YouCompleteMe/cpp/BoostParts/boost/unordered/detail/buckets.hpp
Strahinja Val Markovic 0f7f32d96f Updating to boost 1.50
2012-07-21 11:37:40 -07:00

1055 lines
32 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_MANAGER_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_MANAGER_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/unordered/detail/util.hpp>
#include <boost/unordered/detail/allocator_helpers.hpp>
#include <boost/type_traits/aligned_storage.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/swap.hpp>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/iterator.hpp>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#endif
namespace boost { namespace unordered { namespace detail {
template <typename Types> struct table;
template <typename NodePointer> struct bucket;
struct ptr_bucket;
template <typename A, typename Bucket, typename Node, typename Policy>
struct buckets;
template <typename Types> struct table_impl;
template <typename Types> struct grouped_table_impl;
///////////////////////////////////////////////////////////////////
//
// Node construction
template <typename NodeAlloc>
struct node_constructor
{
private:
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
node_allocator& alloc_;
node_pointer node_;
bool constructed_;
public:
node_constructor(node_allocator& n) :
alloc_(n),
node_(),
constructed_(false)
{
}
~node_constructor();
void construct_node();
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
void construct_value(BOOST_UNORDERED_EMPLACE_ARGS)
{
BOOST_ASSERT(node_ && !constructed_);
boost::unordered::detail::construct_node(alloc_,
boost::addressof(*node_), BOOST_UNORDERED_EMPLACE_FORWARD);
node_->init(static_cast<typename node::link_pointer>(node_));
constructed_ = true;
}
template <typename A0>
void construct_value2(BOOST_FWD_REF(A0) a0)
{
BOOST_ASSERT(node_ && !constructed_);
# if defined(BOOST_UNORDERED_VARIADIC_MOVE)
boost::unordered::detail::construct_node(alloc_,
boost::addressof(*node_), boost::forward<A0>(a0));
# else
boost::unordered::detail::construct_node(alloc_,
boost::addressof(*node_),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
# endif
constructed_ = true;
node_->init(static_cast<typename node::link_pointer>(node_));
}
value_type const& value() const {
BOOST_ASSERT(node_ && constructed_);
return node_->value();
}
node_pointer get()
{
return node_;
}
// no throw
node_pointer release()
{
node_pointer p = node_;
node_ = node_pointer();
return p;
}
private:
node_constructor(node_constructor const&);
node_constructor& operator=(node_constructor const&);
};
template <typename Alloc>
node_constructor<Alloc>::~node_constructor()
{
if (node_) {
if (constructed_) {
boost::unordered::detail::destroy_node(alloc_,
boost::addressof(*node_));
}
node_allocator_traits::deallocate(alloc_, node_, 1);
}
}
template <typename Alloc>
void node_constructor<Alloc>::construct_node()
{
if(!node_) {
constructed_ = false;
node_ = node_allocator_traits::allocate(alloc_, 1);
}
else if (constructed_) {
boost::unordered::detail::destroy_node(alloc_,
boost::addressof(*node_));
constructed_ = false;
}
}
///////////////////////////////////////////////////////////////////
//
// Bucket
template <typename NodePointer>
struct bucket
{
typedef NodePointer previous_pointer;
previous_pointer next_;
bucket() : next_() {}
previous_pointer first_from_start()
{
return next_;
}
enum { extra_node = true };
};
struct ptr_bucket
{
typedef ptr_bucket* previous_pointer;
previous_pointer next_;
ptr_bucket() : next_(0) {}
previous_pointer first_from_start()
{
return this;
}
enum { extra_node = false };
};
template <typename LinkPointer>
struct node_base
{
typedef LinkPointer link_pointer;
link_pointer next_;
node_base() : next_() {}
};
}}}
namespace boost { namespace unordered { namespace iterator_detail {
////////////////////////////////////////////////////////////////////////////
// Iterators
//
// all no throw
template <typename NodePointer, typename Value> struct iterator;
template <typename ConstNodePointer, typename NodePointer,
typename Value> struct c_iterator;
template <typename NodePointer, typename Value, typename Policy>
struct l_iterator;
template <typename ConstNodePointer, typename NodePointer,
typename Value, typename Policy> struct cl_iterator;
// Local Iterators
//
// all no throw
template <typename NodePointer, typename Value, typename Policy>
struct l_iterator
: public boost::iterator<
std::forward_iterator_tag, Value, std::ptrdiff_t,
NodePointer, Value&>
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename ConstNodePointer, typename NodePointer2,
typename Value2, typename Policy2>
friend struct boost::unordered::iterator_detail::cl_iterator;
private:
#endif
typedef NodePointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<NodePointer, Value>
iterator;
node_pointer ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
l_iterator() : ptr_() {}
l_iterator(iterator x, std::size_t b, std::size_t c)
: ptr_(x.node_), bucket_(b), bucket_count_(c) {}
Value& operator*() const {
return ptr_->value();
}
Value* operator->() const {
return ptr_->value_ptr();
}
l_iterator& operator++() {
ptr_ = static_cast<node_pointer>(ptr_->next_);
if (ptr_ && Policy::to_bucket(bucket_count_, ptr_->hash_)
!= bucket_)
ptr_ = node_pointer();
return *this;
}
l_iterator operator++(int) {
l_iterator tmp(*this);
++(*this);
return tmp;
}
bool operator==(l_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator!=(l_iterator x) const {
return ptr_ != x.ptr_;
}
};
template <typename ConstNodePointer, typename NodePointer, typename Value,
typename Policy>
struct cl_iterator
: public boost::iterator<
std::forward_iterator_tag, Value, std::ptrdiff_t,
ConstNodePointer, Value const&>
{
friend struct boost::unordered::iterator_detail::l_iterator
<NodePointer, Value, Policy>;
private:
typedef NodePointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<NodePointer, Value>
iterator;
node_pointer ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
cl_iterator() : ptr_() {}
cl_iterator(iterator x, std::size_t b, std::size_t c) :
ptr_(x.node_), bucket_(b), bucket_count_(c) {}
cl_iterator(boost::unordered::iterator_detail::l_iterator<
NodePointer, Value, Policy> const& x) :
ptr_(x.ptr_), bucket_(x.bucket_), bucket_count_(x.bucket_count_)
{}
Value const&
operator*() const {
return ptr_->value();
}
Value const* operator->() const {
return ptr_->value_ptr();
}
cl_iterator& operator++() {
ptr_ = static_cast<node_pointer>(ptr_->next_);
if (ptr_ && Policy::to_bucket(bucket_count_, ptr_->hash_)
!= bucket_)
ptr_ = node_pointer();
return *this;
}
cl_iterator operator++(int) {
cl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(cl_iterator const& x, cl_iterator const& y) {
return x.ptr_ == y.ptr_;
}
friend bool operator!=(cl_iterator const& x, cl_iterator const& y) {
return x.ptr_ != y.ptr_;
}
};
template <typename NodePointer, typename Value>
struct iterator
: public boost::iterator<
std::forward_iterator_tag, Value, std::ptrdiff_t,
NodePointer, Value&>
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename, typename, typename>
friend struct boost::unordered::iterator_detail::c_iterator;
template <typename, typename, typename>
friend struct boost::unordered::iterator_detail::l_iterator;
template <typename, typename, typename, typename>
friend struct boost::unordered::iterator_detail::cl_iterator;
template <typename>
friend struct boost::unordered::detail::table;
template <typename, typename, typename, typename>
friend struct boost::unordered::detail::buckets;
template <typename>
friend struct boost::unordered::detail::table_impl;
template <typename>
friend struct boost::unordered::detail::grouped_table_impl;
private:
#endif
typedef NodePointer node_pointer;
node_pointer node_;
public:
iterator() : node_() {}
explicit iterator(node_pointer const& x) : node_(x) {}
Value& operator*() const {
return node_->value();
}
Value* operator->() const {
return &node_->value();
}
iterator& operator++() {
node_ = static_cast<node_pointer>(node_->next_);
return *this;
}
iterator operator++(int) {
iterator tmp(node_);
node_ = static_cast<node_pointer>(node_->next_);
return tmp;
}
bool operator==(iterator const& x) const {
return node_ == x.node_;
}
bool operator!=(iterator const& x) const {
return node_ != x.node_;
}
};
template <typename ConstNodePointer, typename NodePointer, typename Value>
struct c_iterator
: public boost::iterator<
std::forward_iterator_tag, Value, std::ptrdiff_t,
ConstNodePointer, Value const&>
{
friend struct boost::unordered::iterator_detail::iterator<
NodePointer, Value>;
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename>
friend struct boost::unordered::detail::table;
template <typename, typename, typename, typename>
friend struct boost::unordered::detail::buckets;
template <typename>
friend struct boost::unordered::detail::table_impl;
template <typename>
friend struct boost::unordered::detail::grouped_table_impl;
private:
#endif
typedef NodePointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<NodePointer, Value>
iterator;
node_pointer node_;
public:
c_iterator() : node_() {}
explicit c_iterator(node_pointer const& x) : node_(x) {}
c_iterator(boost::unordered::iterator_detail::iterator<
NodePointer, Value> const& x) : node_(x.node_) {}
Value const& operator*() const {
return node_->value();
}
Value const* operator->() const {
return &node_->value();
}
c_iterator& operator++() {
node_ = static_cast<node_pointer>(node_->next_);
return *this;
}
c_iterator operator++(int) {
c_iterator tmp(node_);
node_ = static_cast<node_pointer>(node_->next_);
return tmp;
}
friend bool operator==(c_iterator const& x, c_iterator const& y) {
return x.node_ == y.node_;
}
friend bool operator!=(c_iterator const& x, c_iterator const& y) {
return x.node_ != y.node_;
}
};
}}}
namespace boost { namespace unordered { namespace detail {
///////////////////////////////////////////////////////////////////
//
// Hash Policy
//
// Don't really want buckets to derive from this, but will for now.
template <typename SizeT>
struct prime_policy
{
template <typename Hash, typename T>
static inline SizeT apply_hash(Hash const& hf, T const& x) {
return hf(x);
}
static inline SizeT to_bucket(SizeT bucket_count, SizeT hash) {
return hash % bucket_count;
}
static inline SizeT new_bucket_count(SizeT min) {
return boost::unordered::detail::next_prime(min);
}
static inline SizeT prev_bucket_count(SizeT max) {
return boost::unordered::detail::prev_prime(max);
}
};
template <typename SizeT>
struct mix64_policy
{
template <typename Hash, typename T>
static inline SizeT apply_hash(Hash const& hf, T const& x) {
SizeT key = hf(x);
key = (~key) + (key << 21); // key = (key << 21) - key - 1;
key = key ^ (key >> 24);
key = (key + (key << 3)) + (key << 8); // key * 265
key = key ^ (key >> 14);
key = (key + (key << 2)) + (key << 4); // key * 21
key = key ^ (key >> 28);
key = key + (key << 31);
return key;
}
static inline SizeT to_bucket(SizeT bucket_count, SizeT hash) {
return hash & (bucket_count - 1);
}
static inline SizeT new_bucket_count(SizeT min) {
if (min <= 4) return 4;
--min;
min |= min >> 1;
min |= min >> 2;
min |= min >> 4;
min |= min >> 8;
min |= min >> 16;
min |= min >> 32;
return min + 1;
}
static inline SizeT prev_bucket_count(SizeT max) {
max |= max >> 1;
max |= max >> 2;
max |= max >> 4;
max |= max >> 8;
max |= max >> 16;
max |= max >> 32;
return (max >> 1) + 1;
}
};
template <int digits, int radix>
struct pick_policy_impl {
typedef prime_policy<std::size_t> type;
};
template <>
struct pick_policy_impl<64, 2> {
typedef mix64_policy<std::size_t> type;
};
struct pick_policy :
pick_policy_impl<
std::numeric_limits<std::size_t>::digits,
std::numeric_limits<std::size_t>::radix> {};
///////////////////////////////////////////////////////////////////
//
// Buckets
template <typename A, typename Bucket, typename Node, typename Policy>
struct buckets : Policy
{
private:
buckets(buckets const&);
buckets& operator=(buckets const&);
public:
typedef boost::unordered::detail::allocator_traits<A> traits;
typedef typename traits::value_type value_type;
typedef Policy policy;
typedef Node node;
typedef Bucket bucket;
typedef typename boost::unordered::detail::rebind_wrap<A, node>::type
node_allocator;
typedef typename boost::unordered::detail::rebind_wrap<A, bucket>::type
bucket_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef boost::unordered::detail::allocator_traits<bucket_allocator>
bucket_allocator_traits;
typedef typename node_allocator_traits::pointer
node_pointer;
typedef typename node_allocator_traits::const_pointer
const_node_pointer;
typedef typename bucket_allocator_traits::pointer
bucket_pointer;
typedef typename bucket::previous_pointer
previous_pointer;
typedef boost::unordered::detail::node_constructor<node_allocator>
node_constructor;
typedef boost::unordered::iterator_detail::
iterator<node_pointer, value_type> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<const_node_pointer, node_pointer, value_type> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node_pointer, value_type, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<const_node_pointer, node_pointer, value_type, policy>
cl_iterator;
// Members
bucket_pointer buckets_;
std::size_t bucket_count_;
std::size_t size_;
boost::unordered::detail::compressed<bucket_allocator, node_allocator>
allocators_;
// Data access
bucket_allocator const& bucket_alloc() const
{
return allocators_.first();
}
node_allocator const& node_alloc() const
{
return allocators_.second();
}
bucket_allocator& bucket_alloc()
{
return allocators_.first();
}
node_allocator& node_alloc()
{
return allocators_.second();
}
std::size_t max_bucket_count() const
{
// -1 to account for the start bucket.
return policy::prev_bucket_count(
bucket_allocator_traits::max_size(bucket_alloc()) - 1);
}
bucket_pointer get_bucket(std::size_t bucket_index) const
{
return buckets_ + static_cast<std::ptrdiff_t>(bucket_index);
}
previous_pointer get_previous_start() const
{
return this->get_bucket(this->bucket_count_)->first_from_start();
}
previous_pointer get_previous_start(std::size_t bucket_index) const
{
return this->get_bucket(bucket_index)->next_;
}
iterator get_start() const
{
return iterator(static_cast<node_pointer>(
this->get_previous_start()->next_));
}
iterator get_start(std::size_t bucket_index) const
{
previous_pointer prev = this->get_previous_start(bucket_index);
return prev ? iterator(static_cast<node_pointer>(prev->next_)) :
iterator();
}
float load_factor() const
{
BOOST_ASSERT(this->bucket_count_ != 0);
return static_cast<float>(this->size_)
/ static_cast<float>(this->bucket_count_);
}
std::size_t bucket_size(std::size_t index) const
{
if (!this->size_) return 0;
iterator it = this->get_start(index);
if (!it.node_) return 0;
std::size_t count = 0;
while(it.node_ && policy::to_bucket(
this->bucket_count_, it.node_->hash_) == index)
{
++count;
++it;
}
return count;
}
////////////////////////////////////////////////////////////////////////
// Constructors
buckets(node_allocator const& a, std::size_t bucket_count) :
buckets_(),
bucket_count_(bucket_count),
size_(),
allocators_(a,a)
{
}
buckets(buckets& b, boost::unordered::detail::move_tag m) :
buckets_(),
bucket_count_(b.bucket_count_),
size_(),
allocators_(b.allocators_, m)
{
swap(b);
}
template <typename Types>
buckets(boost::unordered::detail::table<Types>& x,
boost::unordered::detail::move_tag m) :
buckets_(),
bucket_count_(x.bucket_count_),
size_(),
allocators_(x.allocators_, m)
{
swap(x);
}
////////////////////////////////////////////////////////////////////////
// Create buckets
// (never called in constructor to avoid exception issues)
void create_buckets()
{
boost::unordered::detail::array_constructor<bucket_allocator>
constructor(bucket_alloc());
// Creates an extra bucket to act as the start node.
constructor.construct(bucket(), this->bucket_count_ + 1);
if (bucket::extra_node)
{
node_constructor a(this->node_alloc());
a.construct_node();
// Since this node is just to mark the beginning it doesn't
// contain a value, so just construct node::node_base
// which containers the pointer to the next element.
node_allocator_traits::construct(node_alloc(),
static_cast<typename node::node_base*>(
boost::addressof(*a.get())),
typename node::node_base());
(constructor.get() +
static_cast<std::ptrdiff_t>(this->bucket_count_))->next_ =
a.release();
}
this->buckets_ = constructor.release();
}
////////////////////////////////////////////////////////////////////////
// Swap and Move
void swap(buckets& other, false_type = false_type())
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
boost::swap(buckets_, other.buckets_);
boost::swap(bucket_count_, other.bucket_count_);
boost::swap(size_, other.size_);
}
void swap(buckets& other, true_type)
{
allocators_.swap(other.allocators_);
boost::swap(buckets_, other.buckets_);
boost::swap(bucket_count_, other.bucket_count_);
boost::swap(size_, other.size_);
}
void move_buckets_from(buckets& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
BOOST_ASSERT(!this->buckets_);
this->buckets_ = other.buckets_;
this->bucket_count_ = other.bucket_count_;
this->size_ = other.size_;
other.buckets_ = bucket_pointer();
other.bucket_count_ = 0;
other.size_ = 0;
}
////////////////////////////////////////////////////////////////////////
// Delete/destruct
inline void delete_node(c_iterator n)
{
boost::unordered::detail::destroy_node(
node_alloc(), boost::addressof(*n.node_));
node_allocator_traits::deallocate(node_alloc(), n.node_, 1);
--size_;
}
std::size_t delete_nodes(c_iterator begin, c_iterator end)
{
std::size_t count = 0;
while(begin != end) {
c_iterator n = begin;
++begin;
delete_node(n);
++count;
}
return count;
}
inline void delete_extra_node(bucket_pointer) {}
inline void delete_extra_node(node_pointer n) {
node_allocator_traits::destroy(node_alloc(),
static_cast<typename node::node_base*>(boost::addressof(*n)));
node_allocator_traits::deallocate(node_alloc(), n, 1);
}
inline ~buckets()
{
this->delete_buckets();
}
void delete_buckets()
{
if(this->buckets_) {
previous_pointer prev = this->get_previous_start();
while(prev->next_) {
node_pointer n = static_cast<node_pointer>(prev->next_);
prev->next_ = n->next_;
delete_node(iterator(n));
}
delete_extra_node(prev);
bucket_pointer end = this->get_bucket(this->bucket_count_ + 1);
for(bucket_pointer it = this->buckets_; it != end; ++it)
{
bucket_allocator_traits::destroy(bucket_alloc(),
boost::addressof(*it));
}
bucket_allocator_traits::deallocate(bucket_alloc(),
this->buckets_, this->bucket_count_ + 1);
this->buckets_ = bucket_pointer();
}
BOOST_ASSERT(!this->size_);
}
void clear()
{
if(!this->size_) return;
previous_pointer prev = this->get_previous_start();
while(prev->next_) {
node_pointer n = static_cast<node_pointer>(prev->next_);
prev->next_ = n->next_;
delete_node(iterator(n));
}
bucket_pointer end = this->get_bucket(this->bucket_count_);
for(bucket_pointer it = this->buckets_; it != end; ++it)
{
it->next_ = node_pointer();
}
BOOST_ASSERT(!this->size_);
}
// This is called after erasing a node or group of nodes to fix up
// the bucket pointers.
void fix_buckets(bucket_pointer this_bucket,
previous_pointer prev, node_pointer next)
{
if (!next)
{
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
else
{
bucket_pointer next_bucket = this->get_bucket(
policy::to_bucket(this->bucket_count_, next->hash_));
if (next_bucket != this_bucket)
{
next_bucket->next_ = prev;
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
}
}
// This is called after erasing a range of nodes to fix any bucket
// pointers into that range.
void fix_buckets_range(std::size_t bucket_index,
previous_pointer prev, node_pointer begin, node_pointer end)
{
node_pointer n = begin;
// If we're not at the start of the current bucket, then
// go to the start of the next bucket.
if (this->get_bucket(bucket_index)->next_ != prev)
{
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) return;
std::size_t new_bucket_index =
policy::to_bucket(this->bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
break;
}
}
}
// Iterate through the remaining nodes, clearing out the bucket
// pointers.
this->get_bucket(bucket_index)->next_ = previous_pointer();
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) break;
std::size_t new_bucket_index =
policy::to_bucket(this->bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
this->get_bucket(bucket_index)->next_ = previous_pointer();
}
};
// Finally fix the bucket containing the trailing node.
if (n) {
this->get_bucket(
policy::to_bucket(this->bucket_count_, n->hash_))->next_
= prev;
}
}
};
////////////////////////////////////////////////////////////////////////////
// Functions
// Assigning and swapping the equality and hash function objects
// needs strong exception safety. To implement that normally we'd
// require one of them to be known to not throw and the other to
// guarantee strong exception safety. Unfortunately they both only
// have basic exception safety. So to acheive strong exception
// safety we have storage space for two copies, and assign the new
// copies to the unused space. Then switch to using that to use
// them. This is implemented in 'set_hash_functions' which
// atomically assigns the new function objects in a strongly
// exception safe manner.
template <class H, class P> class set_hash_functions;
template <class H, class P>
class functions
{
friend class boost::unordered::detail::set_hash_functions<H, P>;
functions& operator=(functions const&);
typedef compressed<H, P> function_pair;
typedef typename boost::aligned_storage<
sizeof(function_pair),
boost::alignment_of<function_pair>::value>::type aligned_function;
bool current_; // The currently active functions.
aligned_function funcs_[2];
function_pair const& current() const {
return *static_cast<function_pair const*>(
static_cast<void const*>(&funcs_[current_]));
}
void construct(bool which, H const& hf, P const& eq)
{
new((void*) &funcs_[which]) function_pair(hf, eq);
}
void construct(bool which, function_pair const& f)
{
new((void*) &funcs_[which]) function_pair(f);
}
void destroy(bool which)
{
boost::unordered::detail::destroy((function_pair*)(&funcs_[which]));
}
public:
functions(H const& hf, P const& eq)
: current_(false)
{
construct(current_, hf, eq);
}
functions(functions const& bf)
: current_(false)
{
construct(current_, bf.current());
}
~functions() {
this->destroy(current_);
}
H const& hash_function() const {
return current().first();
}
P const& key_eq() const {
return current().second();
}
};
template <class H, class P>
class set_hash_functions
{
set_hash_functions(set_hash_functions const&);
set_hash_functions& operator=(set_hash_functions const&);
functions<H,P>& functions_;
bool tmp_functions_;
public:
set_hash_functions(functions<H,P>& f, H const& h, P const& p)
: functions_(f),
tmp_functions_(!f.current_)
{
f.construct(tmp_functions_, h, p);
}
set_hash_functions(functions<H,P>& f, functions<H,P> const& other)
: functions_(f),
tmp_functions_(!f.current_)
{
f.construct(tmp_functions_, other.current());
}
~set_hash_functions()
{
functions_.destroy(tmp_functions_);
}
void commit()
{
functions_.current_ = tmp_functions_;
tmp_functions_ = !tmp_functions_;
}
};
}}}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif