306 lines
9.6 KiB
C++
306 lines
9.6 KiB
C++
//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Parallel JIT
|
|
//
|
|
// This test program creates two LLVM functions then calls them from three
|
|
// separate threads. It requires the pthreads library.
|
|
// The three threads are created and then block waiting on a condition variable.
|
|
// Once all threads are blocked on the conditional variable, the main thread
|
|
// wakes them up. This complicated work is performed so that all three threads
|
|
// call into the JIT at the same time (or the best possible approximation of the
|
|
// same time). This test had assertion errors until I got the locking right.
|
|
|
|
#include <pthread.h>
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/ExecutionEngine/JIT.h"
|
|
#include "llvm/ExecutionEngine/Interpreter.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
static Function* createAdd1(Module *M) {
|
|
// Create the add1 function entry and insert this entry into module M. The
|
|
// function will have a return type of "int" and take an argument of "int".
|
|
// The '0' terminates the list of argument types.
|
|
Function *Add1F =
|
|
cast<Function>(M->getOrInsertFunction("add1",
|
|
Type::getInt32Ty(M->getContext()),
|
|
Type::getInt32Ty(M->getContext()),
|
|
(Type *)0));
|
|
|
|
// Add a basic block to the function. As before, it automatically inserts
|
|
// because of the last argument.
|
|
BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
|
|
|
|
// Get pointers to the constant `1'.
|
|
Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
|
|
|
|
// Get pointers to the integer argument of the add1 function...
|
|
assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
|
|
Argument *ArgX = Add1F->arg_begin(); // Get the arg
|
|
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
|
|
|
|
// Create the add instruction, inserting it into the end of BB.
|
|
Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
|
|
|
|
// Create the return instruction and add it to the basic block
|
|
ReturnInst::Create(M->getContext(), Add, BB);
|
|
|
|
// Now, function add1 is ready.
|
|
return Add1F;
|
|
}
|
|
|
|
static Function *CreateFibFunction(Module *M) {
|
|
// Create the fib function and insert it into module M. This function is said
|
|
// to return an int and take an int parameter.
|
|
Function *FibF =
|
|
cast<Function>(M->getOrInsertFunction("fib",
|
|
Type::getInt32Ty(M->getContext()),
|
|
Type::getInt32Ty(M->getContext()),
|
|
(Type *)0));
|
|
|
|
// Add a basic block to the function.
|
|
BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
|
|
|
|
// Get pointers to the constants.
|
|
Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
|
|
Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
|
|
|
|
// Get pointer to the integer argument of the add1 function...
|
|
Argument *ArgX = FibF->arg_begin(); // Get the arg.
|
|
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
|
|
|
|
// Create the true_block.
|
|
BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
|
|
// Create an exit block.
|
|
BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
|
|
|
|
// Create the "if (arg < 2) goto exitbb"
|
|
Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
|
|
BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
|
|
|
|
// Create: ret int 1
|
|
ReturnInst::Create(M->getContext(), One, RetBB);
|
|
|
|
// create fib(x-1)
|
|
Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
|
|
Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
|
|
|
|
// create fib(x-2)
|
|
Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
|
|
Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
|
|
|
|
// fib(x-1)+fib(x-2)
|
|
Value *Sum =
|
|
BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
|
|
|
|
// Create the return instruction and add it to the basic block
|
|
ReturnInst::Create(M->getContext(), Sum, RecurseBB);
|
|
|
|
return FibF;
|
|
}
|
|
|
|
struct threadParams {
|
|
ExecutionEngine* EE;
|
|
Function* F;
|
|
int value;
|
|
};
|
|
|
|
// We block the subthreads just before they begin to execute:
|
|
// we want all of them to call into the JIT at the same time,
|
|
// to verify that the locking is working correctly.
|
|
class WaitForThreads
|
|
{
|
|
public:
|
|
WaitForThreads()
|
|
{
|
|
n = 0;
|
|
waitFor = 0;
|
|
|
|
int result = pthread_cond_init( &condition, NULL );
|
|
assert( result == 0 );
|
|
|
|
result = pthread_mutex_init( &mutex, NULL );
|
|
assert( result == 0 );
|
|
}
|
|
|
|
~WaitForThreads()
|
|
{
|
|
int result = pthread_cond_destroy( &condition );
|
|
assert( result == 0 );
|
|
|
|
result = pthread_mutex_destroy( &mutex );
|
|
assert( result == 0 );
|
|
}
|
|
|
|
// All threads will stop here until another thread calls releaseThreads
|
|
void block()
|
|
{
|
|
int result = pthread_mutex_lock( &mutex );
|
|
assert( result == 0 );
|
|
n ++;
|
|
//~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
|
|
|
|
assert( waitFor == 0 || n <= waitFor );
|
|
if ( waitFor > 0 && n == waitFor )
|
|
{
|
|
// There are enough threads blocked that we can release all of them
|
|
std::cout << "Unblocking threads from block()" << std::endl;
|
|
unblockThreads();
|
|
}
|
|
else
|
|
{
|
|
// We just need to wait until someone unblocks us
|
|
result = pthread_cond_wait( &condition, &mutex );
|
|
assert( result == 0 );
|
|
}
|
|
|
|
// unlock the mutex before returning
|
|
result = pthread_mutex_unlock( &mutex );
|
|
assert( result == 0 );
|
|
}
|
|
|
|
// If there are num or more threads blocked, it will signal them all
|
|
// Otherwise, this thread blocks until there are enough OTHER threads
|
|
// blocked
|
|
void releaseThreads( size_t num )
|
|
{
|
|
int result = pthread_mutex_lock( &mutex );
|
|
assert( result == 0 );
|
|
|
|
if ( n >= num ) {
|
|
std::cout << "Unblocking threads from releaseThreads()" << std::endl;
|
|
unblockThreads();
|
|
}
|
|
else
|
|
{
|
|
waitFor = num;
|
|
pthread_cond_wait( &condition, &mutex );
|
|
}
|
|
|
|
// unlock the mutex before returning
|
|
result = pthread_mutex_unlock( &mutex );
|
|
assert( result == 0 );
|
|
}
|
|
|
|
private:
|
|
void unblockThreads()
|
|
{
|
|
// Reset the counters to zero: this way, if any new threads
|
|
// enter while threads are exiting, they will block instead
|
|
// of triggering a new release of threads
|
|
n = 0;
|
|
|
|
// Reset waitFor to zero: this way, if waitFor threads enter
|
|
// while threads are exiting, they will block instead of
|
|
// triggering a new release of threads
|
|
waitFor = 0;
|
|
|
|
int result = pthread_cond_broadcast( &condition );
|
|
(void)result;
|
|
assert(result == 0);
|
|
}
|
|
|
|
size_t n;
|
|
size_t waitFor;
|
|
pthread_cond_t condition;
|
|
pthread_mutex_t mutex;
|
|
};
|
|
|
|
static WaitForThreads synchronize;
|
|
|
|
void* callFunc( void* param )
|
|
{
|
|
struct threadParams* p = (struct threadParams*) param;
|
|
|
|
// Call the `foo' function with no arguments:
|
|
std::vector<GenericValue> Args(1);
|
|
Args[0].IntVal = APInt(32, p->value);
|
|
|
|
synchronize.block(); // wait until other threads are at this point
|
|
GenericValue gv = p->EE->runFunction(p->F, Args);
|
|
|
|
return (void*)(intptr_t)gv.IntVal.getZExtValue();
|
|
}
|
|
|
|
int main() {
|
|
InitializeNativeTarget();
|
|
LLVMContext Context;
|
|
|
|
// Create some module to put our function into it.
|
|
Module *M = new Module("test", Context);
|
|
|
|
Function* add1F = createAdd1( M );
|
|
Function* fibF = CreateFibFunction( M );
|
|
|
|
// Now we create the JIT.
|
|
ExecutionEngine* EE = EngineBuilder(M).create();
|
|
|
|
//~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
|
|
//~ std::cout << "\n\nRunning foo: " << std::flush;
|
|
|
|
// Create one thread for add1 and two threads for fib
|
|
struct threadParams add1 = { EE, add1F, 1000 };
|
|
struct threadParams fib1 = { EE, fibF, 39 };
|
|
struct threadParams fib2 = { EE, fibF, 42 };
|
|
|
|
pthread_t add1Thread;
|
|
int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
|
|
if ( result != 0 ) {
|
|
std::cerr << "Could not create thread" << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
pthread_t fibThread1;
|
|
result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
|
|
if ( result != 0 ) {
|
|
std::cerr << "Could not create thread" << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
pthread_t fibThread2;
|
|
result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
|
|
if ( result != 0 ) {
|
|
std::cerr << "Could not create thread" << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
synchronize.releaseThreads(3); // wait until other threads are at this point
|
|
|
|
void* returnValue;
|
|
result = pthread_join( add1Thread, &returnValue );
|
|
if ( result != 0 ) {
|
|
std::cerr << "Could not join thread" << std::endl;
|
|
return 1;
|
|
}
|
|
std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
|
|
|
|
result = pthread_join( fibThread1, &returnValue );
|
|
if ( result != 0 ) {
|
|
std::cerr << "Could not join thread" << std::endl;
|
|
return 1;
|
|
}
|
|
std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
|
|
|
|
result = pthread_join( fibThread2, &returnValue );
|
|
if ( result != 0 ) {
|
|
std::cerr << "Could not join thread" << std::endl;
|
|
return 1;
|
|
}
|
|
std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
|
|
|
|
return 0;
|
|
}
|