YouCompleteMe/cpp/BoostParts/boost/thread/future.hpp
2012-05-09 21:45:30 -07:00

1444 lines
38 KiB
C++

// (C) Copyright 2008-10 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_THREAD_FUTURE_HPP
#define BOOST_THREAD_FUTURE_HPP
#include <stdexcept>
#include <boost/thread/detail/move.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/exception_ptr.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/type_traits/is_fundamental.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/mpl/if.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <algorithm>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/ref.hpp>
#include <boost/scoped_array.hpp>
#include <boost/utility/enable_if.hpp>
#include <list>
#include <boost/next_prior.hpp>
#include <vector>
namespace boost
{
class future_uninitialized:
public std::logic_error
{
public:
future_uninitialized():
std::logic_error("Future Uninitialized")
{}
};
class broken_promise:
public std::logic_error
{
public:
broken_promise():
std::logic_error("Broken promise")
{}
};
class future_already_retrieved:
public std::logic_error
{
public:
future_already_retrieved():
std::logic_error("Future already retrieved")
{}
};
class promise_already_satisfied:
public std::logic_error
{
public:
promise_already_satisfied():
std::logic_error("Promise already satisfied")
{}
};
class task_already_started:
public std::logic_error
{
public:
task_already_started():
std::logic_error("Task already started")
{}
};
class task_moved:
public std::logic_error
{
public:
task_moved():
std::logic_error("Task moved")
{}
};
namespace future_state
{
enum state { uninitialized, waiting, ready, moved };
}
namespace detail
{
struct future_object_base
{
boost::exception_ptr exception;
bool done;
boost::mutex mutex;
boost::condition_variable waiters;
typedef std::list<boost::condition_variable_any*> waiter_list;
waiter_list external_waiters;
boost::function<void()> callback;
future_object_base():
done(false)
{}
virtual ~future_object_base()
{}
waiter_list::iterator register_external_waiter(boost::condition_variable_any& cv)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
return external_waiters.insert(external_waiters.end(),&cv);
}
void remove_external_waiter(waiter_list::iterator it)
{
boost::lock_guard<boost::mutex> lock(mutex);
external_waiters.erase(it);
}
void mark_finished_internal()
{
done=true;
waiters.notify_all();
for(waiter_list::const_iterator it=external_waiters.begin(),
end=external_waiters.end();it!=end;++it)
{
(*it)->notify_all();
}
}
struct relocker
{
boost::unique_lock<boost::mutex>& lock;
relocker(boost::unique_lock<boost::mutex>& lock_):
lock(lock_)
{
lock.unlock();
}
~relocker()
{
lock.lock();
}
private:
relocker& operator=(relocker const&);
};
void do_callback(boost::unique_lock<boost::mutex>& lock)
{
if(callback && !done)
{
boost::function<void()> local_callback=callback;
relocker relock(lock);
local_callback();
}
}
void wait(bool rethrow=true)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
while(!done)
{
waiters.wait(lock);
}
if(rethrow && exception)
{
boost::rethrow_exception(exception);
}
}
bool timed_wait_until(boost::system_time const& target_time)
{
boost::unique_lock<boost::mutex> lock(mutex);
do_callback(lock);
while(!done)
{
bool const success=waiters.timed_wait(lock,target_time);
if(!success && !done)
{
return false;
}
}
return true;
}
void mark_exceptional_finish_internal(boost::exception_ptr const& e)
{
exception=e;
mark_finished_internal();
}
void mark_exceptional_finish()
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_exceptional_finish_internal(boost::current_exception());
}
bool has_value()
{
boost::lock_guard<boost::mutex> lock(mutex);
return done && !exception;
}
bool has_exception()
{
boost::lock_guard<boost::mutex> lock(mutex);
return done && exception;
}
template<typename F,typename U>
void set_wait_callback(F f,U* u)
{
callback=boost::bind(f,boost::ref(*u));
}
private:
future_object_base(future_object_base const&);
future_object_base& operator=(future_object_base const&);
};
template<typename T>
struct future_traits
{
typedef boost::scoped_ptr<T> storage_type;
#ifndef BOOST_NO_RVALUE_REFERENCES
typedef T const& source_reference_type;
struct dummy;
typedef typename boost::mpl::if_<boost::is_fundamental<T>,dummy&,T&&>::type rvalue_source_type;
typedef typename boost::mpl::if_<boost::is_fundamental<T>,T,T&&>::type move_dest_type;
#else
typedef T& source_reference_type;
typedef typename boost::mpl::if_<boost::is_convertible<T&,boost::detail::thread_move_t<T> >,boost::detail::thread_move_t<T>,T const&>::type rvalue_source_type;
typedef typename boost::mpl::if_<boost::is_convertible<T&,boost::detail::thread_move_t<T> >,boost::detail::thread_move_t<T>,T>::type move_dest_type;
#endif
static void init(storage_type& storage,source_reference_type t)
{
storage.reset(new T(t));
}
static void init(storage_type& storage,rvalue_source_type t)
{
storage.reset(new T(static_cast<rvalue_source_type>(t)));
}
static void cleanup(storage_type& storage)
{
storage.reset();
}
};
template<typename T>
struct future_traits<T&>
{
typedef T* storage_type;
typedef T& source_reference_type;
struct rvalue_source_type
{};
typedef T& move_dest_type;
static void init(storage_type& storage,T& t)
{
storage=&t;
}
static void cleanup(storage_type& storage)
{
storage=0;
}
};
template<>
struct future_traits<void>
{
typedef bool storage_type;
typedef void move_dest_type;
static void init(storage_type& storage)
{
storage=true;
}
static void cleanup(storage_type& storage)
{
storage=false;
}
};
template<typename T>
struct future_object:
detail::future_object_base
{
typedef typename future_traits<T>::storage_type storage_type;
typedef typename future_traits<T>::source_reference_type source_reference_type;
typedef typename future_traits<T>::rvalue_source_type rvalue_source_type;
typedef typename future_traits<T>::move_dest_type move_dest_type;
storage_type result;
future_object():
result(0)
{}
void mark_finished_with_result_internal(source_reference_type result_)
{
future_traits<T>::init(result,result_);
mark_finished_internal();
}
void mark_finished_with_result_internal(rvalue_source_type result_)
{
future_traits<T>::init(result,static_cast<rvalue_source_type>(result_));
mark_finished_internal();
}
void mark_finished_with_result(source_reference_type result_)
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_finished_with_result_internal(result_);
}
void mark_finished_with_result(rvalue_source_type result_)
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_finished_with_result_internal(result_);
}
move_dest_type get()
{
wait();
return static_cast<move_dest_type>(*result);
}
future_state::state get_state()
{
boost::lock_guard<boost::mutex> guard(mutex);
if(!done)
{
return future_state::waiting;
}
else
{
return future_state::ready;
}
}
private:
future_object(future_object const&);
future_object& operator=(future_object const&);
};
template<>
struct future_object<void>:
detail::future_object_base
{
typedef void move_dest_type;
future_object()
{}
void mark_finished_with_result_internal()
{
mark_finished_internal();
}
void mark_finished_with_result()
{
boost::lock_guard<boost::mutex> lock(mutex);
mark_finished_with_result_internal();
}
void get()
{
wait();
}
future_state::state get_state()
{
boost::lock_guard<boost::mutex> guard(mutex);
if(!done)
{
return future_state::waiting;
}
else
{
return future_state::ready;
}
}
private:
future_object(future_object const&);
future_object& operator=(future_object const&);
};
class future_waiter
{
struct registered_waiter;
typedef std::vector<registered_waiter>::size_type count_type;
struct registered_waiter
{
boost::shared_ptr<detail::future_object_base> future;
detail::future_object_base::waiter_list::iterator wait_iterator;
count_type index;
registered_waiter(boost::shared_ptr<detail::future_object_base> const& future_,
detail::future_object_base::waiter_list::iterator wait_iterator_,
count_type index_):
future(future_),wait_iterator(wait_iterator_),index(index_)
{}
};
struct all_futures_lock
{
#ifdef _MANAGED
typedef std::ptrdiff_t count_type_portable;
#else
typedef count_type count_type_portable;
#endif
count_type_portable count;
boost::scoped_array<boost::unique_lock<boost::mutex> > locks;
all_futures_lock(std::vector<registered_waiter>& futures):
count(futures.size()),locks(new boost::unique_lock<boost::mutex>[count])
{
for(count_type_portable i=0;i<count;++i)
{
#if defined __DECCXX || defined __SUNPRO_CC
locks[i]=boost::unique_lock<boost::mutex>(futures[i].future->mutex).move();
#else
locks[i]=boost::unique_lock<boost::mutex>(futures[i].future->mutex);
#endif
}
}
void lock()
{
boost::lock(locks.get(),locks.get()+count);
}
void unlock()
{
for(count_type_portable i=0;i<count;++i)
{
locks[i].unlock();
}
}
};
boost::condition_variable_any cv;
std::vector<registered_waiter> futures;
count_type future_count;
public:
future_waiter():
future_count(0)
{}
template<typename F>
void add(F& f)
{
if(f.future)
{
futures.push_back(registered_waiter(f.future,f.future->register_external_waiter(cv),future_count));
}
++future_count;
}
count_type wait()
{
all_futures_lock lk(futures);
for(;;)
{
for(count_type i=0;i<futures.size();++i)
{
if(futures[i].future->done)
{
return futures[i].index;
}
}
cv.wait(lk);
}
}
~future_waiter()
{
for(count_type i=0;i<futures.size();++i)
{
futures[i].future->remove_external_waiter(futures[i].wait_iterator);
}
}
};
}
template <typename R>
class unique_future;
template <typename R>
class shared_future;
template<typename T>
struct is_future_type
{
BOOST_STATIC_CONSTANT(bool, value=false);
};
template<typename T>
struct is_future_type<unique_future<T> >
{
BOOST_STATIC_CONSTANT(bool, value=true);
};
template<typename T>
struct is_future_type<shared_future<T> >
{
BOOST_STATIC_CONSTANT(bool, value=true);
};
template<typename Iterator>
typename boost::disable_if<is_future_type<Iterator>,void>::type wait_for_all(Iterator begin,Iterator end)
{
for(Iterator current=begin;current!=end;++current)
{
current->wait();
}
}
template<typename F1,typename F2>
typename boost::enable_if<is_future_type<F1>,void>::type wait_for_all(F1& f1,F2& f2)
{
f1.wait();
f2.wait();
}
template<typename F1,typename F2,typename F3>
void wait_for_all(F1& f1,F2& f2,F3& f3)
{
f1.wait();
f2.wait();
f3.wait();
}
template<typename F1,typename F2,typename F3,typename F4>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4)
{
f1.wait();
f2.wait();
f3.wait();
f4.wait();
}
template<typename F1,typename F2,typename F3,typename F4,typename F5>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5)
{
f1.wait();
f2.wait();
f3.wait();
f4.wait();
f5.wait();
}
template<typename Iterator>
typename boost::disable_if<is_future_type<Iterator>,Iterator>::type wait_for_any(Iterator begin,Iterator end)
{
if(begin==end)
return end;
detail::future_waiter waiter;
for(Iterator current=begin;current!=end;++current)
{
waiter.add(*current);
}
return boost::next(begin,waiter.wait());
}
template<typename F1,typename F2>
typename boost::enable_if<is_future_type<F1>,unsigned>::type wait_for_any(F1& f1,F2& f2)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
return waiter.wait();
}
template<typename F1,typename F2,typename F3>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
waiter.add(f3);
return waiter.wait();
}
template<typename F1,typename F2,typename F3,typename F4>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
waiter.add(f3);
waiter.add(f4);
return waiter.wait();
}
template<typename F1,typename F2,typename F3,typename F4,typename F5>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5)
{
detail::future_waiter waiter;
waiter.add(f1);
waiter.add(f2);
waiter.add(f3);
waiter.add(f4);
waiter.add(f5);
return waiter.wait();
}
template <typename R>
class promise;
template <typename R>
class packaged_task;
template <typename R>
class unique_future
{
unique_future(unique_future & rhs);// = delete;
unique_future& operator=(unique_future& rhs);// = delete;
typedef boost::shared_ptr<detail::future_object<R> > future_ptr;
future_ptr future;
friend class shared_future<R>;
friend class promise<R>;
friend class packaged_task<R>;
friend class detail::future_waiter;
typedef typename detail::future_traits<R>::move_dest_type move_dest_type;
unique_future(future_ptr future_):
future(future_)
{}
public:
typedef future_state::state state;
unique_future()
{}
~unique_future()
{}
#ifndef BOOST_NO_RVALUE_REFERENCES
unique_future(unique_future && other)
{
future.swap(other.future);
}
unique_future& operator=(unique_future && other)
{
future=other.future;
other.future.reset();
return *this;
}
#else
unique_future(boost::detail::thread_move_t<unique_future> other):
future(other->future)
{
other->future.reset();
}
unique_future& operator=(boost::detail::thread_move_t<unique_future> other)
{
future=other->future;
other->future.reset();
return *this;
}
operator boost::detail::thread_move_t<unique_future>()
{
return boost::detail::thread_move_t<unique_future>(*this);
}
#endif
void swap(unique_future& other)
{
future.swap(other.future);
}
// retrieving the value
move_dest_type get()
{
if(!future)
{
boost::throw_exception(future_uninitialized());
}
return future->get();
}
// functions to check state, and wait for ready
state get_state() const
{
if(!future)
{
return future_state::uninitialized;
}
return future->get_state();
}
bool is_ready() const
{
return get_state()==future_state::ready;
}
bool has_exception() const
{
return future && future->has_exception();
}
bool has_value() const
{
return future && future->has_value();
}
void wait() const
{
if(!future)
{
boost::throw_exception(future_uninitialized());
}
future->wait(false);
}
template<typename Duration>
bool timed_wait(Duration const& rel_time) const
{
return timed_wait_until(boost::get_system_time()+rel_time);
}
bool timed_wait_until(boost::system_time const& abs_time) const
{
if(!future)
{
boost::throw_exception(future_uninitialized());
}
return future->timed_wait_until(abs_time);
}
};
#ifdef BOOST_NO_RVALUE_REFERENCES
template <typename T>
struct has_move_emulation_enabled_aux<unique_future<T> >
: BOOST_MOVE_BOOST_NS::integral_constant<bool, true>
{};
#endif
template <typename R>
class shared_future
{
typedef boost::shared_ptr<detail::future_object<R> > future_ptr;
future_ptr future;
// shared_future(const unique_future<R>& other);
// shared_future& operator=(const unique_future<R>& other);
friend class detail::future_waiter;
friend class promise<R>;
friend class packaged_task<R>;
shared_future(future_ptr future_):
future(future_)
{}
public:
shared_future(shared_future const& other):
future(other.future)
{}
typedef future_state::state state;
shared_future()
{}
~shared_future()
{}
shared_future& operator=(shared_future const& other)
{
future=other.future;
return *this;
}
#ifndef BOOST_NO_RVALUE_REFERENCES
shared_future(shared_future && other)
{
future.swap(other.future);
}
shared_future(unique_future<R> && other)
{
future.swap(other.future);
}
shared_future& operator=(shared_future && other)
{
future.swap(other.future);
other.future.reset();
return *this;
}
shared_future& operator=(unique_future<R> && other)
{
future.swap(other.future);
other.future.reset();
return *this;
}
#else
shared_future(boost::detail::thread_move_t<shared_future> other):
future(other->future)
{
other->future.reset();
}
// shared_future(const unique_future<R> &) = delete;
shared_future(boost::detail::thread_move_t<unique_future<R> > other):
future(other->future)
{
other->future.reset();
}
shared_future& operator=(boost::detail::thread_move_t<shared_future> other)
{
future.swap(other->future);
other->future.reset();
return *this;
}
shared_future& operator=(boost::detail::thread_move_t<unique_future<R> > other)
{
future.swap(other->future);
other->future.reset();
return *this;
}
operator boost::detail::thread_move_t<shared_future>()
{
return boost::detail::thread_move_t<shared_future>(*this);
}
#endif
void swap(shared_future& other)
{
future.swap(other.future);
}
// retrieving the value
//typename detail::future_object<R>::move_dest_type get()
R get()
{
if(!future)
{
boost::throw_exception(future_uninitialized());
}
return future->get();
}
// functions to check state, and wait for ready
state get_state() const
{
if(!future)
{
return future_state::uninitialized;
}
return future->get_state();
}
bool is_ready() const
{
return get_state()==future_state::ready;
}
bool has_exception() const
{
return future && future->has_exception();
}
bool has_value() const
{
return future && future->has_value();
}
void wait() const
{
if(!future)
{
boost::throw_exception(future_uninitialized());
}
future->wait(false);
}
template<typename Duration>
bool timed_wait(Duration const& rel_time) const
{
return timed_wait_until(boost::get_system_time()+rel_time);
}
bool timed_wait_until(boost::system_time const& abs_time) const
{
if(!future)
{
boost::throw_exception(future_uninitialized());
}
return future->timed_wait_until(abs_time);
}
};
#ifdef BOOST_NO_RVALUE_REFERENCES
template <typename T>
struct has_move_emulation_enabled_aux<shared_future<T> >
: BOOST_MOVE_BOOST_NS::integral_constant<bool, true>
{};
#endif
template <typename R>
class promise
{
typedef boost::shared_ptr<detail::future_object<R> > future_ptr;
future_ptr future;
bool future_obtained;
promise(promise & rhs);// = delete;
promise & operator=(promise & rhs);// = delete;
void lazy_init()
{
if(!atomic_load(&future))
{
future_ptr blank;
atomic_compare_exchange(&future,&blank,future_ptr(new detail::future_object<R>));
}
}
public:
// template <class Allocator> explicit promise(Allocator a);
promise():
future(),future_obtained(false)
{}
~promise()
{
if(future)
{
boost::lock_guard<boost::mutex> lock(future->mutex);
if(!future->done)
{
future->mark_exceptional_finish_internal(boost::copy_exception(broken_promise()));
}
}
}
// Assignment
#ifndef BOOST_NO_RVALUE_REFERENCES
promise(promise && rhs):
future_obtained(rhs.future_obtained)
{
future.swap(rhs.future);
rhs.future_obtained=false;
}
promise & operator=(promise&& rhs)
{
future.swap(rhs.future);
future_obtained=rhs.future_obtained;
rhs.future.reset();
rhs.future_obtained=false;
return *this;
}
#else
promise(boost::detail::thread_move_t<promise> rhs):
future(rhs->future),future_obtained(rhs->future_obtained)
{
rhs->future.reset();
rhs->future_obtained=false;
}
promise & operator=(boost::detail::thread_move_t<promise> rhs)
{
future=rhs->future;
future_obtained=rhs->future_obtained;
rhs->future.reset();
rhs->future_obtained=false;
return *this;
}
operator boost::detail::thread_move_t<promise>()
{
return boost::detail::thread_move_t<promise>(*this);
}
#endif
void swap(promise& other)
{
future.swap(other.future);
std::swap(future_obtained,other.future_obtained);
}
// Result retrieval
unique_future<R> get_future()
{
lazy_init();
if(future_obtained)
{
boost::throw_exception(future_already_retrieved());
}
future_obtained=true;
return unique_future<R>(future);
}
void set_value(typename detail::future_traits<R>::source_reference_type r)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future->mutex);
if(future->done)
{
boost::throw_exception(promise_already_satisfied());
}
future->mark_finished_with_result_internal(r);
}
// void set_value(R && r);
void set_value(typename detail::future_traits<R>::rvalue_source_type r)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future->mutex);
if(future->done)
{
boost::throw_exception(promise_already_satisfied());
}
future->mark_finished_with_result_internal(static_cast<typename detail::future_traits<R>::rvalue_source_type>(r));
}
void set_exception(boost::exception_ptr p)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future->mutex);
if(future->done)
{
boost::throw_exception(promise_already_satisfied());
}
future->mark_exceptional_finish_internal(p);
}
template<typename F>
void set_wait_callback(F f)
{
lazy_init();
future->set_wait_callback(f,this);
}
};
template <>
class promise<void>
{
typedef boost::shared_ptr<detail::future_object<void> > future_ptr;
future_ptr future;
bool future_obtained;
promise(promise & rhs);// = delete;
promise & operator=(promise & rhs);// = delete;
void lazy_init()
{
if(!atomic_load(&future))
{
future_ptr blank;
atomic_compare_exchange(&future,&blank,future_ptr(new detail::future_object<void>));
}
}
public:
// template <class Allocator> explicit promise(Allocator a);
promise():
future(),future_obtained(false)
{}
~promise()
{
if(future)
{
boost::lock_guard<boost::mutex> lock(future->mutex);
if(!future->done)
{
future->mark_exceptional_finish_internal(boost::copy_exception(broken_promise()));
}
}
}
// Assignment
#ifndef BOOST_NO_RVALUE_REFERENCES
promise(promise && rhs):
future_obtained(rhs.future_obtained)
{
future.swap(rhs.future);
rhs.future_obtained=false;
}
promise & operator=(promise&& rhs)
{
future.swap(rhs.future);
future_obtained=rhs.future_obtained;
rhs.future.reset();
rhs.future_obtained=false;
return *this;
}
#else
promise(boost::detail::thread_move_t<promise> rhs):
future(rhs->future),future_obtained(rhs->future_obtained)
{
rhs->future.reset();
rhs->future_obtained=false;
}
promise & operator=(boost::detail::thread_move_t<promise> rhs)
{
future=rhs->future;
future_obtained=rhs->future_obtained;
rhs->future.reset();
rhs->future_obtained=false;
return *this;
}
operator boost::detail::thread_move_t<promise>()
{
return boost::detail::thread_move_t<promise>(*this);
}
#endif
void swap(promise& other)
{
future.swap(other.future);
std::swap(future_obtained,other.future_obtained);
}
// Result retrieval
unique_future<void> get_future()
{
lazy_init();
if(future_obtained)
{
boost::throw_exception(future_already_retrieved());
}
future_obtained=true;
return unique_future<void>(future);
}
void set_value()
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future->mutex);
if(future->done)
{
boost::throw_exception(promise_already_satisfied());
}
future->mark_finished_with_result_internal();
}
void set_exception(boost::exception_ptr p)
{
lazy_init();
boost::lock_guard<boost::mutex> lock(future->mutex);
if(future->done)
{
boost::throw_exception(promise_already_satisfied());
}
future->mark_exceptional_finish_internal(p);
}
template<typename F>
void set_wait_callback(F f)
{
lazy_init();
future->set_wait_callback(f,this);
}
};
#ifdef BOOST_NO_RVALUE_REFERENCES
template <typename T>
struct has_move_emulation_enabled_aux<promise<T> >
: BOOST_MOVE_BOOST_NS::integral_constant<bool, true>
{};
#endif
namespace detail
{
template<typename R>
struct task_base:
detail::future_object<R>
{
bool started;
task_base():
started(false)
{}
void run()
{
{
boost::lock_guard<boost::mutex> lk(this->mutex);
if(started)
{
boost::throw_exception(task_already_started());
}
started=true;
}
do_run();
}
void owner_destroyed()
{
boost::lock_guard<boost::mutex> lk(this->mutex);
if(!started)
{
started=true;
this->mark_exceptional_finish_internal(boost::copy_exception(boost::broken_promise()));
}
}
virtual void do_run()=0;
};
template<typename R,typename F>
struct task_object:
task_base<R>
{
F f;
task_object(F const& f_):
f(f_)
{}
#ifndef BOOST_NO_RVALUE_REFERENCES
task_object(F&& f_):
f(f_)
{}
#else
task_object(boost::detail::thread_move_t<F> f_):
f(f_)
{}
#endif
void do_run()
{
try
{
this->mark_finished_with_result(f());
}
catch(...)
{
this->mark_exceptional_finish();
}
}
};
template<typename F>
struct task_object<void,F>:
task_base<void>
{
F f;
task_object(F const& f_):
f(f_)
{}
#ifndef BOOST_NO_RVALUE_REFERENCES
task_object(F&& f_):
f(f_)
{}
#else
task_object(boost::detail::thread_move_t<F> f_):
f(f_)
{}
#endif
void do_run()
{
try
{
f();
this->mark_finished_with_result();
}
catch(...)
{
this->mark_exceptional_finish();
}
}
};
}
template<typename R>
class packaged_task
{
boost::shared_ptr<detail::task_base<R> > task;
bool future_obtained;
packaged_task(packaged_task&);// = delete;
packaged_task& operator=(packaged_task&);// = delete;
public:
packaged_task():
future_obtained(false)
{}
// construction and destruction
template <class F>
explicit packaged_task(F const& f):
task(new detail::task_object<R,F>(f)),future_obtained(false)
{}
explicit packaged_task(R(*f)()):
task(new detail::task_object<R,R(*)()>(f)),future_obtained(false)
{}
#ifndef BOOST_NO_RVALUE_REFERENCES
template <class F>
explicit packaged_task(F&& f):
task(new detail::task_object<R,F>(f)),future_obtained(false)
{}
#else
template <class F>
explicit packaged_task(boost::detail::thread_move_t<F> f):
task(new detail::task_object<R,F>(f)),future_obtained(false)
{}
#endif
// template <class F, class Allocator>
// explicit packaged_task(F const& f, Allocator a);
// template <class F, class Allocator>
// explicit packaged_task(F&& f, Allocator a);
~packaged_task()
{
if(task)
{
task->owner_destroyed();
}
}
// assignment
#ifndef BOOST_NO_RVALUE_REFERENCES
packaged_task(packaged_task&& other):
future_obtained(other.future_obtained)
{
task.swap(other.task);
other.future_obtained=false;
}
packaged_task& operator=(packaged_task&& other)
{
packaged_task temp(static_cast<packaged_task&&>(other));
swap(temp);
return *this;
}
#else
packaged_task(boost::detail::thread_move_t<packaged_task> other):
future_obtained(other->future_obtained)
{
task.swap(other->task);
other->future_obtained=false;
}
packaged_task& operator=(boost::detail::thread_move_t<packaged_task> other)
{
packaged_task temp(other);
swap(temp);
return *this;
}
operator boost::detail::thread_move_t<packaged_task>()
{
return boost::detail::thread_move_t<packaged_task>(*this);
}
#endif
void swap(packaged_task& other)
{
task.swap(other.task);
std::swap(future_obtained,other.future_obtained);
}
// result retrieval
unique_future<R> get_future()
{
if(!task)
{
boost::throw_exception(task_moved());
}
else if(!future_obtained)
{
future_obtained=true;
return unique_future<R>(task);
}
else
{
boost::throw_exception(future_already_retrieved());
}
}
// execution
void operator()()
{
if(!task)
{
boost::throw_exception(task_moved());
}
task->run();
}
template<typename F>
void set_wait_callback(F f)
{
task->set_wait_callback(f,this);
}
};
#ifdef BOOST_NO_RVALUE_REFERENCES
template <typename T>
struct has_move_emulation_enabled_aux<packaged_task<T> >
: BOOST_MOVE_BOOST_NS::integral_constant<bool, true>
{};
#endif
}
#endif