2822 lines
130 KiB
C++
2822 lines
130 KiB
C++
// Implementation of the base circular buffer.
|
|
|
|
// Copyright (c) 2003-2008 Jan Gaspar
|
|
|
|
// Use, modification, and distribution is subject to the Boost Software
|
|
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#if !defined(BOOST_CIRCULAR_BUFFER_BASE_HPP)
|
|
#define BOOST_CIRCULAR_BUFFER_BASE_HPP
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1200
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <boost/call_traits.hpp>
|
|
#include <boost/concept_check.hpp>
|
|
#include <boost/limits.hpp>
|
|
#include <boost/iterator/reverse_iterator.hpp>
|
|
#include <boost/iterator/iterator_traits.hpp>
|
|
#include <boost/type_traits/is_stateless.hpp>
|
|
#include <boost/type_traits/is_integral.hpp>
|
|
#include <boost/type_traits/is_scalar.hpp>
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <deque>
|
|
#if !defined(BOOST_NO_EXCEPTIONS)
|
|
#include <stdexcept>
|
|
#endif
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
#include <cstring>
|
|
#endif
|
|
#if BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3205))
|
|
#include <stddef.h>
|
|
#endif
|
|
|
|
#if defined(BOOST_NO_STDC_NAMESPACE)
|
|
namespace std {
|
|
using ::memset;
|
|
}
|
|
#endif
|
|
|
|
namespace boost {
|
|
|
|
/*!
|
|
\class circular_buffer
|
|
\brief Circular buffer - a STL compliant container.
|
|
\param T The type of the elements stored in the <code>circular_buffer</code>.
|
|
\par Type Requirements T
|
|
The <code>T</code> has to be <a href="http://www.sgi.com/tech/stl/Assignable.html">
|
|
SGIAssignable</a> (SGI STL defined combination of <a href="../../utility/Assignable.html">
|
|
Assignable</a> and <a href="../../utility/CopyConstructible.html">CopyConstructible</a>).
|
|
Moreover <code>T</code> has to be <a href="http://www.sgi.com/tech/stl/DefaultConstructible.html">
|
|
DefaultConstructible</a> if supplied as a default parameter when invoking some of the
|
|
<code>circular_buffer</code>'s methods e.g.
|
|
<code>insert(iterator pos, const value_type& item = %value_type())</code>. And
|
|
<a href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</a> and/or
|
|
<a href="../../utility/LessThanComparable.html">LessThanComparable</a> if the <code>circular_buffer</code>
|
|
will be compared with another container.
|
|
\param Alloc The allocator type used for all internal memory management.
|
|
\par Type Requirements Alloc
|
|
The <code>Alloc</code> has to meet the allocator requirements imposed by STL.
|
|
\par Default Alloc
|
|
std::allocator<T>
|
|
|
|
For detailed documentation of the circular_buffer visit:
|
|
http://www.boost.org/libs/circular_buffer/doc/circular_buffer.html
|
|
*/
|
|
template <class T, class Alloc>
|
|
class circular_buffer
|
|
/*! \cond */
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
: public cb_details::debug_iterator_registry
|
|
#endif
|
|
/*! \endcond */
|
|
{
|
|
|
|
// Requirements
|
|
BOOST_CLASS_REQUIRE(T, boost, SGIAssignableConcept);
|
|
|
|
public:
|
|
// Basic types
|
|
|
|
//! The type of elements stored in the <code>circular_buffer</code>.
|
|
typedef typename Alloc::value_type value_type;
|
|
|
|
//! A pointer to an element.
|
|
typedef typename Alloc::pointer pointer;
|
|
|
|
//! A const pointer to the element.
|
|
typedef typename Alloc::const_pointer const_pointer;
|
|
|
|
//! A reference to an element.
|
|
typedef typename Alloc::reference reference;
|
|
|
|
//! A const reference to an element.
|
|
typedef typename Alloc::const_reference const_reference;
|
|
|
|
//! The distance type.
|
|
/*!
|
|
(A signed integral type used to represent the distance between two iterators.)
|
|
*/
|
|
typedef typename Alloc::difference_type difference_type;
|
|
|
|
//! The size type.
|
|
/*!
|
|
(An unsigned integral type that can represent any non-negative value of the container's distance type.)
|
|
*/
|
|
typedef typename Alloc::size_type size_type;
|
|
|
|
//! The type of an allocator used in the <code>circular_buffer</code>.
|
|
typedef Alloc allocator_type;
|
|
|
|
// Iterators
|
|
|
|
//! A const (random access) iterator used to iterate through the <code>circular_buffer</code>.
|
|
typedef cb_details::iterator< circular_buffer<T, Alloc>, cb_details::const_traits<Alloc> > const_iterator;
|
|
|
|
//! A (random access) iterator used to iterate through the <code>circular_buffer</code>.
|
|
typedef cb_details::iterator< circular_buffer<T, Alloc>, cb_details::nonconst_traits<Alloc> > iterator;
|
|
|
|
//! A const iterator used to iterate backwards through a <code>circular_buffer</code>.
|
|
typedef boost::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
|
|
//! An iterator used to iterate backwards through a <code>circular_buffer</code>.
|
|
typedef boost::reverse_iterator<iterator> reverse_iterator;
|
|
|
|
// Container specific types
|
|
|
|
//! An array range.
|
|
/*!
|
|
(A typedef for the <a href="http://www.sgi.com/tech/stl/pair.html"><code>std::pair</code></a> where
|
|
its first element is a pointer to a beginning of an array and its second element represents
|
|
a size of the array.)
|
|
*/
|
|
typedef std::pair<pointer, size_type> array_range;
|
|
|
|
//! A range of a const array.
|
|
/*!
|
|
(A typedef for the <a href="http://www.sgi.com/tech/stl/pair.html"><code>std::pair</code></a> where
|
|
its first element is a pointer to a beginning of a const array and its second element represents
|
|
a size of the const array.)
|
|
*/
|
|
typedef std::pair<const_pointer, size_type> const_array_range;
|
|
|
|
//! The capacity type.
|
|
/*!
|
|
(Same as <code>size_type</code> - defined for consistency with the
|
|
<a href="space_optimized.html"><code>circular_buffer_space_optimized</code></a>.)
|
|
*/
|
|
typedef size_type capacity_type;
|
|
|
|
// Helper types
|
|
|
|
// A type representing the "best" way to pass the value_type to a method.
|
|
typedef typename call_traits<value_type>::param_type param_value_type;
|
|
|
|
// A type representing the "best" way to return the value_type from a const method.
|
|
typedef typename call_traits<value_type>::param_type return_value_type;
|
|
|
|
private:
|
|
// Member variables
|
|
|
|
//! The internal buffer used for storing elements in the circular buffer.
|
|
pointer m_buff;
|
|
|
|
//! The internal buffer's end (end of the storage space).
|
|
pointer m_end;
|
|
|
|
//! The virtual beginning of the circular buffer.
|
|
pointer m_first;
|
|
|
|
//! The virtual end of the circular buffer (one behind the last element).
|
|
pointer m_last;
|
|
|
|
//! The number of items currently stored in the circular buffer.
|
|
size_type m_size;
|
|
|
|
//! The allocator.
|
|
allocator_type m_alloc;
|
|
|
|
// Friends
|
|
#if defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
|
|
friend iterator;
|
|
friend const_iterator;
|
|
#else
|
|
template <class Buff, class Traits> friend struct cb_details::iterator;
|
|
#endif
|
|
|
|
public:
|
|
// Allocator
|
|
|
|
//! Get the allocator.
|
|
/*!
|
|
\return The allocator.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>get_allocator()</code> for obtaining an allocator %reference.
|
|
*/
|
|
allocator_type get_allocator() const { return m_alloc; }
|
|
|
|
//! Get the allocator reference.
|
|
/*!
|
|
\return A reference to the allocator.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\note This method was added in order to optimize obtaining of the allocator with a state,
|
|
although use of stateful allocators in STL is discouraged.
|
|
\sa <code>get_allocator() const</code>
|
|
*/
|
|
allocator_type& get_allocator() { return m_alloc; }
|
|
|
|
// Element access
|
|
|
|
//! Get the iterator pointing to the beginning of the <code>circular_buffer</code>.
|
|
/*!
|
|
\return A random access iterator pointing to the first element of the <code>circular_buffer</code>. If the
|
|
<code>circular_buffer</code> is empty it returns an iterator equal to the one returned by
|
|
<code>end()</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>end()</code>, <code>rbegin()</code>, <code>rend()</code>
|
|
*/
|
|
iterator begin() { return iterator(this, empty() ? 0 : m_first); }
|
|
|
|
//! Get the iterator pointing to the end of the <code>circular_buffer</code>.
|
|
/*!
|
|
\return A random access iterator pointing to the element "one behind" the last element of the <code>
|
|
circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to
|
|
the one returned by <code>begin()</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>begin()</code>, <code>rbegin()</code>, <code>rend()</code>
|
|
*/
|
|
iterator end() { return iterator(this, 0); }
|
|
|
|
//! Get the const iterator pointing to the beginning of the <code>circular_buffer</code>.
|
|
/*!
|
|
\return A const random access iterator pointing to the first element of the <code>circular_buffer</code>. If
|
|
the <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by
|
|
<code>end() const</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>end() const</code>, <code>rbegin() const</code>, <code>rend() const</code>
|
|
*/
|
|
const_iterator begin() const { return const_iterator(this, empty() ? 0 : m_first); }
|
|
|
|
//! Get the const iterator pointing to the end of the <code>circular_buffer</code>.
|
|
/*!
|
|
\return A const random access iterator pointing to the element "one behind" the last element of the <code>
|
|
circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to
|
|
the one returned by <code>begin() const</code> const.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>begin() const</code>, <code>rbegin() const</code>, <code>rend() const</code>
|
|
*/
|
|
const_iterator end() const { return const_iterator(this, 0); }
|
|
|
|
//! Get the iterator pointing to the beginning of the "reversed" <code>circular_buffer</code>.
|
|
/*!
|
|
\return A reverse random access iterator pointing to the last element of the <code>circular_buffer</code>.
|
|
If the <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by
|
|
<code>rend()</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>rend()</code>, <code>begin()</code>, <code>end()</code>
|
|
*/
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
|
|
//! Get the iterator pointing to the end of the "reversed" <code>circular_buffer</code>.
|
|
/*!
|
|
\return A reverse random access iterator pointing to the element "one before" the first element of the <code>
|
|
circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to
|
|
the one returned by <code>rbegin()</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>rbegin()</code>, <code>begin()</code>, <code>end()</code>
|
|
*/
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
|
|
//! Get the const iterator pointing to the beginning of the "reversed" <code>circular_buffer</code>.
|
|
/*!
|
|
\return A const reverse random access iterator pointing to the last element of the
|
|
<code>circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal
|
|
to the one returned by <code>rend() const</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>rend() const</code>, <code>begin() const</code>, <code>end() const</code>
|
|
*/
|
|
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
|
|
|
|
//! Get the const iterator pointing to the end of the "reversed" <code>circular_buffer</code>.
|
|
/*!
|
|
\return A const reverse random access iterator pointing to the element "one before" the first element of the
|
|
<code>circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal
|
|
to the one returned by <code>rbegin() const</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>rbegin() const</code>, <code>begin() const</code>, <code>end() const</code>
|
|
*/
|
|
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
|
|
|
|
//! Get the element at the <code>index</code> position.
|
|
/*!
|
|
\pre <code>0 \<= index \&\& index \< size()</code>
|
|
\param index The position of the element.
|
|
\return A reference to the element at the <code>index</code> position.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>at()</code>
|
|
*/
|
|
reference operator [] (size_type index) {
|
|
BOOST_CB_ASSERT(index < size()); // check for invalid index
|
|
return *add(m_first, index);
|
|
}
|
|
|
|
//! Get the element at the <code>index</code> position.
|
|
/*!
|
|
\pre <code>0 \<= index \&\& index \< size()</code>
|
|
\param index The position of the element.
|
|
\return A const reference to the element at the <code>index</code> position.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>\link at(size_type)const at() const \endlink</code>
|
|
*/
|
|
return_value_type operator [] (size_type index) const {
|
|
BOOST_CB_ASSERT(index < size()); // check for invalid index
|
|
return *add(m_first, index);
|
|
}
|
|
|
|
//! Get the element at the <code>index</code> position.
|
|
/*!
|
|
\param index The position of the element.
|
|
\return A reference to the element at the <code>index</code> position.
|
|
\throws <code>std::out_of_range</code> when the <code>index</code> is invalid (when
|
|
<code>index >= size()</code>).
|
|
\par Exception Safety
|
|
Strong.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>\link operator[](size_type) operator[] \endlink</code>
|
|
*/
|
|
reference at(size_type index) {
|
|
check_position(index);
|
|
return (*this)[index];
|
|
}
|
|
|
|
//! Get the element at the <code>index</code> position.
|
|
/*!
|
|
\param index The position of the element.
|
|
\return A const reference to the element at the <code>index</code> position.
|
|
\throws <code>std::out_of_range</code> when the <code>index</code> is invalid (when
|
|
<code>index >= size()</code>).
|
|
\par Exception Safety
|
|
Strong.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>\link operator[](size_type)const operator[] const \endlink</code>
|
|
*/
|
|
return_value_type at(size_type index) const {
|
|
check_position(index);
|
|
return (*this)[index];
|
|
}
|
|
|
|
//! Get the first element.
|
|
/*!
|
|
\pre <code>!empty()</code>
|
|
\return A reference to the first element of the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>back()</code>
|
|
*/
|
|
reference front() {
|
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available)
|
|
return *m_first;
|
|
}
|
|
|
|
//! Get the last element.
|
|
/*!
|
|
\pre <code>!empty()</code>
|
|
\return A reference to the last element of the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>front()</code>
|
|
*/
|
|
reference back() {
|
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available)
|
|
return *((m_last == m_buff ? m_end : m_last) - 1);
|
|
}
|
|
|
|
//! Get the first element.
|
|
/*!
|
|
\pre <code>!empty()</code>
|
|
\return A const reference to the first element of the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>back() const</code>
|
|
*/
|
|
return_value_type front() const {
|
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available)
|
|
return *m_first;
|
|
}
|
|
|
|
//! Get the last element.
|
|
/*!
|
|
\pre <code>!empty()</code>
|
|
\return A const reference to the last element of the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>front() const</code>
|
|
*/
|
|
return_value_type back() const {
|
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available)
|
|
return *((m_last == m_buff ? m_end : m_last) - 1);
|
|
}
|
|
|
|
//! Get the first continuous array of the internal buffer.
|
|
/*!
|
|
This method in combination with <code>array_two()</code> can be useful when passing the stored data into
|
|
a legacy C API as an array. Suppose there is a <code>circular_buffer</code> of capacity 10, containing 7
|
|
characters <code>'a', 'b', ..., 'g'</code> where <code>buff[0] == 'a'</code>, <code>buff[1] == 'b'</code>,
|
|
... and <code>buff[6] == 'g'</code>:<br><br>
|
|
<code>circular_buffer<char> buff(10);</code><br><br>
|
|
The internal representation is often not linear and the state of the internal buffer may look like this:<br>
|
|
<br><code>
|
|
|e|f|g| | | |a|b|c|d|<br>
|
|
end ---^<br>
|
|
begin -------^</code><br><br>
|
|
where <code>|a|b|c|d|</code> represents the "array one", <code>|e|f|g|</code> represents the "array two" and
|
|
<code>| | | |</code> is a free space.<br>
|
|
Now consider a typical C style function for writing data into a file:<br><br>
|
|
<code>int write(int file_desc, char* buff, int num_bytes);</code><br><br>
|
|
There are two ways how to write the content of the <code>circular_buffer</code> into a file. Either relying
|
|
on <code>array_one()</code> and <code>array_two()</code> methods and calling the write function twice:<br><br>
|
|
<code>array_range ar = buff.array_one();<br>
|
|
write(file_desc, ar.first, ar.second);<br>
|
|
ar = buff.array_two();<br>
|
|
write(file_desc, ar.first, ar.second);</code><br><br>
|
|
Or relying on the <code>linearize()</code> method:<br><br><code>
|
|
write(file_desc, buff.linearize(), buff.size());</code><br><br>
|
|
Since the complexity of <code>array_one()</code> and <code>array_two()</code> methods is constant the first
|
|
option is suitable when calling the write method is "cheap". On the other hand the second option is more
|
|
suitable when calling the write method is more "expensive" than calling the <code>linearize()</code> method
|
|
whose complexity is linear.
|
|
\return The array range of the first continuous array of the internal buffer. In the case the
|
|
<code>circular_buffer</code> is empty the size of the returned array is <code>0</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\warning In general invoking any method which modifies the internal state of the circular_buffer may
|
|
delinearize the internal buffer and invalidate the array ranges returned by <code>array_one()</code>
|
|
and <code>array_two()</code> (and their const versions).
|
|
\note In the case the internal buffer is linear e.g. <code>|a|b|c|d|e|f|g| | | |</code> the "array one" is
|
|
represented by <code>|a|b|c|d|e|f|g|</code> and the "array two" does not exist (the
|
|
<code>array_two()</code> method returns an array with the size <code>0</code>).
|
|
\sa <code>array_two()</code>, <code>linearize()</code>
|
|
*/
|
|
array_range array_one() {
|
|
return array_range(m_first, (m_last <= m_first && !empty() ? m_end : m_last) - m_first);
|
|
}
|
|
|
|
//! Get the second continuous array of the internal buffer.
|
|
/*!
|
|
This method in combination with <code>array_one()</code> can be useful when passing the stored data into
|
|
a legacy C API as an array.
|
|
\return The array range of the second continuous array of the internal buffer. In the case the internal buffer
|
|
is linear or the <code>circular_buffer</code> is empty the size of the returned array is
|
|
<code>0</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>array_one()</code>
|
|
*/
|
|
array_range array_two() {
|
|
return array_range(m_buff, m_last <= m_first && !empty() ? m_last - m_buff : 0);
|
|
}
|
|
|
|
//! Get the first continuous array of the internal buffer.
|
|
/*!
|
|
This method in combination with <code>array_two() const</code> can be useful when passing the stored data into
|
|
a legacy C API as an array.
|
|
\return The array range of the first continuous array of the internal buffer. In the case the
|
|
<code>circular_buffer</code> is empty the size of the returned array is <code>0</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>array_two() const</code>; <code>array_one()</code> for more details how to pass data into a legacy C
|
|
API.
|
|
*/
|
|
const_array_range array_one() const {
|
|
return const_array_range(m_first, (m_last <= m_first && !empty() ? m_end : m_last) - m_first);
|
|
}
|
|
|
|
//! Get the second continuous array of the internal buffer.
|
|
/*!
|
|
This method in combination with <code>array_one() const</code> can be useful when passing the stored data into
|
|
a legacy C API as an array.
|
|
\return The array range of the second continuous array of the internal buffer. In the case the internal buffer
|
|
is linear or the <code>circular_buffer</code> is empty the size of the returned array is
|
|
<code>0</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>array_one() const</code>
|
|
*/
|
|
const_array_range array_two() const {
|
|
return const_array_range(m_buff, m_last <= m_first && !empty() ? m_last - m_buff : 0);
|
|
}
|
|
|
|
//! Linearize the internal buffer into a continuous array.
|
|
/*!
|
|
This method can be useful when passing the stored data into a legacy C API as an array.
|
|
\post <code>\&(*this)[0] \< \&(*this)[1] \< ... \< \&(*this)[size() - 1]</code>
|
|
\return A pointer to the beginning of the array or <code>0</code> if empty.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>); does not invalidate any iterators if the postcondition (the <i>Effect</i>) is already
|
|
met prior calling this method.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>); constant if the postcondition (the
|
|
<i>Effect</i>) is already met.
|
|
\warning In general invoking any method which modifies the internal state of the <code>circular_buffer</code>
|
|
may delinearize the internal buffer and invalidate the returned pointer.
|
|
\sa <code>array_one()</code> and <code>array_two()</code> for the other option how to pass data into a legacy
|
|
C API; <code>is_linearized()</code>, <code>rotate(const_iterator)</code>
|
|
*/
|
|
pointer linearize() {
|
|
if (empty())
|
|
return 0;
|
|
if (m_first < m_last || m_last == m_buff)
|
|
return m_first;
|
|
pointer src = m_first;
|
|
pointer dest = m_buff;
|
|
size_type moved = 0;
|
|
size_type constructed = 0;
|
|
BOOST_TRY {
|
|
for (pointer first = m_first; dest < src; src = first) {
|
|
for (size_type ii = 0; src < m_end; ++src, ++dest, ++moved, ++ii) {
|
|
if (moved == size()) {
|
|
first = dest;
|
|
break;
|
|
}
|
|
if (dest == first) {
|
|
first += ii;
|
|
break;
|
|
}
|
|
if (is_uninitialized(dest)) {
|
|
m_alloc.construct(dest, *src);
|
|
++constructed;
|
|
} else {
|
|
value_type tmp = *src;
|
|
replace(src, *dest);
|
|
replace(dest, tmp);
|
|
}
|
|
}
|
|
}
|
|
} BOOST_CATCH(...) {
|
|
m_last += constructed;
|
|
m_size += constructed;
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
for (src = m_end - constructed; src < m_end; ++src)
|
|
destroy_item(src);
|
|
m_first = m_buff;
|
|
m_last = add(m_buff, size());
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
invalidate_iterators_except(end());
|
|
#endif
|
|
return m_buff;
|
|
}
|
|
|
|
//! Is the <code>circular_buffer</code> linearized?
|
|
/*!
|
|
\return <code>true</code> if the internal buffer is linearized into a continuous array (i.e. the
|
|
<code>circular_buffer</code> meets a condition
|
|
<code>\&(*this)[0] \< \&(*this)[1] \< ... \< \&(*this)[size() - 1]</code>);
|
|
<code>false</code> otherwise.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>linearize()</code>, <code>array_one()</code>, <code>array_two()</code>
|
|
*/
|
|
bool is_linearized() const { return m_first < m_last || m_last == m_buff; }
|
|
|
|
//! Rotate elements in the <code>circular_buffer</code>.
|
|
/*!
|
|
A more effective implementation of
|
|
<code><a href="http://www.sgi.com/tech/stl/rotate.html">std::rotate</a></code>.
|
|
\pre <code>new_begin</code> is a valid iterator pointing to the <code>circular_buffer</code> <b>except</b> its
|
|
end.
|
|
\post Before calling the method suppose:<br><br>
|
|
<code>m == std::distance(new_begin, end())</code><br><code>n == std::distance(begin(), new_begin)</code>
|
|
<br><code>val_0 == *new_begin, val_1 == *(new_begin + 1), ... val_m == *(new_begin + m)</code><br>
|
|
<code>val_r1 == *(new_begin - 1), val_r2 == *(new_begin - 2), ... val_rn == *(new_begin - n)</code><br>
|
|
<br>then after call to the method:<br><br>
|
|
<code>val_0 == (*this)[0] \&\& val_1 == (*this)[1] \&\& ... \&\& val_m == (*this)[m - 1] \&\& val_r1 ==
|
|
(*this)[m + n - 1] \&\& val_r2 == (*this)[m + n - 2] \&\& ... \&\& val_rn == (*this)[m]</code>
|
|
\param new_begin The new beginning.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the <code>circular_buffer</code> is full or <code>new_begin</code> points to
|
|
<code>begin()</code> or if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
If <code>m \< n</code> invalidates iterators pointing to the last <code>m</code> elements
|
|
(<b>including</b> <code>new_begin</code>, but not iterators equal to <code>end()</code>) else invalidates
|
|
iterators pointing to the first <code>n</code> elements; does not invalidate any iterators if the
|
|
<code>circular_buffer</code> is full.
|
|
\par Complexity
|
|
Linear (in <code>(std::min)(m, n)</code>); constant if the <code>circular_buffer</code> is full.
|
|
\sa <code><a href="http://www.sgi.com/tech/stl/rotate.html">std::rotate</a></code>
|
|
*/
|
|
void rotate(const_iterator new_begin) {
|
|
BOOST_CB_ASSERT(new_begin.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(new_begin.m_it != 0); // check for iterator pointing to end()
|
|
if (full()) {
|
|
m_first = m_last = const_cast<pointer>(new_begin.m_it);
|
|
} else {
|
|
difference_type m = end() - new_begin;
|
|
difference_type n = new_begin - begin();
|
|
if (m < n) {
|
|
for (; m > 0; --m) {
|
|
push_front(back());
|
|
pop_back();
|
|
}
|
|
} else {
|
|
for (; n > 0; --n) {
|
|
push_back(front());
|
|
pop_front();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Size and capacity
|
|
|
|
//! Get the number of elements currently stored in the <code>circular_buffer</code>.
|
|
/*!
|
|
\return The number of elements stored in the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>capacity()</code>, <code>max_size()</code>, <code>reserve()</code>,
|
|
<code>\link resize() resize(size_type, const_reference)\endlink</code>
|
|
*/
|
|
size_type size() const { return m_size; }
|
|
|
|
/*! \brief Get the largest possible size or capacity of the <code>circular_buffer</code>. (It depends on
|
|
allocator's %max_size()).
|
|
\return The maximum size/capacity the <code>circular_buffer</code> can be set to.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>size()</code>, <code>capacity()</code>, <code>reserve()</code>
|
|
*/
|
|
size_type max_size() const {
|
|
return (std::min<size_type>)(m_alloc.max_size(), (std::numeric_limits<difference_type>::max)());
|
|
}
|
|
|
|
//! Is the <code>circular_buffer</code> empty?
|
|
/*!
|
|
\return <code>true</code> if there are no elements stored in the <code>circular_buffer</code>;
|
|
<code>false</code> otherwise.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>full()</code>
|
|
*/
|
|
bool empty() const { return size() == 0; }
|
|
|
|
//! Is the <code>circular_buffer</code> full?
|
|
/*!
|
|
\return <code>true</code> if the number of elements stored in the <code>circular_buffer</code>
|
|
equals the capacity of the <code>circular_buffer</code>; <code>false</code> otherwise.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>empty()</code>
|
|
*/
|
|
bool full() const { return capacity() == size(); }
|
|
|
|
/*! \brief Get the maximum number of elements which can be inserted into the <code>circular_buffer</code> without
|
|
overwriting any of already stored elements.
|
|
\return <code>capacity() - size()</code>
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>capacity()</code>, <code>size()</code>, <code>max_size()</code>
|
|
*/
|
|
size_type reserve() const { return capacity() - size(); }
|
|
|
|
//! Get the capacity of the <code>circular_buffer</code>.
|
|
/*!
|
|
\return The maximum number of elements which can be stored in the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>reserve()</code>, <code>size()</code>, <code>max_size()</code>,
|
|
<code>set_capacity(capacity_type)</code>
|
|
*/
|
|
capacity_type capacity() const { return m_end - m_buff; }
|
|
|
|
//! Change the capacity of the <code>circular_buffer</code>.
|
|
/*!
|
|
\post <code>capacity() == new_capacity \&\& size() \<= new_capacity</code><br><br>
|
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
|
|
new capacity then number of <code>[size() - new_capacity]</code> <b>last</b> elements will be removed and
|
|
the new size will be equal to <code>new_capacity</code>.
|
|
\param new_capacity The new capacity.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Strong.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>) if the new capacity is different from the original.
|
|
\par Complexity
|
|
Linear (in <code>min[size(), new_capacity]</code>).
|
|
\sa <code>rset_capacity(capacity_type)</code>,
|
|
<code>\link resize() resize(size_type, const_reference)\endlink</code>
|
|
*/
|
|
void set_capacity(capacity_type new_capacity) {
|
|
if (new_capacity == capacity())
|
|
return;
|
|
pointer buff = allocate(new_capacity);
|
|
iterator b = begin();
|
|
BOOST_TRY {
|
|
reset(buff,
|
|
cb_details::uninitialized_copy_with_alloc(b, b + (std::min)(new_capacity, size()), buff, m_alloc),
|
|
new_capacity);
|
|
} BOOST_CATCH(...) {
|
|
deallocate(buff, new_capacity);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
|
|
//! Change the size of the <code>circular_buffer</code>.
|
|
/*!
|
|
\post <code>size() == new_size \&\& capacity() >= new_size</code><br><br>
|
|
If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
|
|
<b>back</b> of the of the <code>circular_buffer</code> in order to achieve the desired size. In the case
|
|
the resulting size exceeds the current capacity the capacity will be set to <code>new_size</code>.<br>
|
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
|
|
new size then number of <code>[size() - new_size]</code> <b>last</b> elements will be removed. (The
|
|
capacity will remain unchanged.)
|
|
\param new_size The new size.
|
|
\param item The element the <code>circular_buffer</code> will be filled with in order to gain the requested
|
|
size. (See the <i>Effect</i>.)
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>) if the new size is greater than the current capacity. Invalidates iterators pointing
|
|
to the removed elements if the new size is lower that the original size. Otherwise it does not invalidate
|
|
any iterator.
|
|
\par Complexity
|
|
Linear (in the new size of the <code>circular_buffer</code>).
|
|
\sa <code>\link rresize() rresize(size_type, const_reference)\endlink</code>,
|
|
<code>set_capacity(capacity_type)</code>
|
|
*/
|
|
void resize(size_type new_size, param_value_type item = value_type()) {
|
|
if (new_size > size()) {
|
|
if (new_size > capacity())
|
|
set_capacity(new_size);
|
|
insert(end(), new_size - size(), item);
|
|
} else {
|
|
iterator e = end();
|
|
erase(e - (size() - new_size), e);
|
|
}
|
|
}
|
|
|
|
//! Change the capacity of the <code>circular_buffer</code>.
|
|
/*!
|
|
\post <code>capacity() == new_capacity \&\& size() \<= new_capacity</code><br><br>
|
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
|
|
new capacity then number of <code>[size() - new_capacity]</code> <b>first</b> elements will be removed
|
|
and the new size will be equal to <code>new_capacity</code>.
|
|
\param new_capacity The new capacity.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Strong.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>) if the new capacity is different from the original.
|
|
\par Complexity
|
|
Linear (in <code>min[size(), new_capacity]</code>).
|
|
\sa <code>set_capacity(capacity_type)</code>,
|
|
<code>\link rresize() rresize(size_type, const_reference)\endlink</code>
|
|
*/
|
|
void rset_capacity(capacity_type new_capacity) {
|
|
if (new_capacity == capacity())
|
|
return;
|
|
pointer buff = allocate(new_capacity);
|
|
iterator e = end();
|
|
BOOST_TRY {
|
|
reset(buff, cb_details::uninitialized_copy_with_alloc(e - (std::min)(new_capacity, size()),
|
|
e, buff, m_alloc), new_capacity);
|
|
} BOOST_CATCH(...) {
|
|
deallocate(buff, new_capacity);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
|
|
//! Change the size of the <code>circular_buffer</code>.
|
|
/*!
|
|
\post <code>size() == new_size \&\& capacity() >= new_size</code><br><br>
|
|
If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
|
|
<b>front</b> of the of the <code>circular_buffer</code> in order to achieve the desired size. In the case
|
|
the resulting size exceeds the current capacity the capacity will be set to <code>new_size</code>.<br>
|
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired
|
|
new size then number of <code>[size() - new_size]</code> <b>first</b> elements will be removed. (The
|
|
capacity will remain unchanged.)
|
|
\param new_size The new size.
|
|
\param item The element the <code>circular_buffer</code> will be filled with in order to gain the requested
|
|
size. (See the <i>Effect</i>.)
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>) if the new size is greater than the current capacity. Invalidates iterators pointing
|
|
to the removed elements if the new size is lower that the original size. Otherwise it does not invalidate
|
|
any iterator.
|
|
\par Complexity
|
|
Linear (in the new size of the <code>circular_buffer</code>).
|
|
\sa <code>\link resize() resize(size_type, const_reference)\endlink</code>,
|
|
<code>rset_capacity(capacity_type)</code>
|
|
*/
|
|
void rresize(size_type new_size, param_value_type item = value_type()) {
|
|
if (new_size > size()) {
|
|
if (new_size > capacity())
|
|
set_capacity(new_size);
|
|
rinsert(begin(), new_size - size(), item);
|
|
} else {
|
|
rerase(begin(), end() - new_size);
|
|
}
|
|
}
|
|
|
|
// Construction/Destruction
|
|
|
|
//! Create an empty <code>circular_buffer</code> with zero capacity.
|
|
/*!
|
|
\post <code>capacity() == 0 \&\& size() == 0</code>
|
|
\param alloc The allocator.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\par Complexity
|
|
Constant.
|
|
\warning Since Boost version 1.36 the behaviour of this constructor has changed. Now the constructor does not
|
|
allocate any memory and both capacity and size are set to zero. Also note when inserting an element
|
|
into a <code>circular_buffer</code> with zero capacity (e.g. by
|
|
<code>\link push_back() push_back(const_reference)\endlink</code> or
|
|
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>) nothing
|
|
will be inserted and the size (as well as capacity) remains zero.
|
|
\note You can explicitly set the capacity by calling the <code>set_capacity(capacity_type)</code> method or you
|
|
can use the other constructor with the capacity specified.
|
|
\sa <code>circular_buffer(capacity_type, const allocator_type& alloc)</code>,
|
|
<code>set_capacity(capacity_type)</code>
|
|
*/
|
|
explicit circular_buffer(const allocator_type& alloc = allocator_type())
|
|
: m_buff(0), m_end(0), m_first(0), m_last(0), m_size(0), m_alloc(alloc) {}
|
|
|
|
//! Create an empty <code>circular_buffer</code> with the specified capacity.
|
|
/*!
|
|
\post <code>capacity() == buffer_capacity \&\& size() == 0</code>
|
|
\param buffer_capacity The maximum number of elements which can be stored in the <code>circular_buffer</code>.
|
|
\param alloc The allocator.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\par Complexity
|
|
Constant.
|
|
*/
|
|
explicit circular_buffer(capacity_type buffer_capacity, const allocator_type& alloc = allocator_type())
|
|
: m_size(0), m_alloc(alloc) {
|
|
initialize_buffer(buffer_capacity);
|
|
m_first = m_last = m_buff;
|
|
}
|
|
|
|
/*! \brief Create a full <code>circular_buffer</code> with the specified capacity and filled with <code>n</code>
|
|
copies of <code>item</code>.
|
|
\post <code>capacity() == n \&\& full() \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ... \&\&
|
|
(*this)[n - 1] == item </code>
|
|
\param n The number of elements the created <code>circular_buffer</code> will be filled with.
|
|
\param item The element the created <code>circular_buffer</code> will be filled with.
|
|
\param alloc The allocator.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Complexity
|
|
Linear (in the <code>n</code>).
|
|
*/
|
|
circular_buffer(size_type n, param_value_type item, const allocator_type& alloc = allocator_type())
|
|
: m_size(n), m_alloc(alloc) {
|
|
initialize_buffer(n, item);
|
|
m_first = m_last = m_buff;
|
|
}
|
|
|
|
/*! \brief Create a <code>circular_buffer</code> with the specified capacity and filled with <code>n</code>
|
|
copies of <code>item</code>.
|
|
\pre <code>buffer_capacity >= n</code>
|
|
\post <code>capacity() == buffer_capacity \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
|
|
\&\& ... \&\& (*this)[n - 1] == item</code>
|
|
\param buffer_capacity The capacity of the created <code>circular_buffer</code>.
|
|
\param n The number of elements the created <code>circular_buffer</code> will be filled with.
|
|
\param item The element the created <code>circular_buffer</code> will be filled with.
|
|
\param alloc The allocator.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Complexity
|
|
Linear (in the <code>n</code>).
|
|
*/
|
|
circular_buffer(capacity_type buffer_capacity, size_type n, param_value_type item,
|
|
const allocator_type& alloc = allocator_type())
|
|
: m_size(n), m_alloc(alloc) {
|
|
BOOST_CB_ASSERT(buffer_capacity >= size()); // check for capacity lower than size
|
|
initialize_buffer(buffer_capacity, item);
|
|
m_first = m_buff;
|
|
m_last = buffer_capacity == n ? m_buff : m_buff + n;
|
|
}
|
|
|
|
//! The copy constructor.
|
|
/*!
|
|
Creates a copy of the specified <code>circular_buffer</code>.
|
|
\post <code>*this == cb</code>
|
|
\param cb The <code>circular_buffer</code> to be copied.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Complexity
|
|
Linear (in the size of <code>cb</code>).
|
|
*/
|
|
circular_buffer(const circular_buffer<T, Alloc>& cb)
|
|
:
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
debug_iterator_registry(),
|
|
#endif
|
|
m_size(cb.size()), m_alloc(cb.get_allocator()) {
|
|
initialize_buffer(cb.capacity());
|
|
m_first = m_buff;
|
|
BOOST_TRY {
|
|
m_last = cb_details::uninitialized_copy_with_alloc(cb.begin(), cb.end(), m_buff, m_alloc);
|
|
} BOOST_CATCH(...) {
|
|
deallocate(m_buff, cb.capacity());
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
if (m_last == m_end)
|
|
m_last = m_buff;
|
|
}
|
|
|
|
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
|
|
|
|
/*! \cond */
|
|
template <class InputIterator>
|
|
circular_buffer(InputIterator first, InputIterator last)
|
|
: m_alloc(allocator_type()) {
|
|
initialize(first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
template <class InputIterator>
|
|
circular_buffer(capacity_type capacity, InputIterator first, InputIterator last)
|
|
: m_alloc(allocator_type()) {
|
|
initialize(capacity, first, last, is_integral<InputIterator>());
|
|
}
|
|
/*! \endcond */
|
|
|
|
#else
|
|
|
|
//! Create a full <code>circular_buffer</code> filled with a copy of the range.
|
|
/*!
|
|
\pre Valid range <code>[first, last)</code>.<br>
|
|
<code>first</code> and <code>last</code> have to meet the requirements of
|
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
|
|
\post <code>capacity() == std::distance(first, last) \&\& full() \&\& (*this)[0]== *first \&\&
|
|
(*this)[1] == *(first + 1) \&\& ... \&\& (*this)[std::distance(first, last) - 1] == *(last - 1)</code>
|
|
\param first The beginning of the range to be copied.
|
|
\param last The end of the range to be copied.
|
|
\param alloc The allocator.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Complexity
|
|
Linear (in the <code>std::distance(first, last)</code>).
|
|
*/
|
|
template <class InputIterator>
|
|
circular_buffer(InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type())
|
|
: m_alloc(alloc) {
|
|
initialize(first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
//! Create a <code>circular_buffer</code> with the specified capacity and filled with a copy of the range.
|
|
/*!
|
|
\pre Valid range <code>[first, last)</code>.<br>
|
|
<code>first</code> and <code>last</code> have to meet the requirements of
|
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
|
|
\post <code>capacity() == buffer_capacity \&\& size() \<= std::distance(first, last) \&\&
|
|
(*this)[0]== *(last - buffer_capacity) \&\& (*this)[1] == *(last - buffer_capacity + 1) \&\& ... \&\&
|
|
(*this)[buffer_capacity - 1] == *(last - 1)</code><br><br>
|
|
If the number of items to be copied from the range <code>[first, last)</code> is greater than the
|
|
specified <code>buffer_capacity</code> then only elements from the range
|
|
<code>[last - buffer_capacity, last)</code> will be copied.
|
|
\param buffer_capacity The capacity of the created <code>circular_buffer</code>.
|
|
\param first The beginning of the range to be copied.
|
|
\param last The end of the range to be copied.
|
|
\param alloc The allocator.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Complexity
|
|
Linear (in <code>std::distance(first, last)</code>; in
|
|
<code>min[capacity, std::distance(first, last)]</code> if the <code>InputIterator</code> is a
|
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
|
|
*/
|
|
template <class InputIterator>
|
|
circular_buffer(capacity_type buffer_capacity, InputIterator first, InputIterator last,
|
|
const allocator_type& alloc = allocator_type())
|
|
: m_alloc(alloc) {
|
|
initialize(buffer_capacity, first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
#endif // #if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
|
|
|
|
//! The destructor.
|
|
/*!
|
|
Destroys the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (including iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>) for scalar types; linear for other types.
|
|
\sa <code>clear()</code>
|
|
*/
|
|
~circular_buffer() {
|
|
destroy();
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
invalidate_all_iterators();
|
|
#endif
|
|
}
|
|
|
|
public:
|
|
// Assign methods
|
|
|
|
//! The assign operator.
|
|
/*!
|
|
Makes this <code>circular_buffer</code> to become a copy of the specified <code>circular_buffer</code>.
|
|
\post <code>*this == cb</code>
|
|
\param cb The <code>circular_buffer</code> to be copied.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Strong.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to this <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Linear (in the size of <code>cb</code>).
|
|
\sa <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
|
|
<code>\link assign(capacity_type, size_type, param_value_type)
|
|
assign(capacity_type, size_type, const_reference)\endlink</code>,
|
|
<code>assign(InputIterator, InputIterator)</code>,
|
|
<code>assign(capacity_type, InputIterator, InputIterator)</code>
|
|
*/
|
|
circular_buffer<T, Alloc>& operator = (const circular_buffer<T, Alloc>& cb) {
|
|
if (this == &cb)
|
|
return *this;
|
|
pointer buff = allocate(cb.capacity());
|
|
BOOST_TRY {
|
|
reset(buff, cb_details::uninitialized_copy_with_alloc(cb.begin(), cb.end(), buff, m_alloc), cb.capacity());
|
|
} BOOST_CATCH(...) {
|
|
deallocate(buff, cb.capacity());
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
return *this;
|
|
}
|
|
|
|
//! Assign <code>n</code> items into the <code>circular_buffer</code>.
|
|
/*!
|
|
The content of the <code>circular_buffer</code> will be removed and replaced with <code>n</code> copies of the
|
|
<code>item</code>.
|
|
\post <code>capacity() == n \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ... \&\&
|
|
(*this) [n - 1] == item</code>
|
|
\param n The number of elements the <code>circular_buffer</code> will be filled with.
|
|
\param item The element the <code>circular_buffer</code> will be filled with.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Linear (in the <code>n</code>).
|
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
|
|
<code>\link assign(capacity_type, size_type, param_value_type)
|
|
assign(capacity_type, size_type, const_reference)\endlink</code>,
|
|
<code>assign(InputIterator, InputIterator)</code>,
|
|
<code>assign(capacity_type, InputIterator, InputIterator)</code>
|
|
*/
|
|
void assign(size_type n, param_value_type item) {
|
|
assign_n(n, n, cb_details::assign_n<param_value_type, allocator_type>(n, item, m_alloc));
|
|
}
|
|
|
|
//! Assign <code>n</code> items into the <code>circular_buffer</code> specifying the capacity.
|
|
/*!
|
|
The capacity of the <code>circular_buffer</code> will be set to the specified value and the content of the
|
|
<code>circular_buffer</code> will be removed and replaced with <code>n</code> copies of the <code>item</code>.
|
|
\pre <code>capacity >= n</code>
|
|
\post <code>capacity() == buffer_capacity \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
|
|
\&\& ... \&\& (*this) [n - 1] == item </code>
|
|
\param buffer_capacity The new capacity.
|
|
\param n The number of elements the <code>circular_buffer</code> will be filled with.
|
|
\param item The element the <code>circular_buffer</code> will be filled with.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Linear (in the <code>n</code>).
|
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
|
|
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
|
|
<code>assign(InputIterator, InputIterator)</code>,
|
|
<code>assign(capacity_type, InputIterator, InputIterator)</code>
|
|
*/
|
|
void assign(capacity_type buffer_capacity, size_type n, param_value_type item) {
|
|
BOOST_CB_ASSERT(buffer_capacity >= n); // check for new capacity lower than n
|
|
assign_n(buffer_capacity, n, cb_details::assign_n<param_value_type, allocator_type>(n, item, m_alloc));
|
|
}
|
|
|
|
//! Assign a copy of the range into the <code>circular_buffer</code>.
|
|
/*!
|
|
The content of the <code>circular_buffer</code> will be removed and replaced with copies of elements from the
|
|
specified range.
|
|
\pre Valid range <code>[first, last)</code>.<br>
|
|
<code>first</code> and <code>last</code> have to meet the requirements of
|
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
|
|
\post <code>capacity() == std::distance(first, last) \&\& size() == std::distance(first, last) \&\&
|
|
(*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ... \&\& (*this)[std::distance(first, last) - 1]
|
|
== *(last - 1)</code>
|
|
\param first The beginning of the range to be copied.
|
|
\param last The end of the range to be copied.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Linear (in the <code>std::distance(first, last)</code>).
|
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
|
|
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
|
|
<code>\link assign(capacity_type, size_type, param_value_type)
|
|
assign(capacity_type, size_type, const_reference)\endlink</code>,
|
|
<code>assign(capacity_type, InputIterator, InputIterator)</code>
|
|
*/
|
|
template <class InputIterator>
|
|
void assign(InputIterator first, InputIterator last) {
|
|
assign(first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
//! Assign a copy of the range into the <code>circular_buffer</code> specifying the capacity.
|
|
/*!
|
|
The capacity of the <code>circular_buffer</code> will be set to the specified value and the content of the
|
|
<code>circular_buffer</code> will be removed and replaced with copies of elements from the specified range.
|
|
\pre Valid range <code>[first, last)</code>.<br>
|
|
<code>first</code> and <code>last</code> have to meet the requirements of
|
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
|
|
\post <code>capacity() == buffer_capacity \&\& size() \<= std::distance(first, last) \&\&
|
|
(*this)[0]== *(last - buffer_capacity) \&\& (*this)[1] == *(last - buffer_capacity + 1) \&\& ... \&\&
|
|
(*this)[buffer_capacity - 1] == *(last - 1)</code><br><br>
|
|
If the number of items to be copied from the range <code>[first, last)</code> is greater than the
|
|
specified <code>buffer_capacity</code> then only elements from the range
|
|
<code>[last - buffer_capacity, last)</code> will be copied.
|
|
\param buffer_capacity The new capacity.
|
|
\param first The beginning of the range to be copied.
|
|
\param last The end of the range to be copied.
|
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
|
|
used).
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Linear (in <code>std::distance(first, last)</code>; in
|
|
<code>min[capacity, std::distance(first, last)]</code> if the <code>InputIterator</code> is a
|
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
|
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>,
|
|
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
|
|
<code>\link assign(capacity_type, size_type, param_value_type)
|
|
assign(capacity_type, size_type, const_reference)\endlink</code>,
|
|
<code>assign(InputIterator, InputIterator)</code>
|
|
*/
|
|
template <class InputIterator>
|
|
void assign(capacity_type buffer_capacity, InputIterator first, InputIterator last) {
|
|
assign(buffer_capacity, first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
//! Swap the contents of two <code>circular_buffer</code>s.
|
|
/*!
|
|
\post <code>this</code> contains elements of <code>cb</code> and vice versa; the capacity of <code>this</code>
|
|
equals to the capacity of <code>cb</code> and vice versa.
|
|
\param cb The <code>circular_buffer</code> whose content will be swapped.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators of both <code>circular_buffer</code>s. (On the other hand the iterators still
|
|
point to the same elements but within another container. If you want to rely on this feature you have to
|
|
turn the <a href="#debug">Debug Support</a> off otherwise an assertion will report an error if such
|
|
invalidated iterator is used.)
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>swap(circular_buffer<T, Alloc>&, circular_buffer<T, Alloc>&)</code>
|
|
*/
|
|
void swap(circular_buffer<T, Alloc>& cb) {
|
|
swap_allocator(cb, is_stateless<allocator_type>());
|
|
std::swap(m_buff, cb.m_buff);
|
|
std::swap(m_end, cb.m_end);
|
|
std::swap(m_first, cb.m_first);
|
|
std::swap(m_last, cb.m_last);
|
|
std::swap(m_size, cb.m_size);
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
invalidate_all_iterators();
|
|
cb.invalidate_all_iterators();
|
|
#endif
|
|
}
|
|
|
|
// push and pop
|
|
|
|
//! Insert a new element at the end of the <code>circular_buffer</code>.
|
|
/*!
|
|
\post if <code>capacity() > 0</code> then <code>back() == item</code><br>
|
|
If the <code>circular_buffer</code> is full, the first element will be removed. If the capacity is
|
|
<code>0</code>, nothing will be inserted.
|
|
\param item The element to be inserted.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators with the exception of iterators pointing to the overwritten element.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>\link push_front() push_front(const_reference)\endlink</code>,
|
|
<code>pop_back()</code>, <code>pop_front()</code>
|
|
*/
|
|
void push_back(param_value_type item = value_type()) {
|
|
if (full()) {
|
|
if (empty())
|
|
return;
|
|
replace(m_last, item);
|
|
increment(m_last);
|
|
m_first = m_last;
|
|
} else {
|
|
m_alloc.construct(m_last, item);
|
|
increment(m_last);
|
|
++m_size;
|
|
}
|
|
}
|
|
|
|
//! Insert a new element at the beginning of the <code>circular_buffer</code>.
|
|
/*!
|
|
\post if <code>capacity() > 0</code> then <code>front() == item</code><br>
|
|
If the <code>circular_buffer</code> is full, the last element will be removed. If the capacity is
|
|
<code>0</code>, nothing will be inserted.
|
|
\param item The element to be inserted.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators with the exception of iterators pointing to the overwritten element.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>\link push_back() push_back(const_reference)\endlink</code>,
|
|
<code>pop_back()</code>, <code>pop_front()</code>
|
|
*/
|
|
void push_front(param_value_type item = value_type()) {
|
|
BOOST_TRY {
|
|
if (full()) {
|
|
if (empty())
|
|
return;
|
|
decrement(m_first);
|
|
replace(m_first, item);
|
|
m_last = m_first;
|
|
} else {
|
|
decrement(m_first);
|
|
m_alloc.construct(m_first, item);
|
|
++m_size;
|
|
}
|
|
} BOOST_CATCH(...) {
|
|
increment(m_first);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
|
|
//! Remove the last element from the <code>circular_buffer</code>.
|
|
/*!
|
|
\pre <code>!empty()</code>
|
|
\post The last element is removed from the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Invalidates only iterators pointing to the removed element.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>pop_front()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
|
|
<code>\link push_front() push_front(const_reference)\endlink</code>
|
|
*/
|
|
void pop_back() {
|
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available)
|
|
decrement(m_last);
|
|
destroy_item(m_last);
|
|
--m_size;
|
|
}
|
|
|
|
//! Remove the first element from the <code>circular_buffer</code>.
|
|
/*!
|
|
\pre <code>!empty()</code>
|
|
\post The first element is removed from the <code>circular_buffer</code>.
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Invalidates only iterators pointing to the removed element.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>).
|
|
\sa <code>pop_back()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
|
|
<code>\link push_front() push_front(const_reference)\endlink</code>
|
|
*/
|
|
void pop_front() {
|
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available)
|
|
destroy_item(m_first);
|
|
increment(m_first);
|
|
--m_size;
|
|
}
|
|
|
|
public:
|
|
// Insert
|
|
|
|
//! Insert an element at the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
|
|
\post The <code>item</code> will be inserted at the position <code>pos</code>.<br>
|
|
If the <code>circular_buffer</code> is full, the first element will be overwritten. If the
|
|
<code>circular_buffer</code> is full and the <code>pos</code> points to <code>begin()</code>, then the
|
|
<code>item</code> will not be inserted. If the capacity is <code>0</code>, nothing will be inserted.
|
|
\param pos An iterator specifying the position where the <code>item</code> will be inserted.
|
|
\param item The element to be inserted.
|
|
\return Iterator to the inserted element or <code>begin()</code> if the <code>item</code> is not inserted. (See
|
|
the <i>Effect</i>.)
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and
|
|
iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It
|
|
also invalidates iterators pointing to the overwritten element.
|
|
\par Complexity
|
|
Linear (in <code>std::distance(pos, end())</code>).
|
|
\sa <code>\link insert(iterator, size_type, param_value_type)
|
|
insert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>insert(iterator, InputIterator, InputIterator)</code>,
|
|
<code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
|
|
<code>\link rinsert(iterator, size_type, param_value_type)
|
|
rinsert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>
|
|
*/
|
|
iterator insert(iterator pos, param_value_type item = value_type()) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
iterator b = begin();
|
|
if (full() && pos == b)
|
|
return b;
|
|
return insert_item(pos, item);
|
|
}
|
|
|
|
//! Insert <code>n</code> copies of the <code>item</code> at the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
|
|
\post The number of <code>min[n, (pos - begin()) + reserve()]</code> elements will be inserted at the position
|
|
<code>pos</code>.<br>The number of <code>min[pos - begin(), max[0, n - reserve()]]</code> elements will
|
|
be overwritten at the beginning of the <code>circular_buffer</code>.<br>(See <i>Example</i> for the
|
|
explanation.)
|
|
\param pos An iterator specifying the position where the <code>item</code>s will be inserted.
|
|
\param n The number of <code>item</code>s the to be inserted.
|
|
\param item The element whose copies will be inserted.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and
|
|
iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It
|
|
also invalidates iterators pointing to the overwritten elements.
|
|
\par Complexity
|
|
Linear (in <code>min[capacity(), std::distance(pos, end()) + n]</code>).
|
|
\par Example
|
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
|
|
look like the one below.<br><br>
|
|
<code>|1|2|3|4| | |</code><br>
|
|
<code>p ---^</code><br><br>After inserting 5 elements at the position <code>p</code>:<br><br>
|
|
<code>insert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
|
|
<code>1</code> and <code>2</code> are overwritten. This is due to the fact the insert operation preserves
|
|
the capacity. After insertion the internal buffer looks like this:<br><br><code>|0|0|0|0|3|4|</code><br>
|
|
<br>For comparison if the capacity would not be preserved the internal buffer would then result in
|
|
<code>|1|2|0|0|0|0|0|3|4|</code>.
|
|
\sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
|
|
<code>insert(iterator, InputIterator, InputIterator)</code>,
|
|
<code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
|
|
<code>\link rinsert(iterator, size_type, param_value_type)
|
|
rinsert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>
|
|
*/
|
|
void insert(iterator pos, size_type n, param_value_type item) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
if (n == 0)
|
|
return;
|
|
size_type copy = capacity() - (end() - pos);
|
|
if (copy == 0)
|
|
return;
|
|
if (n > copy)
|
|
n = copy;
|
|
insert_n(pos, n, cb_details::item_wrapper<const_pointer, param_value_type>(item));
|
|
}
|
|
|
|
//! Insert the range <code>[first, last)</code> at the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.<br>
|
|
Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
|
|
requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
|
|
\post Elements from the range
|
|
<code>[first + max[0, distance(first, last) - (pos - begin()) - reserve()], last)</code> will be
|
|
inserted at the position <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0,
|
|
distance(first, last) - reserve()]]</code> elements will be overwritten at the beginning of the
|
|
<code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.)
|
|
\param pos An iterator specifying the position where the range will be inserted.
|
|
\param first The beginning of the range to be inserted.
|
|
\param last The end of the range to be inserted.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and
|
|
iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It
|
|
also invalidates iterators pointing to the overwritten elements.
|
|
\par Complexity
|
|
Linear (in <code>[std::distance(pos, end()) + std::distance(first, last)]</code>; in
|
|
<code>min[capacity(), std::distance(pos, end()) + std::distance(first, last)]</code> if the
|
|
<code>InputIterator</code> is a
|
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
|
|
\par Example
|
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
|
|
look like the one below.<br><br>
|
|
<code>|1|2|3|4| | |</code><br>
|
|
<code>p ---^</code><br><br>After inserting a range of elements at the position <code>p</code>:<br><br>
|
|
<code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
|
|
actually only elements <code>6</code>, <code>7</code>, <code>8</code> and <code>9</code> from the
|
|
specified range get inserted and elements <code>1</code> and <code>2</code> are overwritten. This is due
|
|
to the fact the insert operation preserves the capacity. After insertion the internal buffer looks like
|
|
this:<br><br><code>|6|7|8|9|3|4|</code><br><br>For comparison if the capacity would not be preserved the
|
|
internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
|
|
\sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
|
|
<code>\link insert(iterator, size_type, param_value_type)
|
|
insert(iterator, size_type, value_type)\endlink</code>, <code>\link rinsert(iterator, param_value_type)
|
|
rinsert(iterator, value_type)\endlink</code>, <code>\link rinsert(iterator, size_type, param_value_type)
|
|
rinsert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>
|
|
*/
|
|
template <class InputIterator>
|
|
void insert(iterator pos, InputIterator first, InputIterator last) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
insert(pos, first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
//! Insert an element before the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
|
|
\post The <code>item</code> will be inserted before the position <code>pos</code>.<br>
|
|
If the <code>circular_buffer</code> is full, the last element will be overwritten. If the
|
|
<code>circular_buffer</code> is full and the <code>pos</code> points to <code>end()</code>, then the
|
|
<code>item</code> will not be inserted. If the capacity is <code>0</code>, nothing will be inserted.
|
|
\param pos An iterator specifying the position before which the <code>item</code> will be inserted.
|
|
\param item The element to be inserted.
|
|
\return Iterator to the inserted element or <code>end()</code> if the <code>item</code> is not inserted. (See
|
|
the <i>Effect</i>.)
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the elements before the insertion point (towards the beginning and
|
|
excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten element.
|
|
\par Complexity
|
|
Linear (in <code>std::distance(begin(), pos)</code>).
|
|
\sa <code>\link rinsert(iterator, size_type, param_value_type)
|
|
rinsert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>,
|
|
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
|
|
<code>\link insert(iterator, size_type, param_value_type)
|
|
insert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>insert(iterator, InputIterator, InputIterator)</code>
|
|
*/
|
|
iterator rinsert(iterator pos, param_value_type item = value_type()) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
if (full() && pos.m_it == 0)
|
|
return end();
|
|
if (pos == begin()) {
|
|
BOOST_TRY {
|
|
decrement(m_first);
|
|
construct_or_replace(!full(), m_first, item);
|
|
} BOOST_CATCH(...) {
|
|
increment(m_first);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
pos.m_it = m_first;
|
|
} else {
|
|
pointer src = m_first;
|
|
pointer dest = m_first;
|
|
decrement(dest);
|
|
pos.m_it = map_pointer(pos.m_it);
|
|
bool construct = !full();
|
|
BOOST_TRY {
|
|
while (src != pos.m_it) {
|
|
construct_or_replace(construct, dest, *src);
|
|
increment(src);
|
|
increment(dest);
|
|
construct = false;
|
|
}
|
|
decrement(pos.m_it);
|
|
replace(pos.m_it, item);
|
|
} BOOST_CATCH(...) {
|
|
if (!construct && !full()) {
|
|
decrement(m_first);
|
|
++m_size;
|
|
}
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
decrement(m_first);
|
|
}
|
|
if (full())
|
|
m_last = m_first;
|
|
else
|
|
++m_size;
|
|
return iterator(this, pos.m_it);
|
|
}
|
|
|
|
//! Insert <code>n</code> copies of the <code>item</code> before the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.
|
|
\post The number of <code>min[n, (end() - pos) + reserve()]</code> elements will be inserted before the
|
|
position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0, n - reserve()]]</code> elements
|
|
will be overwritten at the end of the <code>circular_buffer</code>.<br>(See <i>Example</i> for the
|
|
explanation.)
|
|
\param pos An iterator specifying the position where the <code>item</code>s will be inserted.
|
|
\param n The number of <code>item</code>s the to be inserted.
|
|
\param item The element whose copies will be inserted.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the elements before the insertion point (towards the beginning and
|
|
excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten elements.
|
|
\par Complexity
|
|
Linear (in <code>min[capacity(), std::distance(begin(), pos) + n]</code>).
|
|
\par Example
|
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
|
|
look like the one below.<br><br>
|
|
<code>|1|2|3|4| | |</code><br>
|
|
<code>p ---^</code><br><br>After inserting 5 elements before the position <code>p</code>:<br><br>
|
|
<code>rinsert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
|
|
<code>3</code> and <code>4</code> are overwritten. This is due to the fact the rinsert operation preserves
|
|
the capacity. After insertion the internal buffer looks like this:<br><br><code>|1|2|0|0|0|0|</code><br>
|
|
<br>For comparison if the capacity would not be preserved the internal buffer would then result in
|
|
<code>|1|2|0|0|0|0|0|3|4|</code>.
|
|
\sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
|
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>,
|
|
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
|
|
<code>\link insert(iterator, size_type, param_value_type)
|
|
insert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>insert(iterator, InputIterator, InputIterator)</code>
|
|
*/
|
|
void rinsert(iterator pos, size_type n, param_value_type item) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
rinsert_n(pos, n, cb_details::item_wrapper<const_pointer, param_value_type>(item));
|
|
}
|
|
|
|
//! Insert the range <code>[first, last)</code> before the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.<br>
|
|
Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
|
|
requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
|
|
\post Elements from the range
|
|
<code>[first, last - max[0, distance(first, last) - (end() - pos) - reserve()])</code> will be inserted
|
|
before the position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0,
|
|
distance(first, last) - reserve()]]</code> elements will be overwritten at the end of the
|
|
<code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.)
|
|
\param pos An iterator specifying the position where the range will be inserted.
|
|
\param first The beginning of the range to be inserted.
|
|
\param last The end of the range to be inserted.
|
|
\throws Whatever <code>T::T(const T&)</code> throws.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the elements before the insertion point (towards the beginning and
|
|
excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten elements.
|
|
\par Complexity
|
|
Linear (in <code>[std::distance(begin(), pos) + std::distance(first, last)]</code>; in
|
|
<code>min[capacity(), std::distance(begin(), pos) + std::distance(first, last)]</code> if the
|
|
<code>InputIterator</code> is a
|
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
|
|
\par Example
|
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may
|
|
look like the one below.<br><br>
|
|
<code>|1|2|3|4| | |</code><br>
|
|
<code>p ---^</code><br><br>After inserting a range of elements before the position <code>p</code>:<br><br>
|
|
<code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
|
|
actually only elements <code>5</code>, <code>6</code>, <code>7</code> and <code>8</code> from the
|
|
specified range get inserted and elements <code>3</code> and <code>4</code> are overwritten. This is due
|
|
to the fact the rinsert operation preserves the capacity. After insertion the internal buffer looks like
|
|
this:<br><br><code>|1|2|5|6|7|8|</code><br><br>For comparison if the capacity would not be preserved the
|
|
internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
|
|
\sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
|
|
<code>\link rinsert(iterator, size_type, param_value_type)
|
|
rinsert(iterator, size_type, value_type)\endlink</code>, <code>\link insert(iterator, param_value_type)
|
|
insert(iterator, value_type)\endlink</code>, <code>\link insert(iterator, size_type, param_value_type)
|
|
insert(iterator, size_type, value_type)\endlink</code>,
|
|
<code>insert(iterator, InputIterator, InputIterator)</code>
|
|
*/
|
|
template <class InputIterator>
|
|
void rinsert(iterator pos, InputIterator first, InputIterator last) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
rinsert(pos, first, last, is_integral<InputIterator>());
|
|
}
|
|
|
|
// Erase
|
|
|
|
//! Remove an element at the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> (but not an
|
|
<code>end()</code>).
|
|
\post The element at the position <code>pos</code> is removed.
|
|
\param pos An iterator pointing at the element to be removed.
|
|
\return Iterator to the first element remaining beyond the removed element or <code>end()</code> if no such
|
|
element exists.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the erased element and iterators pointing to the elements behind
|
|
the erased element (towards the end; except iterators equal to <code>end()</code>).
|
|
\par Complexity
|
|
Linear (in <code>std::distance(pos, end())</code>).
|
|
\sa <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
|
|
<code>rerase(iterator, iterator)</code>, <code>erase_begin(size_type)</code>,
|
|
<code>erase_end(size_type)</code>, <code>clear()</code>
|
|
*/
|
|
iterator erase(iterator pos) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(pos.m_it != 0); // check for iterator pointing to end()
|
|
pointer next = pos.m_it;
|
|
increment(next);
|
|
for (pointer p = pos.m_it; next != m_last; p = next, increment(next))
|
|
replace(p, *next);
|
|
decrement(m_last);
|
|
destroy_item(m_last);
|
|
--m_size;
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
return m_last == pos.m_it ? end() : iterator(this, pos.m_it);
|
|
#else
|
|
return m_last == pos.m_it ? end() : pos;
|
|
#endif
|
|
}
|
|
|
|
//! Erase the range <code>[first, last)</code>.
|
|
/*!
|
|
\pre Valid range <code>[first, last)</code>.
|
|
\post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
|
|
nothing is removed.)
|
|
\param first The beginning of the range to be removed.
|
|
\param last The end of the range to be removed.
|
|
\return Iterator to the first element remaining beyond the removed elements or <code>end()</code> if no such
|
|
element exists.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the erased elements and iterators pointing to the elements behind
|
|
the erased range (towards the end; except iterators equal to <code>end()</code>).
|
|
\par Complexity
|
|
Linear (in <code>std::distance(first, end())</code>).
|
|
\sa <code>erase(iterator)</code>, <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
|
|
<code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>, <code>clear()</code>
|
|
*/
|
|
iterator erase(iterator first, iterator last) {
|
|
BOOST_CB_ASSERT(first.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(last.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(first <= last); // check for wrong range
|
|
if (first == last)
|
|
return first;
|
|
pointer p = first.m_it;
|
|
while (last.m_it != 0)
|
|
replace((first++).m_it, *last++);
|
|
do {
|
|
decrement(m_last);
|
|
destroy_item(m_last);
|
|
--m_size;
|
|
} while(m_last != first.m_it);
|
|
return m_last == p ? end() : iterator(this, p);
|
|
}
|
|
|
|
//! Remove an element at the specified position.
|
|
/*!
|
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> (but not an
|
|
<code>end()</code>).
|
|
\post The element at the position <code>pos</code> is removed.
|
|
\param pos An iterator pointing at the element to be removed.
|
|
\return Iterator to the first element remaining in front of the removed element or <code>begin()</code> if no
|
|
such element exists.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the erased element and iterators pointing to the elements in front of
|
|
the erased element (towards the beginning).
|
|
\par Complexity
|
|
Linear (in <code>std::distance(begin(), pos)</code>).
|
|
\note This method is symetric to the <code>erase(iterator)</code> method and is more effective than
|
|
<code>erase(iterator)</code> if the iterator <code>pos</code> is close to the beginning of the
|
|
<code>circular_buffer</code>. (See the <i>Complexity</i>.)
|
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
|
|
<code>rerase(iterator, iterator)</code>, <code>erase_begin(size_type)</code>,
|
|
<code>erase_end(size_type)</code>, <code>clear()</code>
|
|
*/
|
|
iterator rerase(iterator pos) {
|
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(pos.m_it != 0); // check for iterator pointing to end()
|
|
pointer prev = pos.m_it;
|
|
pointer p = prev;
|
|
for (decrement(prev); p != m_first; p = prev, decrement(prev))
|
|
replace(p, *prev);
|
|
destroy_item(m_first);
|
|
increment(m_first);
|
|
--m_size;
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
return p == pos.m_it ? begin() : iterator(this, pos.m_it);
|
|
#else
|
|
return p == pos.m_it ? begin() : pos;
|
|
#endif
|
|
}
|
|
|
|
//! Erase the range <code>[first, last)</code>.
|
|
/*!
|
|
\pre Valid range <code>[first, last)</code>.
|
|
\post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
|
|
nothing is removed.)
|
|
\param first The beginning of the range to be removed.
|
|
\param last The end of the range to be removed.
|
|
\return Iterator to the first element remaining in front of the removed elements or <code>begin()</code> if no
|
|
such element exists.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws.
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything.
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the erased elements and iterators pointing to the elements in front of
|
|
the erased range (towards the beginning).
|
|
\par Complexity
|
|
Linear (in <code>std::distance(begin(), last)</code>).
|
|
\note This method is symetric to the <code>erase(iterator, iterator)</code> method and is more effective than
|
|
<code>erase(iterator, iterator)</code> if <code>std::distance(begin(), first)</code> is lower that
|
|
<code>std::distance(last, end())</code>.
|
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
|
|
<code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>, <code>clear()</code>
|
|
*/
|
|
iterator rerase(iterator first, iterator last) {
|
|
BOOST_CB_ASSERT(first.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(last.is_valid(this)); // check for uninitialized or invalidated iterator
|
|
BOOST_CB_ASSERT(first <= last); // check for wrong range
|
|
if (first == last)
|
|
return first;
|
|
pointer p = map_pointer(last.m_it);
|
|
last.m_it = p;
|
|
while (first.m_it != m_first) {
|
|
decrement(first.m_it);
|
|
decrement(p);
|
|
replace(p, *first.m_it);
|
|
}
|
|
do {
|
|
destroy_item(m_first);
|
|
increment(m_first);
|
|
--m_size;
|
|
} while(m_first != p);
|
|
if (m_first == last.m_it)
|
|
return begin();
|
|
decrement(last.m_it);
|
|
return iterator(this, last.m_it);
|
|
}
|
|
|
|
//! Remove first <code>n</code> elements (with constant complexity for scalar types).
|
|
/*!
|
|
\pre <code>n \<= size()</code>
|
|
\post The <code>n</code> elements at the beginning of the <code>circular_buffer</code> will be removed.
|
|
\param n The number of elements to be removed.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws. (Does not throw anything in case of scalars.)
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. (I.e. no throw in
|
|
case of scalars.)
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the first <code>n</code> erased elements.
|
|
\par Complexity
|
|
Constant (in <code>n</code>) for scalar types; linear for other types.
|
|
\note This method has been specially designed for types which do not require an explicit destructruction (e.g.
|
|
integer, float or a pointer). For these scalar types a call to a destructor is not required which makes
|
|
it possible to implement the "erase from beginning" operation with a constant complexity. For non-sacalar
|
|
types the complexity is linear (hence the explicit destruction is needed) and the implementation is
|
|
actually equivalent to
|
|
<code>\link circular_buffer::rerase(iterator, iterator) rerase(begin(), begin() + n)\endlink</code>.
|
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
|
|
<code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
|
|
<code>erase_end(size_type)</code>, <code>clear()</code>
|
|
*/
|
|
void erase_begin(size_type n) {
|
|
BOOST_CB_ASSERT(n <= size()); // check for n greater than size
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
erase_begin(n, false_type());
|
|
#else
|
|
erase_begin(n, is_scalar<value_type>());
|
|
#endif
|
|
}
|
|
|
|
//! Remove last <code>n</code> elements (with constant complexity for scalar types).
|
|
/*!
|
|
\pre <code>n \<= size()</code>
|
|
\post The <code>n</code> elements at the end of the <code>circular_buffer</code> will be removed.
|
|
\param n The number of elements to be removed.
|
|
\throws Whatever <code>T::operator = (const T&)</code> throws. (Does not throw anything in case of scalars.)
|
|
\par Exception Safety
|
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. (I.e. no throw in
|
|
case of scalars.)
|
|
\par Iterator Invalidation
|
|
Invalidates iterators pointing to the last <code>n</code> erased elements.
|
|
\par Complexity
|
|
Constant (in <code>n</code>) for scalar types; linear for other types.
|
|
\note This method has been specially designed for types which do not require an explicit destructruction (e.g.
|
|
integer, float or a pointer). For these scalar types a call to a destructor is not required which makes
|
|
it possible to implement the "erase from end" operation with a constant complexity. For non-sacalar
|
|
types the complexity is linear (hence the explicit destruction is needed) and the implementation is
|
|
actually equivalent to
|
|
<code>\link circular_buffer::erase(iterator, iterator) erase(end() - n, end())\endlink</code>.
|
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
|
|
<code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
|
|
<code>erase_begin(size_type)</code>, <code>clear()</code>
|
|
*/
|
|
void erase_end(size_type n) {
|
|
BOOST_CB_ASSERT(n <= size()); // check for n greater than size
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
erase_end(n, false_type());
|
|
#else
|
|
erase_end(n, is_scalar<value_type>());
|
|
#endif
|
|
}
|
|
|
|
//! Remove all stored elements from the <code>circular_buffer</code>.
|
|
/*!
|
|
\post <code>size() == 0</code>
|
|
\throws Nothing.
|
|
\par Exception Safety
|
|
No-throw.
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to
|
|
<code>end()</code>).
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>) for scalar types; linear for other types.
|
|
\sa <code>~circular_buffer()</code>, <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
|
|
<code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
|
|
<code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>
|
|
*/
|
|
void clear() {
|
|
destroy_content();
|
|
m_size = 0;
|
|
}
|
|
|
|
private:
|
|
// Helper methods
|
|
|
|
//! Check if the <code>index</code> is valid.
|
|
void check_position(size_type index) const {
|
|
if (index >= size())
|
|
throw_exception(std::out_of_range("circular_buffer"));
|
|
}
|
|
|
|
//! Increment the pointer.
|
|
template <class Pointer>
|
|
void increment(Pointer& p) const {
|
|
if (++p == m_end)
|
|
p = m_buff;
|
|
}
|
|
|
|
//! Decrement the pointer.
|
|
template <class Pointer>
|
|
void decrement(Pointer& p) const {
|
|
if (p == m_buff)
|
|
p = m_end;
|
|
--p;
|
|
}
|
|
|
|
//! Add <code>n</code> to the pointer.
|
|
template <class Pointer>
|
|
Pointer add(Pointer p, difference_type n) const {
|
|
return p + (n < (m_end - p) ? n : n - capacity());
|
|
}
|
|
|
|
//! Subtract <code>n</code> from the pointer.
|
|
template <class Pointer>
|
|
Pointer sub(Pointer p, difference_type n) const {
|
|
return p - (n > (p - m_buff) ? n - capacity() : n);
|
|
}
|
|
|
|
//! Map the null pointer to virtual end of circular buffer.
|
|
pointer map_pointer(pointer p) const { return p == 0 ? m_last : p; }
|
|
|
|
//! Allocate memory.
|
|
pointer allocate(size_type n) {
|
|
if (n > max_size())
|
|
throw_exception(std::length_error("circular_buffer"));
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
pointer p = (n == 0) ? 0 : m_alloc.allocate(n, 0);
|
|
std::memset(p, cb_details::UNINITIALIZED, sizeof(value_type) * n);
|
|
return p;
|
|
#else
|
|
return (n == 0) ? 0 : m_alloc.allocate(n, 0);
|
|
#endif
|
|
}
|
|
|
|
//! Deallocate memory.
|
|
void deallocate(pointer p, size_type n) {
|
|
if (p != 0)
|
|
m_alloc.deallocate(p, n);
|
|
}
|
|
|
|
//! Does the pointer point to the uninitialized memory?
|
|
bool is_uninitialized(const_pointer p) const {
|
|
return p >= m_last && (m_first < m_last || p < m_first);
|
|
}
|
|
|
|
//! Replace an element.
|
|
void replace(pointer pos, param_value_type item) {
|
|
*pos = item;
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
invalidate_iterators(iterator(this, pos));
|
|
#endif
|
|
}
|
|
|
|
//! Construct or replace an element.
|
|
/*!
|
|
<code>construct</code> has to be set to <code>true</code> if and only if
|
|
<code>pos</code> points to an uninitialized memory.
|
|
*/
|
|
void construct_or_replace(bool construct, pointer pos, param_value_type item) {
|
|
if (construct)
|
|
m_alloc.construct(pos, item);
|
|
else
|
|
replace(pos, item);
|
|
}
|
|
|
|
//! Destroy an item.
|
|
void destroy_item(pointer p) {
|
|
m_alloc.destroy(p);
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
invalidate_iterators(iterator(this, p));
|
|
std::memset(p, cb_details::UNINITIALIZED, sizeof(value_type));
|
|
#endif
|
|
}
|
|
|
|
//! Destroy an item only if it has been constructed.
|
|
void destroy_if_constructed(pointer pos) {
|
|
if (is_uninitialized(pos))
|
|
destroy_item(pos);
|
|
}
|
|
|
|
//! Destroy the whole content of the circular buffer.
|
|
void destroy_content() {
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
destroy_content(false_type());
|
|
#else
|
|
destroy_content(is_scalar<value_type>());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized destroy_content method.
|
|
void destroy_content(const true_type&) {
|
|
m_first = add(m_first, size());
|
|
}
|
|
|
|
//! Specialized destroy_content method.
|
|
void destroy_content(const false_type&) {
|
|
for (size_type ii = 0; ii < size(); ++ii, increment(m_first))
|
|
destroy_item(m_first);
|
|
}
|
|
|
|
//! Destroy content and free allocated memory.
|
|
void destroy() {
|
|
destroy_content();
|
|
deallocate(m_buff, capacity());
|
|
#if BOOST_CB_ENABLE_DEBUG
|
|
m_buff = 0;
|
|
m_first = 0;
|
|
m_last = 0;
|
|
m_end = 0;
|
|
#endif
|
|
}
|
|
|
|
//! Initialize the internal buffer.
|
|
void initialize_buffer(capacity_type buffer_capacity) {
|
|
m_buff = allocate(buffer_capacity);
|
|
m_end = m_buff + buffer_capacity;
|
|
}
|
|
|
|
//! Initialize the internal buffer.
|
|
void initialize_buffer(capacity_type buffer_capacity, param_value_type item) {
|
|
initialize_buffer(buffer_capacity);
|
|
BOOST_TRY {
|
|
cb_details::uninitialized_fill_n_with_alloc(m_buff, size(), item, m_alloc);
|
|
} BOOST_CATCH(...) {
|
|
deallocate(m_buff, size());
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class IntegralType>
|
|
void initialize(IntegralType n, IntegralType item, const true_type&) {
|
|
m_size = static_cast<size_type>(n);
|
|
initialize_buffer(size(), item);
|
|
m_first = m_last = m_buff;
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class Iterator>
|
|
void initialize(Iterator first, Iterator last, const false_type&) {
|
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
|
|
initialize(first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#else
|
|
initialize(first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class InputIterator>
|
|
void initialize(InputIterator first, InputIterator last, const std::input_iterator_tag&) {
|
|
BOOST_CB_ASSERT_TEMPLATED_ITERATOR_CONSTRUCTORS // check if the STL provides templated iterator constructors
|
|
// for containers
|
|
std::deque<value_type, allocator_type> tmp(first, last, m_alloc);
|
|
size_type distance = tmp.size();
|
|
initialize(distance, tmp.begin(), tmp.end(), distance);
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class ForwardIterator>
|
|
void initialize(ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
|
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
|
|
size_type distance = std::distance(first, last);
|
|
initialize(distance, first, last, distance);
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class IntegralType>
|
|
void initialize(capacity_type buffer_capacity, IntegralType n, IntegralType item, const true_type&) {
|
|
BOOST_CB_ASSERT(buffer_capacity >= static_cast<size_type>(n)); // check for capacity lower than n
|
|
m_size = static_cast<size_type>(n);
|
|
initialize_buffer(buffer_capacity, item);
|
|
m_first = m_buff;
|
|
m_last = buffer_capacity == size() ? m_buff : m_buff + size();
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class Iterator>
|
|
void initialize(capacity_type buffer_capacity, Iterator first, Iterator last, const false_type&) {
|
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
|
|
initialize(buffer_capacity, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#else
|
|
initialize(buffer_capacity, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class InputIterator>
|
|
void initialize(capacity_type buffer_capacity,
|
|
InputIterator first,
|
|
InputIterator last,
|
|
const std::input_iterator_tag&) {
|
|
initialize_buffer(buffer_capacity);
|
|
m_first = m_last = m_buff;
|
|
m_size = 0;
|
|
if (buffer_capacity == 0)
|
|
return;
|
|
while (first != last && !full()) {
|
|
m_alloc.construct(m_last, *first++);
|
|
increment(m_last);
|
|
++m_size;
|
|
}
|
|
while (first != last) {
|
|
replace(m_last, *first++);
|
|
increment(m_last);
|
|
m_first = m_last;
|
|
}
|
|
}
|
|
|
|
//! Specialized initialize method.
|
|
template <class ForwardIterator>
|
|
void initialize(capacity_type buffer_capacity,
|
|
ForwardIterator first,
|
|
ForwardIterator last,
|
|
const std::forward_iterator_tag&) {
|
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
|
|
initialize(buffer_capacity, first, last, std::distance(first, last));
|
|
}
|
|
|
|
//! Initialize the circular buffer.
|
|
template <class ForwardIterator>
|
|
void initialize(capacity_type buffer_capacity,
|
|
ForwardIterator first,
|
|
ForwardIterator last,
|
|
size_type distance) {
|
|
initialize_buffer(buffer_capacity);
|
|
m_first = m_buff;
|
|
if (distance > buffer_capacity) {
|
|
std::advance(first, distance - buffer_capacity);
|
|
m_size = buffer_capacity;
|
|
} else {
|
|
m_size = distance;
|
|
}
|
|
BOOST_TRY {
|
|
m_last = cb_details::uninitialized_copy_with_alloc(first, last, m_buff, m_alloc);
|
|
} BOOST_CATCH(...) {
|
|
deallocate(m_buff, buffer_capacity);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
if (m_last == m_end)
|
|
m_last = m_buff;
|
|
}
|
|
|
|
//! Reset the circular buffer.
|
|
void reset(pointer buff, pointer last, capacity_type new_capacity) {
|
|
destroy();
|
|
m_size = last - buff;
|
|
m_first = m_buff = buff;
|
|
m_end = m_buff + new_capacity;
|
|
m_last = last == m_end ? m_buff : last;
|
|
}
|
|
|
|
//! Specialized method for swapping the allocator.
|
|
void swap_allocator(circular_buffer<T, Alloc>& cb, const true_type&) {
|
|
// Swap is not needed because allocators have no state.
|
|
}
|
|
|
|
//! Specialized method for swapping the allocator.
|
|
void swap_allocator(circular_buffer<T, Alloc>& cb, const false_type&) {
|
|
std::swap(m_alloc, cb.m_alloc);
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class IntegralType>
|
|
void assign(IntegralType n, IntegralType item, const true_type&) {
|
|
assign(static_cast<size_type>(n), static_cast<value_type>(item));
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class Iterator>
|
|
void assign(Iterator first, Iterator last, const false_type&) {
|
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
|
|
assign(first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#else
|
|
assign(first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class InputIterator>
|
|
void assign(InputIterator first, InputIterator last, const std::input_iterator_tag&) {
|
|
BOOST_CB_ASSERT_TEMPLATED_ITERATOR_CONSTRUCTORS // check if the STL provides templated iterator constructors
|
|
// for containers
|
|
std::deque<value_type, allocator_type> tmp(first, last, m_alloc);
|
|
size_type distance = tmp.size();
|
|
assign_n(distance, distance,
|
|
cb_details::assign_range<BOOST_DEDUCED_TYPENAME std::deque<value_type, allocator_type>::iterator,
|
|
allocator_type>(tmp.begin(), tmp.end(), m_alloc));
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class ForwardIterator>
|
|
void assign(ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
|
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
|
|
size_type distance = std::distance(first, last);
|
|
assign_n(distance, distance, cb_details::assign_range<ForwardIterator, allocator_type>(first, last, m_alloc));
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class IntegralType>
|
|
void assign(capacity_type new_capacity, IntegralType n, IntegralType item, const true_type&) {
|
|
assign(new_capacity, static_cast<size_type>(n), static_cast<value_type>(item));
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class Iterator>
|
|
void assign(capacity_type new_capacity, Iterator first, Iterator last, const false_type&) {
|
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
|
|
assign(new_capacity, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#else
|
|
assign(new_capacity, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class InputIterator>
|
|
void assign(capacity_type new_capacity, InputIterator first, InputIterator last, const std::input_iterator_tag&) {
|
|
if (new_capacity == capacity()) {
|
|
clear();
|
|
insert(begin(), first, last);
|
|
} else {
|
|
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
|
|
circular_buffer<value_type, allocator_type> tmp(new_capacity, m_alloc);
|
|
tmp.insert(begin(), first, last);
|
|
#else
|
|
circular_buffer<value_type, allocator_type> tmp(new_capacity, first, last, m_alloc);
|
|
#endif
|
|
tmp.swap(*this);
|
|
}
|
|
}
|
|
|
|
//! Specialized assign method.
|
|
template <class ForwardIterator>
|
|
void assign(capacity_type new_capacity, ForwardIterator first, ForwardIterator last,
|
|
const std::forward_iterator_tag&) {
|
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
|
|
size_type distance = std::distance(first, last);
|
|
if (distance > new_capacity) {
|
|
std::advance(first, distance - new_capacity);
|
|
distance = new_capacity;
|
|
}
|
|
assign_n(new_capacity, distance,
|
|
cb_details::assign_range<ForwardIterator, allocator_type>(first, last, m_alloc));
|
|
}
|
|
|
|
//! Helper assign method.
|
|
template <class Functor>
|
|
void assign_n(capacity_type new_capacity, size_type n, const Functor& fnc) {
|
|
if (new_capacity == capacity()) {
|
|
destroy_content();
|
|
BOOST_TRY {
|
|
fnc(m_buff);
|
|
} BOOST_CATCH(...) {
|
|
m_size = 0;
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
} else {
|
|
pointer buff = allocate(new_capacity);
|
|
BOOST_TRY {
|
|
fnc(buff);
|
|
} BOOST_CATCH(...) {
|
|
deallocate(buff, new_capacity);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
destroy();
|
|
m_buff = buff;
|
|
m_end = m_buff + new_capacity;
|
|
}
|
|
m_size = n;
|
|
m_first = m_buff;
|
|
m_last = add(m_buff, size());
|
|
}
|
|
|
|
//! Helper insert method.
|
|
iterator insert_item(const iterator& pos, param_value_type item) {
|
|
pointer p = pos.m_it;
|
|
if (p == 0) {
|
|
construct_or_replace(!full(), m_last, item);
|
|
p = m_last;
|
|
} else {
|
|
pointer src = m_last;
|
|
pointer dest = m_last;
|
|
bool construct = !full();
|
|
BOOST_TRY {
|
|
while (src != p) {
|
|
decrement(src);
|
|
construct_or_replace(construct, dest, *src);
|
|
decrement(dest);
|
|
construct = false;
|
|
}
|
|
replace(p, item);
|
|
} BOOST_CATCH(...) {
|
|
if (!construct && !full()) {
|
|
increment(m_last);
|
|
++m_size;
|
|
}
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
increment(m_last);
|
|
if (full())
|
|
m_first = m_last;
|
|
else
|
|
++m_size;
|
|
return iterator(this, p);
|
|
}
|
|
|
|
//! Specialized insert method.
|
|
template <class IntegralType>
|
|
void insert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
|
|
insert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
|
|
}
|
|
|
|
//! Specialized insert method.
|
|
template <class Iterator>
|
|
void insert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
|
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
|
|
insert(pos, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#else
|
|
insert(pos, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized insert method.
|
|
template <class InputIterator>
|
|
void insert(iterator pos, InputIterator first, InputIterator last, const std::input_iterator_tag&) {
|
|
if (!full() || pos != begin()) {
|
|
for (;first != last; ++pos)
|
|
pos = insert_item(pos, *first++);
|
|
}
|
|
}
|
|
|
|
//! Specialized insert method.
|
|
template <class ForwardIterator>
|
|
void insert(const iterator& pos, ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
|
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
|
|
size_type n = std::distance(first, last);
|
|
if (n == 0)
|
|
return;
|
|
size_type copy = capacity() - (end() - pos);
|
|
if (copy == 0)
|
|
return;
|
|
if (n > copy) {
|
|
std::advance(first, n - copy);
|
|
n = copy;
|
|
}
|
|
insert_n(pos, n, cb_details::iterator_wrapper<ForwardIterator>(first));
|
|
}
|
|
|
|
//! Helper insert method.
|
|
template <class Wrapper>
|
|
void insert_n(const iterator& pos, size_type n, const Wrapper& wrapper) {
|
|
size_type construct = reserve();
|
|
if (construct > n)
|
|
construct = n;
|
|
if (pos.m_it == 0) {
|
|
size_type ii = 0;
|
|
pointer p = m_last;
|
|
BOOST_TRY {
|
|
for (; ii < construct; ++ii, increment(p))
|
|
m_alloc.construct(p, *wrapper());
|
|
for (;ii < n; ++ii, increment(p))
|
|
replace(p, *wrapper());
|
|
} BOOST_CATCH(...) {
|
|
size_type constructed = (std::min)(ii, construct);
|
|
m_last = add(m_last, constructed);
|
|
m_size += constructed;
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
} else {
|
|
pointer src = m_last;
|
|
pointer dest = add(m_last, n - 1);
|
|
pointer p = pos.m_it;
|
|
size_type ii = 0;
|
|
BOOST_TRY {
|
|
while (src != pos.m_it) {
|
|
decrement(src);
|
|
construct_or_replace(is_uninitialized(dest), dest, *src);
|
|
decrement(dest);
|
|
}
|
|
for (; ii < n; ++ii, increment(p))
|
|
construct_or_replace(is_uninitialized(p), p, *wrapper());
|
|
} BOOST_CATCH(...) {
|
|
for (p = add(m_last, n - 1); p != dest; decrement(p))
|
|
destroy_if_constructed(p);
|
|
for (n = 0, p = pos.m_it; n < ii; ++n, increment(p))
|
|
destroy_if_constructed(p);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
m_last = add(m_last, n);
|
|
m_first = add(m_first, n - construct);
|
|
m_size += construct;
|
|
}
|
|
|
|
//! Specialized rinsert method.
|
|
template <class IntegralType>
|
|
void rinsert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
|
|
rinsert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
|
|
}
|
|
|
|
//! Specialized rinsert method.
|
|
template <class Iterator>
|
|
void rinsert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
|
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
|
|
rinsert(pos, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#else
|
|
rinsert(pos, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
|
|
#endif
|
|
}
|
|
|
|
//! Specialized insert method.
|
|
template <class InputIterator>
|
|
void rinsert(iterator pos, InputIterator first, InputIterator last, const std::input_iterator_tag&) {
|
|
if (!full() || pos.m_it != 0) {
|
|
for (;first != last; ++pos) {
|
|
pos = rinsert(pos, *first++);
|
|
if (pos.m_it == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Specialized rinsert method.
|
|
template <class ForwardIterator>
|
|
void rinsert(const iterator& pos, ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) {
|
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
|
|
rinsert_n(pos, std::distance(first, last), cb_details::iterator_wrapper<ForwardIterator>(first));
|
|
}
|
|
|
|
//! Helper rinsert method.
|
|
template <class Wrapper>
|
|
void rinsert_n(const iterator& pos, size_type n, const Wrapper& wrapper) {
|
|
if (n == 0)
|
|
return;
|
|
iterator b = begin();
|
|
size_type copy = capacity() - (pos - b);
|
|
if (copy == 0)
|
|
return;
|
|
if (n > copy)
|
|
n = copy;
|
|
size_type construct = reserve();
|
|
if (construct > n)
|
|
construct = n;
|
|
if (pos == b) {
|
|
pointer p = sub(m_first, n);
|
|
size_type ii = n;
|
|
BOOST_TRY {
|
|
for (;ii > construct; --ii, increment(p))
|
|
replace(p, *wrapper());
|
|
for (; ii > 0; --ii, increment(p))
|
|
m_alloc.construct(p, *wrapper());
|
|
} BOOST_CATCH(...) {
|
|
size_type constructed = ii < construct ? construct - ii : 0;
|
|
m_last = add(m_last, constructed);
|
|
m_size += constructed;
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
} else {
|
|
pointer src = m_first;
|
|
pointer dest = sub(m_first, n);
|
|
pointer p = map_pointer(pos.m_it);
|
|
BOOST_TRY {
|
|
while (src != p) {
|
|
construct_or_replace(is_uninitialized(dest), dest, *src);
|
|
increment(src);
|
|
increment(dest);
|
|
}
|
|
for (size_type ii = 0; ii < n; ++ii, increment(dest))
|
|
construct_or_replace(is_uninitialized(dest), dest, *wrapper());
|
|
} BOOST_CATCH(...) {
|
|
for (src = sub(m_first, n); src != dest; increment(src))
|
|
destroy_if_constructed(src);
|
|
BOOST_RETHROW
|
|
}
|
|
BOOST_CATCH_END
|
|
}
|
|
m_first = sub(m_first, n);
|
|
m_last = sub(m_last, n - construct);
|
|
m_size += construct;
|
|
}
|
|
|
|
//! Specialized erase_begin method.
|
|
void erase_begin(size_type n, const true_type&) {
|
|
m_first = add(m_first, n);
|
|
m_size -= n;
|
|
}
|
|
|
|
//! Specialized erase_begin method.
|
|
void erase_begin(size_type n, const false_type&) {
|
|
iterator b = begin();
|
|
rerase(b, b + n);
|
|
}
|
|
|
|
//! Specialized erase_end method.
|
|
void erase_end(size_type n, const true_type&) {
|
|
m_last = sub(m_last, n);
|
|
m_size -= n;
|
|
}
|
|
|
|
//! Specialized erase_end method.
|
|
void erase_end(size_type n, const false_type&) {
|
|
iterator e = end();
|
|
erase(e - n, e);
|
|
}
|
|
};
|
|
|
|
// Non-member functions
|
|
|
|
//! Compare two <code>circular_buffer</code>s element-by-element to determine if they are equal.
|
|
/*!
|
|
\param lhs The <code>circular_buffer</code> to compare.
|
|
\param rhs The <code>circular_buffer</code> to compare.
|
|
\return <code>lhs.\link circular_buffer::size() size()\endlink == rhs.\link circular_buffer::size() size()\endlink
|
|
&& <a href="http://www.sgi.com/tech/stl/equal.html">std::equal</a>(lhs.\link circular_buffer::begin()
|
|
begin()\endlink, lhs.\link circular_buffer::end() end()\endlink,
|
|
rhs.\link circular_buffer::begin() begin()\endlink)</code>
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline bool operator == (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
|
|
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
|
|
}
|
|
|
|
/*!
|
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is lesser than the
|
|
right one.
|
|
\param lhs The <code>circular_buffer</code> to compare.
|
|
\param rhs The <code>circular_buffer</code> to compare.
|
|
\return <code><a href="http://www.sgi.com/tech/stl/lexicographical_compare.html">
|
|
std::lexicographical_compare</a>(lhs.\link circular_buffer::begin() begin()\endlink,
|
|
lhs.\link circular_buffer::end() end()\endlink, rhs.\link circular_buffer::begin() begin()\endlink,
|
|
rhs.\link circular_buffer::end() end()\endlink)</code>
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline bool operator < (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
|
|
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
|
|
}
|
|
|
|
#if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_MSVC)
|
|
|
|
//! Compare two <code>circular_buffer</code>s element-by-element to determine if they are non-equal.
|
|
/*!
|
|
\param lhs The <code>circular_buffer</code> to compare.
|
|
\param rhs The <code>circular_buffer</code> to compare.
|
|
\return <code>!(lhs == rhs)</code>
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\sa <code>operator==(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline bool operator != (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
/*!
|
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is greater than
|
|
the right one.
|
|
\param lhs The <code>circular_buffer</code> to compare.
|
|
\param rhs The <code>circular_buffer</code> to compare.
|
|
\return <code>rhs \< lhs</code>
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline bool operator > (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
|
|
return rhs < lhs;
|
|
}
|
|
|
|
/*!
|
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is lesser or equal
|
|
to the right one.
|
|
\param lhs The <code>circular_buffer</code> to compare.
|
|
\param rhs The <code>circular_buffer</code> to compare.
|
|
\return <code>!(rhs \< lhs)</code>
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline bool operator <= (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
|
|
return !(rhs < lhs);
|
|
}
|
|
|
|
/*!
|
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is greater or
|
|
equal to the right one.
|
|
\param lhs The <code>circular_buffer</code> to compare.
|
|
\param rhs The <code>circular_buffer</code> to compare.
|
|
\return <code>!(lhs < rhs)</code>
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Linear (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Does not invalidate any iterators.
|
|
\sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code>
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline bool operator >= (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) {
|
|
return !(lhs < rhs);
|
|
}
|
|
|
|
//! Swap the contents of two <code>circular_buffer</code>s.
|
|
/*!
|
|
\post <code>lhs</code> contains elements of <code>rhs</code> and vice versa.
|
|
\param lhs The <code>circular_buffer</code> whose content will be swapped with <code>rhs</code>.
|
|
\param rhs The <code>circular_buffer</code> whose content will be swapped with <code>lhs</code>.
|
|
\throws Nothing.
|
|
\par Complexity
|
|
Constant (in the size of the <code>circular_buffer</code>s).
|
|
\par Iterator Invalidation
|
|
Invalidates all iterators of both <code>circular_buffer</code>s. (On the other hand the iterators still
|
|
point to the same elements but within another container. If you want to rely on this feature you have to
|
|
turn the <a href="#debug">Debug Support</a> off otherwise an assertion will report an error if such
|
|
invalidated iterator is used.)
|
|
\sa <code>\link circular_buffer::swap(circular_buffer<T, Alloc>&) swap(circular_buffer<T, Alloc>&)\endlink</code>
|
|
*/
|
|
template <class T, class Alloc>
|
|
inline void swap(circular_buffer<T, Alloc>& lhs, circular_buffer<T, Alloc>& rhs) {
|
|
lhs.swap(rhs);
|
|
}
|
|
|
|
#endif // #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_MSVC)
|
|
|
|
} // namespace boost
|
|
|
|
#endif // #if !defined(BOOST_CIRCULAR_BUFFER_BASE_HPP)
|