches(
testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) {
Matcher<RawType> m1 = matcher_maker(0.0);
EXPECT_TRUE(m1.Matches(-0.0));
EXPECT_TRUE(m1.Matches(close_to_positive_zero_));
EXPECT_TRUE(m1.Matches(close_to_negative_zero_));
EXPECT_FALSE(m1.Matches(1.0));
Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_);
EXPECT_FALSE(m2.Matches(further_from_negative_zero_));
Matcher<RawType> m3 = matcher_maker(1.0);
EXPECT_TRUE(m3.Matches(close_to_one_));
EXPECT_FALSE(m3.Matches(further_from_one_));
// Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above.
EXPECT_FALSE(m3.Matches(0.0));
Matcher<RawType> m4 = matcher_maker(-infinity_);
EXPECT_TRUE(m4.Matches(-close_to_infinity_));
Matcher<RawType> m5 = matcher_maker(infinity_);
EXPECT_TRUE(m5.Matches(close_to_infinity_));
// This is interesting as the representations of infinity_ and nan1_
// are only 1 DLP apart.
EXPECT_FALSE(m5.Matches(nan1_));
// matcher_maker can produce a Matcher<const RawType&>, which is needed in
// some cases.
Matcher<const RawType&> m6 = matcher_maker(0.0);
EXPECT_TRUE(m6.Matches(-0.0));
EXPECT_TRUE(m6.Matches(close_to_positive_zero_));
EXPECT_FALSE(m6.Matches(1.0));
// matcher_maker can produce a Matcher<RawType&>, which is needed in some
// cases.
Matcher<RawType&> m7 = matcher_maker(0.0);
RawType x = 0.0;
EXPECT_TRUE(m7.Matches(x));
x = 0.01f;
EXPECT_FALSE(m7.Matches(x));
}
// Pre-calculated numbers to be used by the tests.
static RawType close_to_positive_zero_;
static RawType close_to_negative_zero_;
static RawType further_from_negative_zero_;
static RawType close_to_one_;
static RawType further_from_one_;
static RawType infinity_;
static RawType close_to_infinity_;
static RawType further_from_infinity_;
static RawType nan1_;
static RawType nan2_;
};
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_positive_zero_;
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_negative_zero_;
template <typename RawType>
RawType FloatingPointTest<RawType>::further_from_negative_zero_;
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_one_;
template <typename RawType>
RawType FloatingPointTest<RawType>::further_from_one_;
template <typename RawType>
RawType FloatingPointTest<RawType>::infinity_;
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_infinity_;
template <typename RawType>
RawType FloatingPointTest<RawType>::further_from_infinity_;
template <typename RawType>
RawType FloatingPointTest<RawType>::nan1_;
template <typename RawType>
RawType FloatingPointTest<RawType>::nan2_;
// Instantiate FloatingPointTest for testing floats.
typedef FloatingPointTest<float> FloatTest;
TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) {
TestMatches(&FloatEq);
}
TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) {
TestMatches(&NanSensitiveFloatEq);
}
TEST_F(FloatTest, FloatEqCannotMatchNaN) {
// FloatEq never matches NaN.
Matcher<float> m = FloatEq(nan1_);
EXPECT_FALSE(m.Matches(nan1_));
EXPECT_FALSE(m.Matches(nan2_));
EXPECT_FALSE(m.Matches(1.0));
}
TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) {
// NanSensitiveFloatEq will match NaN.
Matcher<float> m = NanSensitiveFloatEq(nan1_);
EXPECT_TRUE(m.Matches(nan1_));
EXPECT_TRUE(m.Matches(nan2_));
EXPECT_FALSE(m.Matches(1.0));
}
TEST_F(FloatTest, FloatEqCanDescribeSelf) {
Matcher<float> m1 = FloatEq(2.0f);
EXPECT_EQ("is approximately 2", Describe(m1));
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<float> m2 = FloatEq(0.5f);
EXPECT_EQ("is approximately 0.5", Describe(m2));
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<float> m3 = FloatEq(nan1_);
EXPECT_EQ("never matches", Describe(m3));
EXPECT_EQ("is anything", DescribeNegation(m3));
}
TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) {
Matcher<float> m1 = NanSensitiveFloatEq(2.0f);
EXPECT_EQ("is approximately 2", Describe(m1));
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<float> m2 = NanSensitiveFloatEq(0.5f);
EXPECT_EQ("is approximately 0.5", Describe(m2));
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<float> m3 = NanSensitiveFloatEq(nan1_);
EXPECT_EQ("is NaN", Describe(m3));
EXPECT_EQ("isn't NaN", DescribeNegation(m3));
}
// Instantiate FloatingPointTest for testing doubles.
typedef FloatingPointTest<double> DoubleTest;
TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) {
TestMatches(&DoubleEq);
}
TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) {
TestMatches(&NanSensitiveDoubleEq);
}
TEST_F(DoubleTest, DoubleEqCannotMatchNaN) {
// DoubleEq never matches NaN.
Matcher<double> m = DoubleEq(nan1_);
EXPECT_FALSE(m.Matches(nan1_));
EXPECT_FALSE(m.Matches(nan2_));
EXPECT_FALSE(m.Matches(1.0));
}
TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) {
// NanSensitiveDoubleEq will match NaN.
Matcher<double> m = NanSensitiveDoubleEq(nan1_);
EXPECT_TRUE(m.Matches(nan1_));
EXPECT_TRUE(m.Matches(nan2_));
EXPECT_FALSE(m.Matches(1.0));
}
TEST_F(DoubleTest, DoubleEqCanDescribeSelf) {
Matcher<double> m1 = DoubleEq(2.0);
EXPECT_EQ("is approximately 2", Describe(m1));
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<double> m2 = DoubleEq(0.5);
EXPECT_EQ("is approximately 0.5", Describe(m2));
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<double> m3 = DoubleEq(nan1_);
EXPECT_EQ("never matches", Describe(m3));
EXPECT_EQ("is anything", DescribeNegation(m3));
}
TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) {
Matcher<double> m1 = NanSensitiveDoubleEq(2.0);
EXPECT_EQ("is approximately 2", Describe(m1));
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<double> m2 = NanSensitiveDoubleEq(0.5);
EXPECT_EQ("is approximately 0.5", Describe(m2));
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<double> m3 = NanSensitiveDoubleEq(nan1_);
EXPECT_EQ("is NaN", Describe(m3));
EXPECT_EQ("isn't NaN", DescribeNegation(m3));
}
TEST(PointeeTest, RawPointer) {
const Matcher<int*> m = Pointee(Ge(0));
int n = 1;
EXPECT_TRUE(m.Matches(&n));
n = -1;
EXPECT_FALSE(m.Matches(&n));
EXPECT_FALSE(m.Matches(NULL));
}
TEST(PointeeTest, RawPointerToConst) {
const Matcher<const double*> m = Pointee(Ge(0));
double x = 1;
EXPECT_TRUE(m.Matches(&x));
x = -1;
EXPECT_FALSE(m.Matches(&x));
EXPECT_FALSE(m.Matches(NULL));
}
TEST(PointeeTest, ReferenceToConstRawPointer) {
const Matcher<int* const &> m = Pointee(Ge(0));
int n = 1;
EXPECT_TRUE(m.Matches(&n));
n = -1;
EXPECT_FALSE(m.Matches(&n));
EXPECT_FALSE(m.Matches(NULL));
}
TEST(PointeeTest, ReferenceToNonConstRawPointer) {
const Matcher<double* &> m = Pointee(Ge(0));
double x = 1.0;
double* p = &x;
EXPECT_TRUE(m.Matches(p));
x = -1;
EXPECT_FALSE(m.Matches(p));
p = NULL;
EXPECT_FALSE(m.Matches(p));
}
TEST(PointeeTest, NeverMatchesNull) {
const Matcher<const char*> m = Pointee(_);
EXPECT_FALSE(m.Matches(NULL));
}
// Tests that we can write Pointee(value) instead of Pointee(Eq(value)).
TEST(PointeeTest, MatchesAgainstAValue) {
const Matcher<int*> m = Pointee(5);
int n = 5;
EXPECT_TRUE(m.Matches(&n));
n = -1;
EXPECT_FALSE(m.Matches(&n));
EXPECT_FALSE(m.Matches(NULL));
}
TEST(PointeeTest, CanDescribeSelf) {
const Matcher<int*> m = Pointee(Gt(3));
EXPECT_EQ("points to a value that is > 3", Describe(m));
EXPECT_EQ("does not point to a value that is > 3",
DescribeNegation(m));
}
TEST(PointeeTest, CanExplainMatchResult) {
const Matcher<const string*> m = Pointee(StartsWith("Hi"));
EXPECT_EQ("", Explain(m, static_cast<const string*>(NULL)));
const Matcher<long*> m2 = Pointee(GreaterThan(1)); // NOLINT
long n = 3; // NOLINT
EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1",
Explain(m2, &n));
}
TEST(PointeeTest, AlwaysExplainsPointee) {
const Matcher<int*> m = Pointee(0);
int n = 42;
EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n));
}
// An uncopyable class.
class Uncopyable {
public:
explicit Uncopyable(int a_value) : value_(a_value) {}
int value() const { return value_; }
private:
const int value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable);
};
// Returns true iff x.value() is positive.
bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; }
// A user-defined struct for testing Field().
struct AStruct {
AStruct() : x(0), y(1.0), z(5), p(NULL) {}
AStruct(const AStruct& rhs)
: x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {}
int x; // A non-const field.
const double y; // A const field.
Uncopyable z; // An uncopyable field.
const char* p; // A pointer field.
private:
GTEST_DISALLOW_ASSIGN_(AStruct);
};
// A derived struct for testing Field().
struct DerivedStruct : public AStruct {
char ch;
private:
GTEST_DISALLOW_ASSIGN_(DerivedStruct);
};
// Tests that Field(&Foo::field, ...) works when field is non-const.
TEST(FieldTest, WorksForNonConstField) {
Matcher<AStruct> m = Field(&AStruct::x, Ge(0));
AStruct a;
EXPECT_TRUE(m.Matches(a));
a.x = -1;
EXPECT_FALSE(m.Matches(a));
}
// Tests that Field(&Foo::field, ...) works when field is const.
TEST(FieldTest, WorksForConstField) {
AStruct a;
Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0));
EXPECT_TRUE(m.Matches(a));
m = Field(&AStruct::y, Le(0.0));
EXPECT_FALSE(m.Matches(a));
}
// Tests that Field(&Foo::field, ...) works when field is not copyable.
TEST(FieldTest, WorksForUncopyableField) {
AStruct a;
Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive));
EXPECT_TRUE(m.Matches(a));
m = Field(&AStruct::z, Not(Truly(ValueIsPositive)));
EXPECT_FALSE(m.Matches(a));
}
// Tests that Field(&Foo::field, ...) works when field is a pointer.
TEST(FieldTest, WorksForPointerField) {
// Matching against NULL.
Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(NULL));
AStruct a;
EXPECT_TRUE(m.Matches(a));
a.p = "hi";
EXPECT_FALSE(m.Matches(a));
// Matching a pointer that is not NULL.
m = Field(&AStruct::p, StartsWith("hi"));
a.p = "hill";
EXPECT_TRUE(m.Matches(a));
a.p = "hole";
EXPECT_FALSE(m.Matches(a));
}
// Tests that Field() works when the object is passed by reference.
TEST(FieldTest, WorksForByRefArgument) {
Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
AStruct a;
EXPECT_TRUE(m.Matches(a));
a.x = -1;
EXPECT_FALSE(m.Matches(a));
}
// Tests that Field(&Foo::field, ...) works when the argument's type
// is a sub-type of Foo.
TEST(FieldTest, WorksForArgumentOfSubType) {
// Note that the matcher expects DerivedStruct but we say AStruct
// inside Field().
Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0));
DerivedStruct d;
EXPECT_TRUE(m.Matches(d));
d.x = -1;
EXPECT_FALSE(m.Matches(d));
}
// Tests that Field(&Foo::field, m) works when field's type and m's
// argument type are compatible but not the same.
TEST(FieldTest, WorksForCompatibleMatcherType) {
// The field is an int, but the inner matcher expects a signed char.
Matcher<const AStruct&> m = Field(&AStruct::x,
Matcher<signed char>(Ge(0)));
AStruct a;
EXPECT_TRUE(m.Matches(a));
a.x = -1;
EXPECT_FALSE(m.Matches(a));
}
// Tests that Field() can describe itself.
TEST(FieldTest, CanDescribeSelf) {
Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
}
// Tests that Field() can explain the match result.
TEST(FieldTest, CanExplainMatchResult) {
Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
AStruct a;
a.x = 1;
EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a));
m = Field(&AStruct::x, GreaterThan(0));
EXPECT_EQ(
"whose given field is 1" + OfType("int") + ", which is 1 more than 0",
Explain(m, a));
}
// Tests that Field() works when the argument is a pointer to const.
TEST(FieldForPointerTest, WorksForPointerToConst) {
Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
AStruct a;
EXPECT_TRUE(m.Matches(&a));
a.x = -1;
EXPECT_FALSE(m.Matches(&a));
}
// Tests that Field() works when the argument is a pointer to non-const.
TEST(FieldForPointerTest, WorksForPointerToNonConst) {
Matcher<AStruct*> m = Field(&AStruct::x, Ge(0));
AStruct a;
EXPECT_TRUE(m.Matches(&a));
a.x = -1;
EXPECT_FALSE(m.Matches(&a));
}
// Tests that Field() works when the argument is a reference to a const pointer.
TEST(FieldForPointerTest, WorksForReferenceToConstPointer) {
Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0));
AStruct a;
EXPECT_TRUE(m.Matches(&a));
a.x = -1;
EXPECT_FALSE(m.Matches(&a));
}
// Tests that Field() does not match the NULL pointer.
TEST(FieldForPointerTest, DoesNotMatchNull) {
Matcher<const AStruct*> m = Field(&AStruct::x, _);
EXPECT_FALSE(m.Matches(NULL));
}
// Tests that Field(&Foo::field, ...) works when the argument's type
// is a sub-type of const Foo*.
TEST(FieldForPointerTest, WorksForArgumentOfSubType) {
// Note that the matcher expects DerivedStruct but we say AStruct
// inside Field().
Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0));
DerivedStruct d;
EXPECT_TRUE(m.Matches(&d));
d.x = -1;
EXPECT_FALSE(m.Matches(&d));
}
// Tests that Field() can describe itself when used to match a pointer.
TEST(FieldForPointerTest, CanDescribeSelf) {
Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
}
// Tests that Field() can explain the result of matching a pointer.
TEST(FieldForPointerTest, CanExplainMatchResult) {
Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
AStruct a;
a.x = 1;
EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL)));
EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"),
Explain(m, &a));
m = Field(&AStruct::x, GreaterThan(0));
EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") +
", which is 1 more than 0", Explain(m, &a));
}
// A user-defined class for testing Property().
class AClass {
public:
AClass() : n_(0) {}
// A getter that returns a non-reference.
int n() const { return n_; }
void set_n(int new_n) { n_ = new_n; }
// A getter that returns a reference to const.
const string& s() const { return s_; }
void set_s(const string& new_s) { s_ = new_s; }
// A getter that returns a reference to non-const.
double& x() const { return x_; }
private:
int n_;
string s_;
static double x_;
};
double AClass::x_ = 0.0;
// A derived class for testing Property().
class DerivedClass : public AClass {
private:
int k_;
};
// Tests that Property(&Foo::property, ...) works when property()
// returns a non-reference.
TEST(PropertyTest, WorksForNonReferenceProperty) {
Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
AClass a;
a.set_n(1);
EXPECT_TRUE(m.Matches(a));
a.set_n(-1);
EXPECT_FALSE(m.Matches(a));
}
// Tests that Property(&Foo::property, ...) works when property()
// returns a reference to const.
TEST(PropertyTest, WorksForReferenceToConstProperty) {
Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi"));
AClass a;
a.set_s("hill");
EXPECT_TRUE(m.Matches(a));
a.set_s("hole");
EXPECT_FALSE(m.Matches(a));
}
// Tests that Property(&Foo::property, ...) works when property()
// returns a reference to non-const.
TEST(PropertyTest, WorksForReferenceToNonConstProperty) {
double x = 0.0;
AClass a;
Matcher<const AClass&> m = Property(&AClass::x, Ref(x));
EXPECT_FALSE(m.Matches(a));
m = Property(&AClass::x, Not(Ref(x)));
EXPECT_TRUE(m.Matches(a));
}
// Tests that Property(&Foo::property, ...) works when the argument is
// passed by value.
TEST(PropertyTest, WorksForByValueArgument) {
Matcher<AClass> m = Property(&AClass::s, StartsWith("hi"));
AClass a;
a.set_s("hill");
EXPECT_TRUE(m.Matches(a));
a.set_s("hole");
EXPECT_FALSE(m.Matches(a));
}
// Tests that Property(&Foo::property, ...) works when the argument's
// type is a sub-type of Foo.
TEST(PropertyTest, WorksForArgumentOfSubType) {
// The matcher expects a DerivedClass, but inside the Property() we
// say AClass.
Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0));
DerivedClass d;
d.set_n(1);
EXPECT_TRUE(m.Matches(d));
d.set_n(-1);
EXPECT_FALSE(m.Matches(d));
}
// Tests that Property(&Foo::property, m) works when property()'s type
// and m's argument type are compatible but different.
TEST(PropertyTest, WorksForCompatibleMatcherType) {
// n() returns an int but the inner matcher expects a signed char.
Matcher<const AClass&> m = Property(&AClass::n,
Matcher<signed char>(Ge(0)));
AClass a;
EXPECT_TRUE(m.Matches(a));
a.set_n(-1);
EXPECT_FALSE(m.Matches(a));
}
// Tests that Property() can describe itself.
TEST(PropertyTest, CanDescribeSelf) {
Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
EXPECT_EQ("is an object whose given property isn't >= 0",
DescribeNegation(m));
}
// Tests that Property() can explain the match result.
TEST(PropertyTest, CanExplainMatchResult) {
Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
AClass a;
a.set_n(1);
EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a));
m = Property(&AClass::n, GreaterThan(0));
EXPECT_EQ(
"whose given property is 1" + OfType("int") + ", which is 1 more than 0",
Explain(m, a));
}
// Tests that Property() works when the argument is a pointer to const.
TEST(PropertyForPointerTest, WorksForPointerToConst) {
Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
AClass a;
a.set_n(1);
EXPECT_TRUE(m.Matches(&a));
a.set_n(-1);
EXPECT_FALSE(m.Matches(&a));
}
// Tests that Property() works when the argument is a pointer to non-const.
TEST(PropertyForPointerTest, WorksForPointerToNonConst) {
Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi"));
AClass a;
a.set_s("hill");
EXPECT_TRUE(m.Matches(&a));
a.set_s("hole");
EXPECT_FALSE(m.Matches(&a));
}
// Tests that Property() works when the argument is a reference to a
// const pointer.
TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) {
Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi"));
AClass a;
a.set_s("hill");
EXPECT_TRUE(m.Matches(&a));
a.set_s("hole");
EXPECT_FALSE(m.Matches(&a));
}
// Tests that Property() does not match the NULL pointer.
TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) {
Matcher<const AClass*> m = Property(&AClass::x, _);
EXPECT_FALSE(m.Matches(NULL));
}
// Tests that Property(&Foo::property, ...) works when the argument's
// type is a sub-type of const Foo*.
TEST(PropertyForPointerTest, WorksForArgumentOfSubType) {
// The matcher expects a DerivedClass, but inside the Property() we
// say AClass.
Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0));
DerivedClass d;
d.set_n(1);
EXPECT_TRUE(m.Matches(&d));
d.set_n(-1);
EXPECT_FALSE(m.Matches(&d));
}
// Tests that Property() can describe itself when used to match a pointer.
TEST(PropertyForPointerTest, CanDescribeSelf) {
Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
EXPECT_EQ("is an object whose given property isn't >= 0",
DescribeNegation(m));
}
// Tests that Property() can explain the result of matching a pointer.
TEST(PropertyForPointerTest, CanExplainMatchResult) {
Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
AClass a;
a.set_n(1);
EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL)));
EXPECT_EQ(
"which points to an object whose given property is 1" + OfType("int"),
Explain(m, &a));
m = Property(&AClass::n, GreaterThan(0));
EXPECT_EQ("which points to an object whose given property is 1" +
OfType("int") + ", which is 1 more than 0",
Explain(m, &a));
}
// Tests ResultOf.
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// function pointer.
string IntToStringFunction(int input) { return input == 1 ? "foo" : "bar"; }
TEST(ResultOfTest, WorksForFunctionPointers) {
Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(string("foo")));
EXPECT_TRUE(matcher.Matches(1));
EXPECT_FALSE(matcher.Matches(2));
}
// Tests that ResultOf() can describe itself.
TEST(ResultOfTest, CanDescribeItself) {
Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo"));
EXPECT_EQ("is mapped by the given callable to a value that "
"is equal to \"foo\"", Describe(matcher));
EXPECT_EQ("is mapped by the given callable to a value that "
"isn't equal to \"foo\"", DescribeNegation(matcher));
}
// Tests that ResultOf() can explain the match result.
int IntFunction(int input) { return input == 42 ? 80 : 90; }
TEST(ResultOfTest, CanExplainMatchResult) {
Matcher<int> matcher = ResultOf(&IntFunction, Ge(85));
EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"),
Explain(matcher, 36));
matcher = ResultOf(&IntFunction, GreaterThan(85));
EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") +
", which is 5 more than 85", Explain(matcher, 36));
}
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
// returns a non-reference.
TEST(ResultOfTest, WorksForNonReferenceResults) {
Matcher<int> matcher = ResultOf(&IntFunction, Eq(80));
EXPECT_TRUE(matcher.Matches(42));
EXPECT_FALSE(matcher.Matches(36));
}
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
// returns a reference to non-const.
double& DoubleFunction(double& input) { return input; } // NOLINT
Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT
return obj;
}
TEST(ResultOfTest, WorksForReferenceToNonConstResults) {
double x = 3.14;
double x2 = x;
Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x));
EXPECT_TRUE(matcher.Matches(x));
EXPECT_FALSE(matcher.Matches(x2));
// Test that ResultOf works with uncopyable objects
Uncopyable obj(0);
Uncopyable obj2(0);
Matcher<Uncopyable&> matcher2 =
ResultOf(&RefUncopyableFunction, Ref(obj));
EXPECT_TRUE(matcher2.Matches(obj));
EXPECT_FALSE(matcher2.Matches(obj2));
}
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
// returns a reference to const.
const string& StringFunction(const string& input) { return input; }
TEST(ResultOfTest, WorksForReferenceToConstResults) {
string s = "foo";
string s2 = s;
Matcher<const string&> matcher = ResultOf(&StringFunction, Ref(s));
EXPECT_TRUE(matcher.Matches(s));
EXPECT_FALSE(matcher.Matches(s2));
}
// Tests that ResultOf(f, m) works when f(x) and m's
// argument types are compatible but different.
TEST(ResultOfTest, WorksForCompatibleMatcherTypes) {
// IntFunction() returns int but the inner matcher expects a signed char.
Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85)));
EXPECT_TRUE(matcher.Matches(36));
EXPECT_FALSE(matcher.Matches(42));
}
// Tests that the program aborts when ResultOf is passed
// a NULL function pointer.
TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) {
EXPECT_DEATH_IF_SUPPORTED(
ResultOf(static_cast<string(*)(int dummy)>(NULL), Eq(string("foo"))),
"NULL function pointer is passed into ResultOf\\(\\)\\.");
}
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// function reference.
TEST(ResultOfTest, WorksForFunctionReferences) {
Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo"));
EXPECT_TRUE(matcher.Matches(1));
EXPECT_FALSE(matcher.Matches(2));
}
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// function object.
struct Functor : public ::std::unary_function<int, string> {
result_type operator()(argument_type input) const {
return IntToStringFunction(input);
}
};
TEST(ResultOfTest, WorksForFunctors) {
Matcher<int> matcher = ResultOf(Functor(), Eq(string("foo")));
EXPECT_TRUE(matcher.Matches(1));
EXPECT_FALSE(matcher.Matches(2));
}
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// functor with more then one operator() defined. ResultOf() must work
// for each defined operator().
struct PolymorphicFunctor {
typedef int result_type;
int operator()(int n) { return n; }
int operator()(const char* s) { return static_cast<int>(strlen(s)); }
};
TEST(ResultOfTest, WorksForPolymorphicFunctors) {
Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5));
EXPECT_TRUE(matcher_int.Matches(10));
EXPECT_FALSE(matcher_int.Matches(2));
Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5));
EXPECT_TRUE(matcher_string.Matches("long string"));
EXPECT_FALSE(matcher_string.Matches("shrt"));
}
const int* ReferencingFunction(const int& n) { return &n; }
struct ReferencingFunctor {
typedef const int* result_type;
result_type operator()(const int& n) { return &n; }
};
TEST(ResultOfTest, WorksForReferencingCallables) {
const int n = 1;
const int n2 = 1;
Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n));
EXPECT_TRUE(matcher2.Matches(n));
EXPECT_FALSE(matcher2.Matches(n2));
Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n));
EXPECT_TRUE(matcher3.Matches(n));
EXPECT_FALSE(matcher3.Matches(n2));
}
class DivisibleByImpl {
public:
explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}
// For testing using ExplainMatchResultTo() with polymorphic matchers.
template <typename T>
bool MatchAndExplain(const T& n, MatchResultListener* listener) const {
*listener << "which is " << (n % divider_) << " modulo "
<< divider_;
return (n % divider_) == 0;
}
void DescribeTo(ostream* os) const {
*os << "is divisible by " << divider_;
}
void DescribeNegationTo(ostream* os) const {
*os << "is not divisible by " << divider_;
}
void set_divider(int a_divider) { divider_ = a_divider; }
int divider() const { return divider_; }
private:
int divider_;
};
PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) {
return MakePolymorphicMatcher(DivisibleByImpl(n));
}
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_False) {
const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
EXPECT_EQ("which is 1 modulo 4", Explain(m, 5));
}
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_True) {
const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
EXPECT_EQ("which is 2 modulo 4", Explain(m, 6));
}
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_True_False) {
const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3));
EXPECT_EQ("which is 2 modulo 3", Explain(m, 5));
}
// Tests that when AllOf() succeeds, all matchers are asked to explain
// why.
TEST(ExplainMatchResultTest, AllOf_True_True) {
const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3));
EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6));
}
TEST(ExplainMatchResultTest, AllOf_True_True_2) {
const Matcher<int> m = AllOf(Ge(2), Le(3));
EXPECT_EQ("", Explain(m, 2));
}
TEST(ExplainmatcherResultTest, MonomorphicMatcher) {
const Matcher<int> m = GreaterThan(5);
EXPECT_EQ("which is 1 more than 5", Explain(m, 6));
}
// The following two tests verify that values without a public copy
// ctor can be used as arguments to matchers like Eq(), Ge(), and etc
// with the help of ByRef().
class NotCopyable {
public:
explicit NotCopyable(int a_value) : value_(a_value) {}
int value() const { return value_; }
bool operator==(const NotCopyable& rhs) const {
return value() == rhs.value();
}
bool operator>=(const NotCopyable& rhs) const {
return value() >= rhs.value();
}
private:
int value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable);
};
TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) {
const NotCopyable const_value1(1);
const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1));
const NotCopyable n1(1), n2(2);
EXPECT_TRUE(m.Matches(n1));
EXPECT_FALSE(m.Matches(n2));
}
TEST(ByRefTest, AllowsNotCopyableValueInMatchers) {
NotCopyable value2(2);
const Matcher<NotCopyable&> m = Ge(ByRef(value2));
NotCopyable n1(1), n2(2);
EXPECT_FALSE(m.Matches(n1));
EXPECT_TRUE(m.Matches(n2));
}
#if GTEST_HAS_TYPED_TEST
// Tests ContainerEq with different container types, and
// different element types.
template <typename T>
class ContainerEqTest : public testing::Test {};
typedef testing::Types<
set<int>,
vector<size_t>,
multiset<size_t>,
list<int> >
ContainerEqTestTypes;
TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes);
// Tests that the filled container is equal to itself.
TYPED_TEST(ContainerEqTest, EqualsSelf) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
TypeParam my_set(vals, vals + 6);
const Matcher<TypeParam> m = ContainerEq(my_set);
EXPECT_TRUE(m.Matches(my_set));
EXPECT_EQ("", Explain(m, my_set));
}
// Tests that missing values are reported.
TYPED_TEST(ContainerEqTest, ValueMissing) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {2, 1, 8, 5};
TypeParam my_set(vals, vals + 6);
TypeParam test_set(test_vals, test_vals + 4);
const Matcher<TypeParam> m = ContainerEq(my_set);
EXPECT_FALSE(m.Matches(test_set));
EXPECT_EQ("which doesn't have these expected elements: 3",
Explain(m, test_set));
}
// Tests that added values are reported.
TYPED_TEST(ContainerEqTest, ValueAdded) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {1, 2, 3, 5, 8, 46};
TypeParam my_set(vals, vals + 6);
TypeParam test_set(test_vals, test_vals + 6);
const Matcher<const TypeParam&> m = ContainerEq(my_set);
EXPECT_FALSE(m.Matches(test_set));
EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set));
}
// Tests that added and missing values are reported together.
TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {1, 2, 3, 8, 46};
TypeParam my_set(vals, vals + 6);
TypeParam test_set(test_vals, test_vals + 5);
const Matcher<TypeParam> m = ContainerEq(my_set);
EXPECT_FALSE(m.Matches(test_set));
EXPECT_EQ("which has these unexpected elements: 46,\n"
"and doesn't have these expected elements: 5",
Explain(m, test_set));
}
// Tests duplicated value -- expect no explanation.
TYPED_TEST(ContainerEqTest, DuplicateDifference) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {1, 2, 3, 5, 8};
TypeParam my_set(vals, vals + 6);
TypeParam test_set(test_vals, test_vals + 5);
const Matcher<const TypeParam&> m = ContainerEq(my_set);
// Depending on the container, match may be true or false
// But in any case there should be no explanation.
EXPECT_EQ("", Explain(m, test_set));
}
#endif // GTEST_HAS_TYPED_TEST
// Tests that mutliple missing values are reported.
// Using just vector here, so order is predicatble.
TEST(ContainerEqExtraTest, MultipleValuesMissing) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {2, 1, 5};
vector<int> my_set(vals, vals + 6);
vector<int> test_set(test_vals, test_vals + 3);
const Matcher<vector<int> > m = ContainerEq(my_set);
EXPECT_FALSE(m.Matches(test_set));
EXPECT_EQ("which doesn't have these expected elements: 3, 8",
Explain(m, test_set));
}
// Tests that added values are reported.
// Using just vector here, so order is predicatble.
TEST(ContainerEqExtraTest, MultipleValuesAdded) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46};
list<size_t> my_set(vals, vals + 6);
list<size_t> test_set(test_vals, test_vals + 7);
const Matcher<const list<size_t>&> m = ContainerEq(my_set);
EXPECT_FALSE(m.Matches(test_set));
EXPECT_EQ("which has these unexpected elements: 92, 46",
Explain(m, test_set));
}
// Tests that added and missing values are reported together.
TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {1, 2, 3, 92, 46};
list<size_t> my_set(vals, vals + 6);
list<size_t> test_set(test_vals, test_vals + 5);
const Matcher<const list<size_t> > m = ContainerEq(my_set);
EXPECT_FALSE(m.Matches(test_set));
EXPECT_EQ("which has these unexpected elements: 92, 46,\n"
"and doesn't have these expected elements: 5, 8",
Explain(m, test_set));
}
// Tests to see that duplicate elements are detected,
// but (as above) not reported in the explanation.
TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) {
static const int vals[] = {1, 1, 2, 3, 5, 8};
static const int test_vals[] = {1, 2, 3, 5, 8};
vector<int> my_set(vals, vals + 6);
vector<int> test_set(test_vals, test_vals + 5);
const Matcher<vector<int> > m = ContainerEq(my_set);
EXPECT_TRUE(m.Matches(my_set));
EXPECT_FALSE(m.Matches(test_set));
// There is nothing to report when both sets contain all the same values.
EXPECT_EQ("", Explain(m, test_set));
}
// Tests that ContainerEq works for non-trivial associative containers,
// like maps.
TEST(ContainerEqExtraTest, WorksForMaps) {
map<int, std::string> my_map;
my_map[0] = "a";
my_map[1] = "b";
map<int, std::string> test_map;
test_map[0] = "aa";
test_map[1] = "b";
const Matcher<const map<int, std::string>&> m = ContainerEq(my_map);
EXPECT_TRUE(m.Matches(my_map));
EXPECT_FALSE(m.Matches(test_map));
EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n"
"and doesn't have these expected elements: (0, \"a\")",
Explain(m, test_map));
}
TEST(ContainerEqExtraTest, WorksForNativeArray) {
int a1[] = { 1, 2, 3 };
int a2[] = { 1, 2, 3 };
int b[] = { 1, 2, 4 };
EXPECT_THAT(a1, ContainerEq(a2));
EXPECT_THAT(a1, Not(ContainerEq(b)));
}
TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) {
const char a1[][3] = { "hi", "lo" };
const char a2[][3] = { "hi", "lo" };
const char b[][3] = { "lo", "hi" };
// Tests using ContainerEq() in the first dimension.
EXPECT_THAT(a1, ContainerEq(a2));
EXPECT_THAT(a1, Not(ContainerEq(b)));
// Tests using ContainerEq() in the second dimension.
EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1])));
EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1])));
}
TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) {
const int a1[] = { 1, 2, 3 };
const int a2[] = { 1, 2, 3 };
const int b[] = { 1, 2, 3, 4 };
const int* const p1 = a1;
EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2));
EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b)));
const int c[] = { 1, 3, 2 };
EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c)));
}
TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) {
std::string a1[][3] = {
{ "hi", "hello", "ciao" },
{ "bye", "see you", "ciao" }
};
std::string a2[][3] = {
{ "hi", "hello", "ciao" },
{ "bye", "see you", "ciao" }
};
const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2);
EXPECT_THAT(a1, m);
a2[0][0] = "ha";
EXPECT_THAT(a1, m);
}
TEST(WhenSortedByTest, WorksForEmptyContainer) {
const vector<int> numbers;
EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre()));
EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1))));
}
TEST(WhenSortedByTest, WorksForNonEmptyContainer) {
vector<unsigned> numbers;
numbers.push_back(3);
numbers.push_back(1);
numbers.push_back(2);
numbers.push_back(2);
EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(),
ElementsAre(3, 2, 2, 1)));
EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(),
ElementsAre(1, 2, 2, 3))));
}
TEST(WhenSortedByTest, WorksForNonVectorContainer) {
list<string> words;
words.push_back("say");
words.push_back("hello");
words.push_back("world");
EXPECT_THAT(words, WhenSortedBy(less<string>(),
ElementsAre("hello", "say", "world")));
EXPECT_THAT(words, Not(WhenSortedBy(less<string>(),
ElementsAre("say", "hello", "world"))));
}
TEST(WhenSortedByTest, WorksForNativeArray) {
const int numbers[] = { 1, 3, 2, 4 };
const int sorted_numbers[] = { 1, 2, 3, 4 };
EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4)));
EXPECT_THAT(numbers, WhenSortedBy(less<int>(),
ElementsAreArray(sorted_numbers)));
EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4))));
}
TEST(WhenSortedByTest, CanDescribeSelf) {
const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2));
EXPECT_EQ("(when sorted) has 2 elements where\n"
"element #0 is equal to 1,\n"
"element #1 is equal to 2",
Describe(m));
EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n"
"element #0 isn't equal to 1, or\n"
"element #1 isn't equal to 2",
DescribeNegation(m));
}
TEST(WhenSortedByTest, ExplainsMatchResult) {
const int a[] = { 2, 1 };
EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match",
Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a));
EXPECT_EQ("which is { 1, 2 } when sorted",
Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a));
}
// WhenSorted() is a simple wrapper on WhenSortedBy(). Hence we don't
// need to test it as exhaustively as we test the latter.
TEST(WhenSortedTest, WorksForEmptyContainer) {
const vector<int> numbers;
EXPECT_THAT(numbers, WhenSorted(ElementsAre()));
EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1))));
}
TEST(WhenSortedTest, WorksForNonEmptyContainer) {
list<string> words;
words.push_back("3");
words.push_back("1");
words.push_back("2");
words.push_back("2");
EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3")));
EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2"))));
}
// Tests IsReadableTypeName().
TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) {
EXPECT_TRUE(IsReadableTypeName("int"));
EXPECT_TRUE(IsReadableTypeName("const unsigned char*"));
EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>"));
EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)"));
}
TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) {
EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName"));
EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]"));
EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass"));
}
TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) {
EXPECT_FALSE(
IsReadableTypeName("basic_string<char, std::char_traits<char> >"));
EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >"));
}
TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) {
EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)"));
}
// Tests JoinAsTuple().
TEST(JoinAsTupleTest, JoinsEmptyTuple) {
EXPECT_EQ("", JoinAsTuple(Strings()));
}
TEST(JoinAsTupleTest, JoinsOneTuple) {
const char* fields[] = { "1" };
EXPECT_EQ("1", JoinAsTuple(Strings(fields, fields + 1)));
}
TEST(JoinAsTupleTest, JoinsTwoTuple) {
const char* fields[] = { "1", "a" };
EXPECT_EQ("(1, a)", JoinAsTuple(Strings(fields, fields + 2)));
}
TEST(JoinAsTupleTest, JoinsTenTuple) {
const char* fields[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
EXPECT_EQ("(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)",
JoinAsTuple(Strings(fields, fields + 10)));
}
// Tests FormatMatcherDescription().
TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) {
EXPECT_EQ("is even",
FormatMatcherDescription(false, "IsEven", Strings()));
EXPECT_EQ("not (is even)",
FormatMatcherDescription(true, "IsEven", Strings()));
const char* params[] = { "5" };
EXPECT_EQ("equals 5",
FormatMatcherDescription(false, "Equals",
Strings(params, params + 1)));
const char* params2[] = { "5", "8" };
EXPECT_EQ("is in range (5, 8)",
FormatMatcherDescription(false, "IsInRange",
Strings(params2, params2 + 2)));
}
// Tests PolymorphicMatcher::mutable_impl().
TEST(PolymorphicMatcherTest, CanAccessMutableImpl) {
PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
DivisibleByImpl& impl = m.mutable_impl();
EXPECT_EQ(42, impl.divider());
impl.set_divider(0);
EXPECT_EQ(0, m.mutable_impl().divider());
}
// Tests PolymorphicMatcher::impl().
TEST(PolymorphicMatcherTest, CanAccessImpl) {
const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
const DivisibleByImpl& impl = m.impl();
EXPECT_EQ(42, impl.divider());
}
TEST(MatcherTupleTest, ExplainsMatchFailure) {
stringstream ss1;
ExplainMatchFailureTupleTo(make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)),
make_tuple('a', 10), &ss1);
EXPECT_EQ("", ss1.str()); // Successful match.
stringstream ss2;
ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
make_tuple(2, 'b'), &ss2);
EXPECT_EQ(" Expected arg #0: is > 5\n"
" Actual: 2, which is 3 less than 5\n"
" Expected arg #1: is equal to 'a' (97, 0x61)\n"
" Actual: 'b' (98, 0x62)\n",
ss2.str()); // Failed match where both arguments need explanation.
stringstream ss3;
ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
make_tuple(2, 'a'), &ss3);
EXPECT_EQ(" Expected arg #0: is > 5\n"
" Actual: 2, which is 3 less than 5\n",
ss3.str()); // Failed match where only one argument needs
// explanation.
}
// Tests Each().
TEST(EachTest, ExplainsMatchResultCorrectly) {
set<int> a; // empty
Matcher<set<int> > m = Each(2);
EXPECT_EQ("", Explain(m, a));
Matcher<const int(&)[1]> n = Each(1); // NOLINT
const int b[1] = { 1 };
EXPECT_EQ("", Explain(n, b));
n = Each(3);
EXPECT_EQ("whose element #0 doesn't match", Explain(n, b));
a.insert(1);
a.insert(2);
a.insert(3);
m = Each(GreaterThan(0));
EXPECT_EQ("", Explain(m, a));
m = Each(GreaterThan(10));
EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10",
Explain(m, a));
}
TEST(EachTest, DescribesItselfCorrectly) {
Matcher<vector<int> > m = Each(1);
EXPECT_EQ("only contains elements that is equal to 1", Describe(m));
Matcher<vector<int> > m2 = Not(m);
EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2));
}
TEST(EachTest, MatchesVectorWhenAllElementsMatch) {
vector<int> some_vector;
EXPECT_THAT(some_vector, Each(1));
some_vector.push_back(3);
EXPECT_THAT(some_vector, Not(Each(1)));
EXPECT_THAT(some_vector, Each(3));
some_vector.push_back(1);
some_vector.push_back(2);
EXPECT_THAT(some_vector, Not(Each(3)));
EXPECT_THAT(some_vector, Each(Lt(3.5)));
vector<string> another_vector;
another_vector.push_back("fee");
EXPECT_THAT(another_vector, Each(string("fee")));
another_vector.push_back("fie");
another_vector.push_back("foe");
another_vector.push_back("fum");
EXPECT_THAT(another_vector, Not(Each(string("fee"))));
}
TEST(EachTest, MatchesMapWhenAllElementsMatch) {
map<const char*, int> my_map;
const char* bar = "a string";
my_map[bar] = 2;
EXPECT_THAT(my_map, Each(make_pair(bar, 2)));
map<string, int> another_map;
EXPECT_THAT(another_map, Each(make_pair(string("fee"), 1)));
another_map["fee"] = 1;
EXPECT_THAT(another_map, Each(make_pair(string("fee"), 1)));
another_map["fie"] = 2;
another_map["foe"] = 3;
another_map["fum"] = 4;
EXPECT_THAT(another_map, Not(Each(make_pair(string("fee"), 1))));
EXPECT_THAT(another_map, Not(Each(make_pair(string("fum"), 1))));
EXPECT_THAT(another_map, Each(Pair(_, Gt(0))));
}
TEST(EachTest, AcceptsMatcher) {
const int a[] = { 1, 2, 3 };
EXPECT_THAT(a, Each(Gt(0)));
EXPECT_THAT(a, Not(Each(Gt(1))));
}
TEST(EachTest, WorksForNativeArrayAsTuple) {
const int a[] = { 1, 2 };
const int* const pointer = a;
EXPECT_THAT(make_tuple(pointer, 2), Each(Gt(0)));
EXPECT_THAT(make_tuple(pointer, 2), Not(Each(Gt(1))));
}
// For testing Pointwise().
class IsHalfOfMatcher {
public:
template <typename T1, typename T2>
bool MatchAndExplain(const tuple<T1, T2>& a_pair,
MatchResultListener* listener) const {
if (get<0>(a_pair) == get<1>(a_pair)/2) {
*listener << "where the second is " << get<1>(a_pair);
return true;
} else {
*listener << "where the second/2 is " << get<1>(a_pair)/2;
return false;
}
}
void DescribeTo(ostream* os) const {
*os << "are a pair where the first is half of the second";
}
void DescribeNegationTo(ostream* os) const {
*os << "are a pair where the first isn't half of the second";
}
};
PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() {
return MakePolymorphicMatcher(IsHalfOfMatcher());
}
TEST(PointwiseTest, DescribesSelf) {
vector<int> rhs;
rhs.push_back(1);
rhs.push_back(2);
rhs.push_back(3);
const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs);
EXPECT_EQ("contains 3 values, where each value and its corresponding value "
"in { 1, 2, 3 } are a pair where the first is half of the second",
Describe(m));
EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some "
"index i where x and the i-th value of { 1, 2, 3 } are a pair "
"where the first isn't half of the second",
DescribeNegation(m));
}
TEST(PointwiseTest, MakesCopyOfRhs) {
list<signed char> rhs;
rhs.push_back(2);
rhs.push_back(4);
int lhs[] = { 1, 2 };
const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs);
EXPECT_THAT(lhs, m);
// Changing rhs now shouldn't affect m, which made a copy of rhs.
rhs.push_back(6);
EXPECT_THAT(lhs, m);
}
TEST(PointwiseTest, WorksForLhsNativeArray) {
const int lhs[] = { 1, 2, 3 };
vector<int> rhs;
rhs.push_back(2);
rhs.push_back(4);
rhs.push_back(6);
EXPECT_THAT(lhs, Pointwise(Lt(), rhs));
EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
}
TEST(PointwiseTest, WorksForRhsNativeArray) {
const int rhs[] = { 1, 2, 3 };
vector<int> lhs;
lhs.push_back(2);
lhs.push_back(4);
lhs.push_back(6);
EXPECT_THAT(lhs, Pointwise(Gt(), rhs));
EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs)));
}
TEST(PointwiseTest, RejectsWrongSize) {
const double lhs[2] = { 1, 2 };
const int rhs[1] = { 0 };
EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
EXPECT_EQ("which contains 2 values",
Explain(Pointwise(Gt(), rhs), lhs));
const int rhs2[3] = { 0, 1, 2 };
EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2)));
}
TEST(PointwiseTest, RejectsWrongContent) {
const double lhs[3] = { 1, 2, 3 };
const int rhs[3] = { 2, 6, 4 };
EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs)));
EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, "
"where the second/2 is 3",
Explain(Pointwise(IsHalfOf(), rhs), lhs));
}
TEST(PointwiseTest, AcceptsCorrectContent) {
const double lhs[3] = { 1, 2, 3 };
const int rhs[3] = { 2, 4, 6 };
EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs));
EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs));
}
TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) {
const double lhs[3] = { 1, 2, 3 };
const int rhs[3] = { 2, 4, 6 };
const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf();
EXPECT_THAT(lhs, Pointwise(m1, rhs));
EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs));
// This type works as a tuple<const double&, const int&> can be
// implicitly cast to tuple<double, int>.
const Matcher<tuple<double, int> > m2 = IsHalfOf();
EXPECT_THAT(lhs, Pointwise(m2, rhs));
EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs));
}
} // namespace gmock_matchers_test
} // namespace testing