1f51a89d39
These were ignored by git accidentally. We want ALL OF THEM since they all came in the llvm/clang source distribution.
548 lines
20 KiB
C++
548 lines
20 KiB
C++
//===--- ParseInit.cpp - Initializer Parsing ------------------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements initializer parsing as specified by C99 6.7.8.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "clang/Parse/Parser.h"
|
||
#include "clang/Parse/ParseDiagnostic.h"
|
||
#include "RAIIObjectsForParser.h"
|
||
#include "clang/Sema/Designator.h"
|
||
#include "clang/Sema/Scope.h"
|
||
#include "llvm/ADT/SmallString.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
using namespace clang;
|
||
|
||
|
||
/// MayBeDesignationStart - Return true if the current token might be the start
|
||
/// of a designator. If we can tell it is impossible that it is a designator,
|
||
/// return false.
|
||
bool Parser::MayBeDesignationStart() {
|
||
switch (Tok.getKind()) {
|
||
default:
|
||
return false;
|
||
|
||
case tok::period: // designator: '.' identifier
|
||
return true;
|
||
|
||
case tok::l_square: { // designator: array-designator
|
||
if (!PP.getLangOpts().CPlusPlus0x)
|
||
return true;
|
||
|
||
// C++11 lambda expressions and C99 designators can be ambiguous all the
|
||
// way through the closing ']' and to the next character. Handle the easy
|
||
// cases here, and fall back to tentative parsing if those fail.
|
||
switch (PP.LookAhead(0).getKind()) {
|
||
case tok::equal:
|
||
case tok::r_square:
|
||
// Definitely starts a lambda expression.
|
||
return false;
|
||
|
||
case tok::amp:
|
||
case tok::kw_this:
|
||
case tok::identifier:
|
||
// We have to do additional analysis, because these could be the
|
||
// start of a constant expression or a lambda capture list.
|
||
break;
|
||
|
||
default:
|
||
// Anything not mentioned above cannot occur following a '[' in a
|
||
// lambda expression.
|
||
return true;
|
||
}
|
||
|
||
// Handle the complicated case below.
|
||
break;
|
||
}
|
||
case tok::identifier: // designation: identifier ':'
|
||
return PP.LookAhead(0).is(tok::colon);
|
||
}
|
||
|
||
// Parse up to (at most) the token after the closing ']' to determine
|
||
// whether this is a C99 designator or a lambda.
|
||
TentativeParsingAction Tentative(*this);
|
||
ConsumeBracket();
|
||
while (true) {
|
||
switch (Tok.getKind()) {
|
||
case tok::equal:
|
||
case tok::amp:
|
||
case tok::identifier:
|
||
case tok::kw_this:
|
||
// These tokens can occur in a capture list or a constant-expression.
|
||
// Keep looking.
|
||
ConsumeToken();
|
||
continue;
|
||
|
||
case tok::comma:
|
||
// Since a comma cannot occur in a constant-expression, this must
|
||
// be a lambda.
|
||
Tentative.Revert();
|
||
return false;
|
||
|
||
case tok::r_square: {
|
||
// Once we hit the closing square bracket, we look at the next
|
||
// token. If it's an '=', this is a designator. Otherwise, it's a
|
||
// lambda expression. This decision favors lambdas over the older
|
||
// GNU designator syntax, which allows one to omit the '=', but is
|
||
// consistent with GCC.
|
||
ConsumeBracket();
|
||
tok::TokenKind Kind = Tok.getKind();
|
||
Tentative.Revert();
|
||
return Kind == tok::equal;
|
||
}
|
||
|
||
default:
|
||
// Anything else cannot occur in a lambda capture list, so it
|
||
// must be a designator.
|
||
Tentative.Revert();
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc,
|
||
Designation &Desig) {
|
||
// If we have exactly one array designator, this used the GNU
|
||
// 'designation: array-designator' extension, otherwise there should be no
|
||
// designators at all!
|
||
if (Desig.getNumDesignators() == 1 &&
|
||
(Desig.getDesignator(0).isArrayDesignator() ||
|
||
Desig.getDesignator(0).isArrayRangeDesignator()))
|
||
P.Diag(Loc, diag::ext_gnu_missing_equal_designator);
|
||
else if (Desig.getNumDesignators() > 0)
|
||
P.Diag(Loc, diag::err_expected_equal_designator);
|
||
}
|
||
|
||
/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
|
||
/// checking to see if the token stream starts with a designator.
|
||
///
|
||
/// designation:
|
||
/// designator-list '='
|
||
/// [GNU] array-designator
|
||
/// [GNU] identifier ':'
|
||
///
|
||
/// designator-list:
|
||
/// designator
|
||
/// designator-list designator
|
||
///
|
||
/// designator:
|
||
/// array-designator
|
||
/// '.' identifier
|
||
///
|
||
/// array-designator:
|
||
/// '[' constant-expression ']'
|
||
/// [GNU] '[' constant-expression '...' constant-expression ']'
|
||
///
|
||
/// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
|
||
/// initializer (because it is an expression). We need to consider this case
|
||
/// when parsing array designators.
|
||
///
|
||
ExprResult Parser::ParseInitializerWithPotentialDesignator() {
|
||
|
||
// If this is the old-style GNU extension:
|
||
// designation ::= identifier ':'
|
||
// Handle it as a field designator. Otherwise, this must be the start of a
|
||
// normal expression.
|
||
if (Tok.is(tok::identifier)) {
|
||
const IdentifierInfo *FieldName = Tok.getIdentifierInfo();
|
||
|
||
SmallString<256> NewSyntax;
|
||
llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName()
|
||
<< " = ";
|
||
|
||
SourceLocation NameLoc = ConsumeToken(); // Eat the identifier.
|
||
|
||
assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!");
|
||
SourceLocation ColonLoc = ConsumeToken();
|
||
|
||
Diag(NameLoc, diag::ext_gnu_old_style_field_designator)
|
||
<< FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc),
|
||
NewSyntax.str());
|
||
|
||
Designation D;
|
||
D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc));
|
||
return Actions.ActOnDesignatedInitializer(D, ColonLoc, true,
|
||
ParseInitializer());
|
||
}
|
||
|
||
// Desig - This is initialized when we see our first designator. We may have
|
||
// an objc message send with no designator, so we don't want to create this
|
||
// eagerly.
|
||
Designation Desig;
|
||
|
||
// Parse each designator in the designator list until we find an initializer.
|
||
while (Tok.is(tok::period) || Tok.is(tok::l_square)) {
|
||
if (Tok.is(tok::period)) {
|
||
// designator: '.' identifier
|
||
SourceLocation DotLoc = ConsumeToken();
|
||
|
||
if (Tok.isNot(tok::identifier)) {
|
||
Diag(Tok.getLocation(), diag::err_expected_field_designator);
|
||
return ExprError();
|
||
}
|
||
|
||
Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc,
|
||
Tok.getLocation()));
|
||
ConsumeToken(); // Eat the identifier.
|
||
continue;
|
||
}
|
||
|
||
// We must have either an array designator now or an objc message send.
|
||
assert(Tok.is(tok::l_square) && "Unexpected token!");
|
||
|
||
// Handle the two forms of array designator:
|
||
// array-designator: '[' constant-expression ']'
|
||
// array-designator: '[' constant-expression '...' constant-expression ']'
|
||
//
|
||
// Also, we have to handle the case where the expression after the
|
||
// designator an an objc message send: '[' objc-message-expr ']'.
|
||
// Interesting cases are:
|
||
// [foo bar] -> objc message send
|
||
// [foo] -> array designator
|
||
// [foo ... bar] -> array designator
|
||
// [4][foo bar] -> obsolete GNU designation with objc message send.
|
||
//
|
||
// We do not need to check for an expression starting with [[ here. If it
|
||
// contains an Objective-C message send, then it is not an ill-formed
|
||
// attribute. If it is a lambda-expression within an array-designator, then
|
||
// it will be rejected because a constant-expression cannot begin with a
|
||
// lambda-expression.
|
||
InMessageExpressionRAIIObject InMessage(*this, true);
|
||
|
||
BalancedDelimiterTracker T(*this, tok::l_square);
|
||
T.consumeOpen();
|
||
SourceLocation StartLoc = T.getOpenLocation();
|
||
|
||
ExprResult Idx;
|
||
|
||
// If Objective-C is enabled and this is a typename (class message
|
||
// send) or send to 'super', parse this as a message send
|
||
// expression. We handle C++ and C separately, since C++ requires
|
||
// much more complicated parsing.
|
||
if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus) {
|
||
// Send to 'super'.
|
||
if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
|
||
NextToken().isNot(tok::period) &&
|
||
getCurScope()->isInObjcMethodScope()) {
|
||
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
||
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
||
ConsumeToken(),
|
||
ParsedType(),
|
||
0);
|
||
}
|
||
|
||
// Parse the receiver, which is either a type or an expression.
|
||
bool IsExpr;
|
||
void *TypeOrExpr;
|
||
if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
|
||
SkipUntil(tok::r_square);
|
||
return ExprError();
|
||
}
|
||
|
||
// If the receiver was a type, we have a class message; parse
|
||
// the rest of it.
|
||
if (!IsExpr) {
|
||
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
||
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
||
SourceLocation(),
|
||
ParsedType::getFromOpaquePtr(TypeOrExpr),
|
||
0);
|
||
}
|
||
|
||
// If the receiver was an expression, we still don't know
|
||
// whether we have a message send or an array designator; just
|
||
// adopt the expression for further analysis below.
|
||
// FIXME: potentially-potentially evaluated expression above?
|
||
Idx = ExprResult(static_cast<Expr*>(TypeOrExpr));
|
||
} else if (getLangOpts().ObjC1 && Tok.is(tok::identifier)) {
|
||
IdentifierInfo *II = Tok.getIdentifierInfo();
|
||
SourceLocation IILoc = Tok.getLocation();
|
||
ParsedType ReceiverType;
|
||
// Three cases. This is a message send to a type: [type foo]
|
||
// This is a message send to super: [super foo]
|
||
// This is a message sent to an expr: [super.bar foo]
|
||
switch (Sema::ObjCMessageKind Kind
|
||
= Actions.getObjCMessageKind(getCurScope(), II, IILoc,
|
||
II == Ident_super,
|
||
NextToken().is(tok::period),
|
||
ReceiverType)) {
|
||
case Sema::ObjCSuperMessage:
|
||
case Sema::ObjCClassMessage:
|
||
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
||
if (Kind == Sema::ObjCSuperMessage)
|
||
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
||
ConsumeToken(),
|
||
ParsedType(),
|
||
0);
|
||
ConsumeToken(); // the identifier
|
||
if (!ReceiverType) {
|
||
SkipUntil(tok::r_square);
|
||
return ExprError();
|
||
}
|
||
|
||
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
||
SourceLocation(),
|
||
ReceiverType,
|
||
0);
|
||
|
||
case Sema::ObjCInstanceMessage:
|
||
// Fall through; we'll just parse the expression and
|
||
// (possibly) treat this like an Objective-C message send
|
||
// later.
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Parse the index expression, if we haven't already gotten one
|
||
// above (which can only happen in Objective-C++).
|
||
// Note that we parse this as an assignment expression, not a constant
|
||
// expression (allowing *=, =, etc) to handle the objc case. Sema needs
|
||
// to validate that the expression is a constant.
|
||
// FIXME: We also need to tell Sema that we're in a
|
||
// potentially-potentially evaluated context.
|
||
if (!Idx.get()) {
|
||
Idx = ParseAssignmentExpression();
|
||
if (Idx.isInvalid()) {
|
||
SkipUntil(tok::r_square);
|
||
return move(Idx);
|
||
}
|
||
}
|
||
|
||
// Given an expression, we could either have a designator (if the next
|
||
// tokens are '...' or ']' or an objc message send. If this is an objc
|
||
// message send, handle it now. An objc-message send is the start of
|
||
// an assignment-expression production.
|
||
if (getLangOpts().ObjC1 && Tok.isNot(tok::ellipsis) &&
|
||
Tok.isNot(tok::r_square)) {
|
||
CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig);
|
||
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
||
SourceLocation(),
|
||
ParsedType(),
|
||
Idx.take());
|
||
}
|
||
|
||
// If this is a normal array designator, remember it.
|
||
if (Tok.isNot(tok::ellipsis)) {
|
||
Desig.AddDesignator(Designator::getArray(Idx.release(), StartLoc));
|
||
} else {
|
||
// Handle the gnu array range extension.
|
||
Diag(Tok, diag::ext_gnu_array_range);
|
||
SourceLocation EllipsisLoc = ConsumeToken();
|
||
|
||
ExprResult RHS(ParseConstantExpression());
|
||
if (RHS.isInvalid()) {
|
||
SkipUntil(tok::r_square);
|
||
return move(RHS);
|
||
}
|
||
Desig.AddDesignator(Designator::getArrayRange(Idx.release(),
|
||
RHS.release(),
|
||
StartLoc, EllipsisLoc));
|
||
}
|
||
|
||
T.consumeClose();
|
||
Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc(
|
||
T.getCloseLocation());
|
||
}
|
||
|
||
// Okay, we're done with the designator sequence. We know that there must be
|
||
// at least one designator, because the only case we can get into this method
|
||
// without a designator is when we have an objc message send. That case is
|
||
// handled and returned from above.
|
||
assert(!Desig.empty() && "Designator is empty?");
|
||
|
||
// Handle a normal designator sequence end, which is an equal.
|
||
if (Tok.is(tok::equal)) {
|
||
SourceLocation EqualLoc = ConsumeToken();
|
||
return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false,
|
||
ParseInitializer());
|
||
}
|
||
|
||
// We read some number of designators and found something that isn't an = or
|
||
// an initializer. If we have exactly one array designator, this
|
||
// is the GNU 'designation: array-designator' extension. Otherwise, it is a
|
||
// parse error.
|
||
if (Desig.getNumDesignators() == 1 &&
|
||
(Desig.getDesignator(0).isArrayDesignator() ||
|
||
Desig.getDesignator(0).isArrayRangeDesignator())) {
|
||
Diag(Tok, diag::ext_gnu_missing_equal_designator)
|
||
<< FixItHint::CreateInsertion(Tok.getLocation(), "= ");
|
||
return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(),
|
||
true, ParseInitializer());
|
||
}
|
||
|
||
Diag(Tok, diag::err_expected_equal_designator);
|
||
return ExprError();
|
||
}
|
||
|
||
|
||
/// ParseBraceInitializer - Called when parsing an initializer that has a
|
||
/// leading open brace.
|
||
///
|
||
/// initializer: [C99 6.7.8]
|
||
/// '{' initializer-list '}'
|
||
/// '{' initializer-list ',' '}'
|
||
/// [GNU] '{' '}'
|
||
///
|
||
/// initializer-list:
|
||
/// designation[opt] initializer ...[opt]
|
||
/// initializer-list ',' designation[opt] initializer ...[opt]
|
||
///
|
||
ExprResult Parser::ParseBraceInitializer() {
|
||
InMessageExpressionRAIIObject InMessage(*this, false);
|
||
|
||
BalancedDelimiterTracker T(*this, tok::l_brace);
|
||
T.consumeOpen();
|
||
SourceLocation LBraceLoc = T.getOpenLocation();
|
||
|
||
/// InitExprs - This is the actual list of expressions contained in the
|
||
/// initializer.
|
||
ExprVector InitExprs(Actions);
|
||
|
||
if (Tok.is(tok::r_brace)) {
|
||
// Empty initializers are a C++ feature and a GNU extension to C.
|
||
if (!getLangOpts().CPlusPlus)
|
||
Diag(LBraceLoc, diag::ext_gnu_empty_initializer);
|
||
// Match the '}'.
|
||
return Actions.ActOnInitList(LBraceLoc, MultiExprArg(Actions),
|
||
ConsumeBrace());
|
||
}
|
||
|
||
bool InitExprsOk = true;
|
||
|
||
while (1) {
|
||
// Handle Microsoft __if_exists/if_not_exists if necessary.
|
||
if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
|
||
Tok.is(tok::kw___if_not_exists))) {
|
||
if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) {
|
||
if (Tok.isNot(tok::comma)) break;
|
||
ConsumeToken();
|
||
}
|
||
if (Tok.is(tok::r_brace)) break;
|
||
continue;
|
||
}
|
||
|
||
// Parse: designation[opt] initializer
|
||
|
||
// If we know that this cannot be a designation, just parse the nested
|
||
// initializer directly.
|
||
ExprResult SubElt;
|
||
if (MayBeDesignationStart())
|
||
SubElt = ParseInitializerWithPotentialDesignator();
|
||
else
|
||
SubElt = ParseInitializer();
|
||
|
||
if (Tok.is(tok::ellipsis))
|
||
SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
|
||
|
||
// If we couldn't parse the subelement, bail out.
|
||
if (!SubElt.isInvalid()) {
|
||
InitExprs.push_back(SubElt.release());
|
||
} else {
|
||
InitExprsOk = false;
|
||
|
||
// We have two ways to try to recover from this error: if the code looks
|
||
// grammatically ok (i.e. we have a comma coming up) try to continue
|
||
// parsing the rest of the initializer. This allows us to emit
|
||
// diagnostics for later elements that we find. If we don't see a comma,
|
||
// assume there is a parse error, and just skip to recover.
|
||
// FIXME: This comment doesn't sound right. If there is a r_brace
|
||
// immediately, it can't be an error, since there is no other way of
|
||
// leaving this loop except through this if.
|
||
if (Tok.isNot(tok::comma)) {
|
||
SkipUntil(tok::r_brace, false, true);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// If we don't have a comma continued list, we're done.
|
||
if (Tok.isNot(tok::comma)) break;
|
||
|
||
// TODO: save comma locations if some client cares.
|
||
ConsumeToken();
|
||
|
||
// Handle trailing comma.
|
||
if (Tok.is(tok::r_brace)) break;
|
||
}
|
||
|
||
bool closed = !T.consumeClose();
|
||
|
||
if (InitExprsOk && closed)
|
||
return Actions.ActOnInitList(LBraceLoc, move_arg(InitExprs),
|
||
T.getCloseLocation());
|
||
|
||
return ExprError(); // an error occurred.
|
||
}
|
||
|
||
|
||
// Return true if a comma (or closing brace) is necessary after the
|
||
// __if_exists/if_not_exists statement.
|
||
bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs,
|
||
bool &InitExprsOk) {
|
||
bool trailingComma = false;
|
||
IfExistsCondition Result;
|
||
if (ParseMicrosoftIfExistsCondition(Result))
|
||
return false;
|
||
|
||
BalancedDelimiterTracker Braces(*this, tok::l_brace);
|
||
if (Braces.consumeOpen()) {
|
||
Diag(Tok, diag::err_expected_lbrace);
|
||
return false;
|
||
}
|
||
|
||
switch (Result.Behavior) {
|
||
case IEB_Parse:
|
||
// Parse the declarations below.
|
||
break;
|
||
|
||
case IEB_Dependent:
|
||
Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
|
||
<< Result.IsIfExists;
|
||
// Fall through to skip.
|
||
|
||
case IEB_Skip:
|
||
Braces.skipToEnd();
|
||
return false;
|
||
}
|
||
|
||
while (Tok.isNot(tok::eof)) {
|
||
trailingComma = false;
|
||
// If we know that this cannot be a designation, just parse the nested
|
||
// initializer directly.
|
||
ExprResult SubElt;
|
||
if (MayBeDesignationStart())
|
||
SubElt = ParseInitializerWithPotentialDesignator();
|
||
else
|
||
SubElt = ParseInitializer();
|
||
|
||
if (Tok.is(tok::ellipsis))
|
||
SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
|
||
|
||
// If we couldn't parse the subelement, bail out.
|
||
if (!SubElt.isInvalid())
|
||
InitExprs.push_back(SubElt.release());
|
||
else
|
||
InitExprsOk = false;
|
||
|
||
if (Tok.is(tok::comma)) {
|
||
ConsumeToken();
|
||
trailingComma = true;
|
||
}
|
||
|
||
if (Tok.is(tok::r_brace))
|
||
break;
|
||
}
|
||
|
||
Braces.consumeClose();
|
||
|
||
return !trailingComma;
|
||
}
|