YouCompleteMe/cpp/BoostParts/boost/unordered/unordered_map.hpp
2012-05-09 21:45:30 -07:00

1648 lines
50 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/unordered for documentation
#ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/unordered/unordered_map_fwd.hpp>
#include <boost/unordered/detail/allocator_helpers.hpp>
#include <boost/unordered/detail/equivalent.hpp>
#include <boost/unordered/detail/unique.hpp>
#include <boost/unordered/detail/util.hpp>
#include <boost/functional/hash.hpp>
#include <boost/move/move.hpp>
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
#include <initializer_list>
#endif
#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable:4396) //the inline specifier cannot be used when a
// friend declaration refers to a specialization
// of a function template
#endif
#endif
namespace boost
{
namespace unordered
{
template <class K, class T, class H, class P, class A>
class unordered_map
{
#if defined(BOOST_UNORDERED_USE_MOVE)
BOOST_COPYABLE_AND_MOVABLE(unordered_map)
#endif
public:
typedef K key_type;
typedef std::pair<const K, T> value_type;
typedef T mapped_type;
typedef H hasher;
typedef P key_equal;
typedef A allocator_type;
private:
typedef boost::unordered::detail::map<A, K, T, H, P> types;
typedef typename types::allocator value_allocator;
typedef typename types::traits allocator_traits;
typedef typename types::table table;
public:
typedef typename allocator_traits::pointer pointer;
typedef typename allocator_traits::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef typename table::cl_iterator const_local_iterator;
typedef typename table::l_iterator local_iterator;
typedef typename table::c_iterator const_iterator;
typedef typename table::iterator iterator;
private:
table table_;
public:
// constructors
explicit unordered_map(
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(),
const key_equal& = key_equal(),
const allocator_type& = allocator_type());
explicit unordered_map(allocator_type const&);
template <class InputIt>
unordered_map(InputIt, InputIt);
template <class InputIt>
unordered_map(
InputIt, InputIt,
size_type,
const hasher& = hasher(),
const key_equal& = key_equal());
template <class InputIt>
unordered_map(
InputIt, InputIt,
size_type,
const hasher&,
const key_equal&,
const allocator_type&);
// copy/move constructors
unordered_map(unordered_map const&);
unordered_map(unordered_map const&, allocator_type const&);
#if defined(BOOST_UNORDERED_USE_MOVE)
unordered_map(BOOST_RV_REF(unordered_map) other)
: table_(other.table_, boost::unordered::detail::move_tag())
{
}
#elif !defined(BOOST_NO_RVALUE_REFERENCES)
unordered_map(unordered_map&& other)
: table_(other.table_, boost::unordered::detail::move_tag())
{
}
#endif
#if !defined(BOOST_NO_RVALUE_REFERENCES)
unordered_map(unordered_map&&, allocator_type const&);
#endif
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
unordered_map(
std::initializer_list<value_type>,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(),
const key_equal&l = key_equal(),
const allocator_type& = allocator_type());
#endif
// Destructor
~unordered_map();
// Assign
#if defined(BOOST_UNORDERED_USE_MOVE)
unordered_map& operator=(BOOST_COPY_ASSIGN_REF(unordered_map) x)
{
table_.assign(x.table_);
return *this;
}
unordered_map& operator=(BOOST_RV_REF(unordered_map) x)
{
table_.move_assign(x.table_);
return *this;
}
#else
unordered_map& operator=(unordered_map const& x)
{
table_.assign(x.table_);
return *this;
}
#if !defined(BOOST_NO_RVALUE_REFERENCES)
unordered_map& operator=(unordered_map&& x)
{
table_.move_assign(x.table_);
return *this;
}
#endif
#endif
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
unordered_map& operator=(std::initializer_list<value_type>);
#endif
allocator_type get_allocator() const
{
return table_.node_alloc();
}
// size and capacity
bool empty() const
{
return table_.size_ == 0;
}
size_type size() const
{
return table_.size_;
}
size_type max_size() const;
// iterators
iterator begin()
{
return iterator(table_.begin());
}
const_iterator begin() const
{
return const_iterator(table_.begin());
}
iterator end()
{
return iterator();
}
const_iterator end() const
{
return const_iterator();
}
const_iterator cbegin() const
{
return const_iterator(table_.begin());
}
const_iterator cend() const
{
return const_iterator();
}
// emplace
#if defined(BOOST_UNORDERED_VARIADIC_MOVE)
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args)
{
return table_.emplace(boost::forward<Args>(args)...);
}
template <class... Args>
iterator emplace_hint(const_iterator, Args&&... args)
{
return table_.emplace(boost::forward<Args>(args)...).first;
}
#else
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
// 0 argument emplace requires special treatment in case
// the container is instantiated with a value type that
// doesn't have a default constructor.
std::pair<iterator, bool> emplace(
boost::unordered::detail::empty_emplace
= boost::unordered::detail::empty_emplace(),
value_type v = value_type())
{
return this->emplace(boost::move(v));
}
iterator emplace_hint(const_iterator hint,
boost::unordered::detail::empty_emplace
= boost::unordered::detail::empty_emplace(),
value_type v = value_type()
)
{
return this->emplace_hint(hint, boost::move(v));
}
#endif
template <typename A0>
std::pair<iterator, bool> emplace(BOOST_FWD_REF(A0) a0)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0))
);
}
template <typename A0>
iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0))
).first;
}
template <typename A0, typename A1>
std::pair<iterator, bool> emplace(
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1))
);
}
template <typename A0, typename A1>
iterator emplace_hint(const_iterator,
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1))
).first;
}
template <typename A0, typename A1, typename A2>
std::pair<iterator, bool> emplace(
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1,
BOOST_FWD_REF(A2) a2)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1),
boost::forward<A2>(a2))
);
}
template <typename A0, typename A1, typename A2>
iterator emplace_hint(const_iterator,
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1,
BOOST_FWD_REF(A2) a2)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1),
boost::forward<A2>(a2))
).first;
}
#define BOOST_UNORDERED_EMPLACE(z, n, _) \
template < \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \
> \
std::pair<iterator, bool> emplace( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \
) \
{ \
return table_.emplace( \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \
a) \
)); \
} \
\
template < \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \
> \
iterator emplace_hint( \
const_iterator, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \
) \
{ \
return table_.emplace( \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \
a) \
)).first; \
}
BOOST_PP_REPEAT_FROM_TO(4, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_EMPLACE, _)
#undef BOOST_UNORDERED_EMPLACE
#endif
std::pair<iterator, bool> insert(value_type const& x)
{
return this->emplace(x);
}
std::pair<iterator, bool> insert(BOOST_RV_REF(value_type) x)
{
return this->emplace(boost::move(x));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
}
iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x)
{
return this->emplace_hint(hint, boost::move(x));
}
template <class InputIt> void insert(InputIt, InputIt);
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
void insert(std::initializer_list<value_type>);
#endif
iterator erase(const_iterator);
size_type erase(const key_type&);
iterator erase(const_iterator, const_iterator);
void quick_erase(const_iterator it) { erase(it); }
void erase_return_void(const_iterator it) { erase(it); }
void clear();
void swap(unordered_map&);
// observers
hasher hash_function() const;
key_equal key_eq() const;
mapped_type& operator[](const key_type&);
mapped_type& at(const key_type&);
mapped_type const& at(const key_type&) const;
// lookup
iterator find(const key_type&);
const_iterator find(const key_type&) const;
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
iterator find(
CompatibleKey const&,
CompatibleHash const&,
CompatiblePredicate const&);
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
const_iterator find(
CompatibleKey const&,
CompatibleHash const&,
CompatiblePredicate const&) const;
size_type count(const key_type&) const;
std::pair<iterator, iterator>
equal_range(const key_type&);
std::pair<const_iterator, const_iterator>
equal_range(const key_type&) const;
// bucket interface
size_type bucket_count() const
{
return table_.bucket_count_;
}
size_type max_bucket_count() const
{
return table_.max_bucket_count();
}
size_type bucket_size(size_type) const;
size_type bucket(const key_type& k) const
{
return table_.hash_function()(k) % table_.bucket_count_;
}
local_iterator begin(size_type n)
{
return table_.size_ ? local_iterator(
table_.get_start(n), n, table_.bucket_count_) :
local_iterator();
}
const_local_iterator begin(size_type n) const
{
return table_.size_ ? const_local_iterator(
table_.get_start(n), n, table_.bucket_count_) :
const_local_iterator();
}
local_iterator end(size_type)
{
return local_iterator();
}
const_local_iterator end(size_type) const
{
return const_local_iterator();
}
const_local_iterator cbegin(size_type n) const
{
return table_.size_ ? const_local_iterator(
table_.get_start(n), n, table_.bucket_count_) :
const_local_iterator();
}
const_local_iterator cend(size_type) const
{
return const_local_iterator();
}
// hash policy
float max_load_factor() const
{
return table_.mlf_;
}
float load_factor() const;
void max_load_factor(float);
void rehash(size_type);
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582)
friend bool operator==<K,T,H,P,A>(
unordered_map const&, unordered_map const&);
friend bool operator!=<K,T,H,P,A>(
unordered_map const&, unordered_map const&);
#endif
}; // class template unordered_map
template <class K, class T, class H, class P, class A>
class unordered_multimap
{
#if defined(BOOST_UNORDERED_USE_MOVE)
BOOST_COPYABLE_AND_MOVABLE(unordered_multimap)
#endif
public:
typedef K key_type;
typedef std::pair<const K, T> value_type;
typedef T mapped_type;
typedef H hasher;
typedef P key_equal;
typedef A allocator_type;
private:
typedef boost::unordered::detail::multimap<A, K, T, H, P> types;
typedef typename types::allocator value_allocator;
typedef typename types::traits allocator_traits;
typedef typename types::table table;
public:
typedef typename allocator_traits::pointer pointer;
typedef typename allocator_traits::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef typename table::cl_iterator const_local_iterator;
typedef typename table::l_iterator local_iterator;
typedef typename table::c_iterator const_iterator;
typedef typename table::iterator iterator;
private:
table table_;
public:
// constructors
explicit unordered_multimap(
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(),
const key_equal& = key_equal(),
const allocator_type& = allocator_type());
explicit unordered_multimap(allocator_type const&);
template <class InputIt>
unordered_multimap(InputIt, InputIt);
template <class InputIt>
unordered_multimap(
InputIt, InputIt,
size_type,
const hasher& = hasher(),
const key_equal& = key_equal());
template <class InputIt>
unordered_multimap(
InputIt, InputIt,
size_type,
const hasher&,
const key_equal&,
const allocator_type&);
// copy/move constructors
unordered_multimap(unordered_multimap const&);
unordered_multimap(unordered_multimap const&, allocator_type const&);
#if defined(BOOST_UNORDERED_USE_MOVE)
unordered_multimap(BOOST_RV_REF(unordered_multimap) other)
: table_(other.table_, boost::unordered::detail::move_tag())
{
}
#elif !defined(BOOST_NO_RVALUE_REFERENCES)
unordered_multimap(unordered_multimap&& other)
: table_(other.table_, boost::unordered::detail::move_tag())
{
}
#endif
#if !defined(BOOST_NO_RVALUE_REFERENCES)
unordered_multimap(unordered_multimap&&, allocator_type const&);
#endif
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
unordered_multimap(
std::initializer_list<value_type>,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(),
const key_equal&l = key_equal(),
const allocator_type& = allocator_type());
#endif
// Destructor
~unordered_multimap();
// Assign
#if defined(BOOST_UNORDERED_USE_MOVE)
unordered_multimap& operator=(
BOOST_COPY_ASSIGN_REF(unordered_multimap) x)
{
table_.assign(x.table_);
return *this;
}
unordered_multimap& operator=(BOOST_RV_REF(unordered_multimap) x)
{
table_.move_assign(x.table_);
return *this;
}
#else
unordered_multimap& operator=(unordered_multimap const& x)
{
table_.assign(x.table_);
return *this;
}
#if !defined(BOOST_NO_RVALUE_REFERENCES)
unordered_multimap& operator=(unordered_multimap&& x)
{
table_.move_assign(x.table_);
return *this;
}
#endif
#endif
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
unordered_multimap& operator=(std::initializer_list<value_type>);
#endif
allocator_type get_allocator() const
{
return table_.node_alloc();
}
// size and capacity
bool empty() const
{
return table_.size_ == 0;
}
size_type size() const
{
return table_.size_;
}
size_type max_size() const;
// iterators
iterator begin()
{
return iterator(table_.begin());
}
const_iterator begin() const
{
return const_iterator(table_.begin());
}
iterator end()
{
return iterator();
}
const_iterator end() const
{
return const_iterator();
}
const_iterator cbegin() const
{
return const_iterator(table_.begin());
}
const_iterator cend() const
{
return const_iterator();
}
// emplace
#if defined(BOOST_UNORDERED_VARIADIC_MOVE)
template <class... Args>
iterator emplace(Args&&... args)
{
return table_.emplace(boost::forward<Args>(args)...);
}
template <class... Args>
iterator emplace_hint(const_iterator, Args&&... args)
{
return table_.emplace(boost::forward<Args>(args)...);
}
#else
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
// 0 argument emplace requires special treatment in case
// the container is instantiated with a value type that
// doesn't have a default constructor.
iterator emplace(
boost::unordered::detail::empty_emplace
= boost::unordered::detail::empty_emplace(),
value_type v = value_type())
{
return this->emplace(boost::move(v));
}
iterator emplace_hint(const_iterator hint,
boost::unordered::detail::empty_emplace
= boost::unordered::detail::empty_emplace(),
value_type v = value_type()
)
{
return this->emplace_hint(hint, boost::move(v));
}
#endif
template <typename A0>
iterator emplace(BOOST_FWD_REF(A0) a0)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0))
);
}
template <typename A0>
iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0))
);
}
template <typename A0, typename A1>
iterator emplace(
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1))
);
}
template <typename A0, typename A1>
iterator emplace_hint(const_iterator,
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1))
);
}
template <typename A0, typename A1, typename A2>
iterator emplace(
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1,
BOOST_FWD_REF(A2) a2)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1),
boost::forward<A2>(a2))
);
}
template <typename A0, typename A1, typename A2>
iterator emplace_hint(const_iterator,
BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1,
BOOST_FWD_REF(A2) a2)
{
return table_.emplace(
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0),
boost::forward<A1>(a1),
boost::forward<A2>(a2))
);
}
#define BOOST_UNORDERED_EMPLACE(z, n, _) \
template < \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \
> \
iterator emplace( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \
) \
{ \
return table_.emplace( \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \
a) \
)); \
} \
\
template < \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \
> \
iterator emplace_hint( \
const_iterator, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \
) \
{ \
return table_.emplace( \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \
a) \
)); \
}
BOOST_PP_REPEAT_FROM_TO(4, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_EMPLACE, _)
#undef BOOST_UNORDERED_EMPLACE
#endif
iterator insert(value_type const& x)
{
return this->emplace(x);
}
iterator insert(BOOST_RV_REF(value_type) x)
{
return this->emplace(boost::move(x));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
}
iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x)
{
return this->emplace_hint(hint, boost::move(x));
}
template <class InputIt> void insert(InputIt, InputIt);
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
void insert(std::initializer_list<value_type>);
#endif
iterator erase(const_iterator);
size_type erase(const key_type&);
iterator erase(const_iterator, const_iterator);
void quick_erase(const_iterator it) { erase(it); }
void erase_return_void(const_iterator it) { erase(it); }
void clear();
void swap(unordered_multimap&);
// observers
hasher hash_function() const;
key_equal key_eq() const;
// lookup
iterator find(const key_type&);
const_iterator find(const key_type&) const;
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
iterator find(
CompatibleKey const&,
CompatibleHash const&,
CompatiblePredicate const&);
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
const_iterator find(
CompatibleKey const&,
CompatibleHash const&,
CompatiblePredicate const&) const;
size_type count(const key_type&) const;
std::pair<iterator, iterator>
equal_range(const key_type&);
std::pair<const_iterator, const_iterator>
equal_range(const key_type&) const;
// bucket interface
size_type bucket_count() const
{
return table_.bucket_count_;
}
size_type max_bucket_count() const
{
return table_.max_bucket_count();
}
size_type bucket_size(size_type) const;
size_type bucket(const key_type& k) const
{
return table_.hash_function()(k) % table_.bucket_count_;
}
local_iterator begin(size_type n)
{
return table_.size_ ? local_iterator(
table_.get_start(n), n, table_.bucket_count_) :
local_iterator();
}
const_local_iterator begin(size_type n) const
{
return table_.size_ ? const_local_iterator(
table_.get_start(n), n, table_.bucket_count_) :
const_local_iterator();
}
local_iterator end(size_type)
{
return local_iterator();
}
const_local_iterator end(size_type) const
{
return const_local_iterator();
}
const_local_iterator cbegin(size_type n) const
{
return table_.size_ ? const_local_iterator(
table_.get_start(n), n, table_.bucket_count_) :
const_local_iterator();
}
const_local_iterator cend(size_type) const
{
return const_local_iterator();
}
// hash policy
float max_load_factor() const
{
return table_.mlf_;
}
float load_factor() const;
void max_load_factor(float);
void rehash(size_type);
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582)
friend bool operator==<K,T,H,P,A>(
unordered_multimap const&, unordered_multimap const&);
friend bool operator!=<K,T,H,P,A>(
unordered_multimap const&, unordered_multimap const&);
#endif
}; // class template unordered_multimap
////////////////////////////////////////////////////////////////////////////////
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::unordered_map(
size_type n, const hasher &hf, const key_equal &eql,
const allocator_type &a)
: table_(n, hf, eql, a)
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::unordered_map(allocator_type const& a)
: table_(boost::unordered::detail::default_bucket_count,
hasher(), key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::unordered_map(
unordered_map const& other, allocator_type const& a)
: table_(other.table_, a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K,T,H,P,A>::unordered_map(InputIt f, InputIt l)
: table_(boost::unordered::detail::initial_size(f, l),
hasher(), key_equal(), allocator_type())
{
table_.insert_range(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K,T,H,P,A>::unordered_map(
InputIt f, InputIt l,
size_type n,
const hasher &hf,
const key_equal &eql)
: table_(boost::unordered::detail::initial_size(f, l, n),
hf, eql, allocator_type())
{
table_.insert_range(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K,T,H,P,A>::unordered_map(
InputIt f, InputIt l,
size_type n,
const hasher &hf,
const key_equal &eql,
const allocator_type &a)
: table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
table_.insert_range(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::~unordered_map() {}
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::unordered_map(
unordered_map const& other)
: table_(other.table_)
{
}
#if !defined(BOOST_NO_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::unordered_map(
unordered_map&& other, allocator_type const& a)
: table_(other.table_, a, boost::unordered::detail::move_tag())
{
}
#endif
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>::unordered_map(
std::initializer_list<value_type> list, size_type n,
const hasher &hf, const key_equal &eql, const allocator_type &a)
: table_(
boost::unordered::detail::initial_size(
list.begin(), list.end(), n),
hf, eql, a)
{
table_.insert_range(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_map<K,T,H,P,A>& unordered_map<K,T,H,P,A>::operator=(
std::initializer_list<value_type> list)
{
table_.clear();
table_.insert_range(list.begin(), list.end());
return *this;
}
#endif
// size and capacity
template <class K, class T, class H, class P, class A>
std::size_t unordered_map<K,T,H,P,A>::max_size() const
{
return table_.max_size();
}
// modifiers
template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_map<K,T,H,P,A>::insert(InputIt first, InputIt last)
{
table_.insert_range(first, last);
}
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
void unordered_map<K,T,H,P,A>::insert(
std::initializer_list<value_type> list)
{
table_.insert_range(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::iterator
unordered_map<K,T,H,P,A>::erase(const_iterator position)
{
return iterator(table_.erase(position.node_));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::size_type
unordered_map<K,T,H,P,A>::erase(const key_type& k)
{
return table_.erase_key(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::iterator
unordered_map<K,T,H,P,A>::erase(
const_iterator first, const_iterator last)
{
return iterator(table_.erase_range(first.node_, last.node_));
}
template <class K, class T, class H, class P, class A>
void unordered_map<K,T,H,P,A>::clear()
{
table_.clear();
}
template <class K, class T, class H, class P, class A>
void unordered_map<K,T,H,P,A>::swap(unordered_map& other)
{
table_.swap(other.table_);
}
// observers
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::hasher
unordered_map<K,T,H,P,A>::hash_function() const
{
return table_.hash_function();
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::key_equal
unordered_map<K,T,H,P,A>::key_eq() const
{
return table_.key_eq();
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::mapped_type&
unordered_map<K,T,H,P,A>::operator[](const key_type &k)
{
return table_[k].second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::mapped_type&
unordered_map<K,T,H,P,A>::at(const key_type& k)
{
return table_.at(k).second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::mapped_type const&
unordered_map<K,T,H,P,A>::at(const key_type& k) const
{
return table_.at(k).second;
}
// lookup
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::iterator
unordered_map<K,T,H,P,A>::find(const key_type& k)
{
return iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::const_iterator
unordered_map<K,T,H,P,A>::find(const key_type& k) const
{
return const_iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_map<K,T,H,P,A>::iterator
unordered_map<K,T,H,P,A>::find(
CompatibleKey const& k,
CompatibleHash const& hash,
CompatiblePredicate const& eq)
{
return iterator(table_.generic_find_node(k, hash, eq));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_map<K,T,H,P,A>::const_iterator
unordered_map<K,T,H,P,A>::find(
CompatibleKey const& k,
CompatibleHash const& hash,
CompatiblePredicate const& eq) const
{
return const_iterator(table_.generic_find_node(k, hash, eq));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::size_type
unordered_map<K,T,H,P,A>::count(const key_type& k) const
{
return table_.count(k);
}
template <class K, class T, class H, class P, class A>
std::pair<
typename unordered_map<K,T,H,P,A>::iterator,
typename unordered_map<K,T,H,P,A>::iterator>
unordered_map<K,T,H,P,A>::equal_range(const key_type& k)
{
return table_.equal_range(k);
}
template <class K, class T, class H, class P, class A>
std::pair<
typename unordered_map<K,T,H,P,A>::const_iterator,
typename unordered_map<K,T,H,P,A>::const_iterator>
unordered_map<K,T,H,P,A>::equal_range(const key_type& k) const
{
return table_.equal_range(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K,T,H,P,A>::size_type
unordered_map<K,T,H,P,A>::bucket_size(size_type n) const
{
return table_.bucket_size(n);
}
// hash policy
template <class K, class T, class H, class P, class A>
float unordered_map<K,T,H,P,A>::load_factor() const
{
return table_.load_factor();
}
template <class K, class T, class H, class P, class A>
void unordered_map<K,T,H,P,A>::max_load_factor(float m)
{
table_.max_load_factor(m);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K,T,H,P,A>::rehash(size_type n)
{
table_.rehash(n);
}
template <class K, class T, class H, class P, class A>
inline bool operator==(
unordered_map<K,T,H,P,A> const& m1,
unordered_map<K,T,H,P,A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy { unordered_map<K,T,H,P,A> x; };
#endif
return m1.table_.equals(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(
unordered_map<K,T,H,P,A> const& m1,
unordered_map<K,T,H,P,A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy { unordered_map<K,T,H,P,A> x; };
#endif
return !m1.table_.equals(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline void swap(
unordered_map<K,T,H,P,A> &m1,
unordered_map<K,T,H,P,A> &m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy { unordered_map<K,T,H,P,A> x; };
#endif
m1.swap(m2);
}
////////////////////////////////////////////////////////////////////////////////
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
size_type n, const hasher &hf, const key_equal &eql,
const allocator_type &a)
: table_(n, hf, eql, a)
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::unordered_multimap(allocator_type const& a)
: table_(boost::unordered::detail::default_bucket_count,
hasher(), key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
unordered_multimap const& other, allocator_type const& a)
: table_(other.table_, a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K,T,H,P,A>::unordered_multimap(InputIt f, InputIt l)
: table_(boost::unordered::detail::initial_size(f, l),
hasher(), key_equal(), allocator_type())
{
table_.insert_range(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
InputIt f, InputIt l,
size_type n,
const hasher &hf,
const key_equal &eql)
: table_(boost::unordered::detail::initial_size(f, l, n),
hf, eql, allocator_type())
{
table_.insert_range(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
InputIt f, InputIt l,
size_type n,
const hasher &hf,
const key_equal &eql,
const allocator_type &a)
: table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
table_.insert_range(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::~unordered_multimap() {}
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
unordered_multimap const& other)
: table_(other.table_)
{
}
#if !defined(BOOST_NO_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
unordered_multimap&& other, allocator_type const& a)
: table_(other.table_, a, boost::unordered::detail::move_tag())
{
}
#endif
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n,
const hasher &hf, const key_equal &eql, const allocator_type &a)
: table_(
boost::unordered::detail::initial_size(
list.begin(), list.end(), n),
hf, eql, a)
{
table_.insert_range(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K,T,H,P,A>& unordered_multimap<K,T,H,P,A>::operator=(
std::initializer_list<value_type> list)
{
table_.clear();
table_.insert_range(list.begin(), list.end());
return *this;
}
#endif
// size and capacity
template <class K, class T, class H, class P, class A>
std::size_t unordered_multimap<K,T,H,P,A>::max_size() const
{
return table_.max_size();
}
// modifiers
template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_multimap<K,T,H,P,A>::insert(InputIt first, InputIt last)
{
table_.insert_range(first, last);
}
#if !defined(BOOST_NO_0X_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
void unordered_multimap<K,T,H,P,A>::insert(
std::initializer_list<value_type> list)
{
table_.insert_range(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::iterator
unordered_multimap<K,T,H,P,A>::erase(const_iterator position)
{
return iterator(table_.erase(position.node_));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::size_type
unordered_multimap<K,T,H,P,A>::erase(const key_type& k)
{
return table_.erase_key(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::iterator
unordered_multimap<K,T,H,P,A>::erase(
const_iterator first, const_iterator last)
{
return iterator(table_.erase_range(first.node_, last.node_));
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K,T,H,P,A>::clear()
{
table_.clear();
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K,T,H,P,A>::swap(unordered_multimap& other)
{
table_.swap(other.table_);
}
// observers
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::hasher
unordered_multimap<K,T,H,P,A>::hash_function() const
{
return table_.hash_function();
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::key_equal
unordered_multimap<K,T,H,P,A>::key_eq() const
{
return table_.key_eq();
}
// lookup
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::iterator
unordered_multimap<K,T,H,P,A>::find(const key_type& k)
{
return iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::const_iterator
unordered_multimap<K,T,H,P,A>::find(const key_type& k) const
{
return const_iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_multimap<K,T,H,P,A>::iterator
unordered_multimap<K,T,H,P,A>::find(
CompatibleKey const& k,
CompatibleHash const& hash,
CompatiblePredicate const& eq)
{
return iterator(table_.generic_find_node(k, hash, eq));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_multimap<K,T,H,P,A>::const_iterator
unordered_multimap<K,T,H,P,A>::find(
CompatibleKey const& k,
CompatibleHash const& hash,
CompatiblePredicate const& eq) const
{
return const_iterator(table_.generic_find_node(k, hash, eq));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::size_type
unordered_multimap<K,T,H,P,A>::count(const key_type& k) const
{
return table_.count(k);
}
template <class K, class T, class H, class P, class A>
std::pair<
typename unordered_multimap<K,T,H,P,A>::iterator,
typename unordered_multimap<K,T,H,P,A>::iterator>
unordered_multimap<K,T,H,P,A>::equal_range(const key_type& k)
{
return table_.equal_range(k);
}
template <class K, class T, class H, class P, class A>
std::pair<
typename unordered_multimap<K,T,H,P,A>::const_iterator,
typename unordered_multimap<K,T,H,P,A>::const_iterator>
unordered_multimap<K,T,H,P,A>::equal_range(const key_type& k) const
{
return table_.equal_range(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K,T,H,P,A>::size_type
unordered_multimap<K,T,H,P,A>::bucket_size(size_type n) const
{
return table_.bucket_size(n);
}
// hash policy
template <class K, class T, class H, class P, class A>
float unordered_multimap<K,T,H,P,A>::load_factor() const
{
return table_.load_factor();
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K,T,H,P,A>::max_load_factor(float m)
{
table_.max_load_factor(m);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K,T,H,P,A>::rehash(size_type n)
{
table_.rehash(n);
}
template <class K, class T, class H, class P, class A>
inline bool operator==(
unordered_multimap<K,T,H,P,A> const& m1,
unordered_multimap<K,T,H,P,A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy { unordered_multimap<K,T,H,P,A> x; };
#endif
return m1.table_.equals(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(
unordered_multimap<K,T,H,P,A> const& m1,
unordered_multimap<K,T,H,P,A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy { unordered_multimap<K,T,H,P,A> x; };
#endif
return !m1.table_.equals(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline void swap(
unordered_multimap<K,T,H,P,A> &m1,
unordered_multimap<K,T,H,P,A> &m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy { unordered_multimap<K,T,H,P,A> x; };
#endif
m1.swap(m2);
}
} // namespace unordered
} // namespace boost
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED