1f51a89d39
These were ignored by git accidentally. We want ALL OF THEM since they all came in the llvm/clang source distribution.
3058 lines
107 KiB
C++
3058 lines
107 KiB
C++
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Decl subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NamedDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static llvm::Optional<Visibility> getVisibilityOf(const Decl *D) {
|
|
// If this declaration has an explicit visibility attribute, use it.
|
|
if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
|
|
switch (A->getVisibility()) {
|
|
case VisibilityAttr::Default:
|
|
return DefaultVisibility;
|
|
case VisibilityAttr::Hidden:
|
|
return HiddenVisibility;
|
|
case VisibilityAttr::Protected:
|
|
return ProtectedVisibility;
|
|
}
|
|
}
|
|
|
|
// If we're on Mac OS X, an 'availability' for Mac OS X attribute
|
|
// implies visibility(default).
|
|
if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
|
|
for (specific_attr_iterator<AvailabilityAttr>
|
|
A = D->specific_attr_begin<AvailabilityAttr>(),
|
|
AEnd = D->specific_attr_end<AvailabilityAttr>();
|
|
A != AEnd; ++A)
|
|
if ((*A)->getPlatform()->getName().equals("macosx"))
|
|
return DefaultVisibility;
|
|
}
|
|
|
|
return llvm::Optional<Visibility>();
|
|
}
|
|
|
|
typedef NamedDecl::LinkageInfo LinkageInfo;
|
|
|
|
namespace {
|
|
/// Flags controlling the computation of linkage and visibility.
|
|
struct LVFlags {
|
|
const bool ConsiderGlobalVisibility;
|
|
const bool ConsiderVisibilityAttributes;
|
|
const bool ConsiderTemplateParameterTypes;
|
|
|
|
LVFlags() : ConsiderGlobalVisibility(true),
|
|
ConsiderVisibilityAttributes(true),
|
|
ConsiderTemplateParameterTypes(true) {
|
|
}
|
|
|
|
LVFlags(bool Global, bool Attributes, bool Parameters) :
|
|
ConsiderGlobalVisibility(Global),
|
|
ConsiderVisibilityAttributes(Attributes),
|
|
ConsiderTemplateParameterTypes(Parameters) {
|
|
}
|
|
|
|
/// \brief Returns a set of flags that is only useful for computing the
|
|
/// linkage, not the visibility, of a declaration.
|
|
static LVFlags CreateOnlyDeclLinkage() {
|
|
return LVFlags(false, false, false);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static LinkageInfo getLVForType(QualType T) {
|
|
std::pair<Linkage,Visibility> P = T->getLinkageAndVisibility();
|
|
return LinkageInfo(P.first, P.second, T->isVisibilityExplicit());
|
|
}
|
|
|
|
/// \brief Get the most restrictive linkage for the types in the given
|
|
/// template parameter list.
|
|
static LinkageInfo
|
|
getLVForTemplateParameterList(const TemplateParameterList *Params) {
|
|
LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
|
|
for (TemplateParameterList::const_iterator P = Params->begin(),
|
|
PEnd = Params->end();
|
|
P != PEnd; ++P) {
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
|
|
if (NTTP->isExpandedParameterPack()) {
|
|
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
|
|
QualType T = NTTP->getExpansionType(I);
|
|
if (!T->isDependentType())
|
|
LV.merge(getLVForType(T));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!NTTP->getType()->isDependentType()) {
|
|
LV.merge(getLVForType(NTTP->getType()));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(*P)) {
|
|
LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters()));
|
|
}
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
/// getLVForDecl - Get the linkage and visibility for the given declaration.
|
|
static LinkageInfo getLVForDecl(const NamedDecl *D, LVFlags F);
|
|
|
|
/// \brief Get the most restrictive linkage for the types and
|
|
/// declarations in the given template argument list.
|
|
static LinkageInfo getLVForTemplateArgumentList(const TemplateArgument *Args,
|
|
unsigned NumArgs,
|
|
LVFlags &F) {
|
|
LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
|
|
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
switch (Args[I].getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Expression:
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
LV.merge(getLVForType(Args[I].getAsType()));
|
|
break;
|
|
|
|
case TemplateArgument::Declaration:
|
|
// The decl can validly be null as the representation of nullptr
|
|
// arguments, valid only in C++0x.
|
|
if (Decl *D = Args[I].getAsDecl()) {
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
|
|
LV = merge(LV, getLVForDecl(ND, F));
|
|
}
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (TemplateDecl *Template
|
|
= Args[I].getAsTemplateOrTemplatePattern().getAsTemplateDecl())
|
|
LV.merge(getLVForDecl(Template, F));
|
|
break;
|
|
|
|
case TemplateArgument::Pack:
|
|
LV.mergeWithMin(getLVForTemplateArgumentList(Args[I].pack_begin(),
|
|
Args[I].pack_size(),
|
|
F));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
static LinkageInfo
|
|
getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
|
|
LVFlags &F) {
|
|
return getLVForTemplateArgumentList(TArgs.data(), TArgs.size(), F);
|
|
}
|
|
|
|
static bool shouldConsiderTemplateLV(const FunctionDecl *fn,
|
|
const FunctionTemplateSpecializationInfo *spec) {
|
|
return !(spec->isExplicitSpecialization() &&
|
|
fn->hasAttr<VisibilityAttr>());
|
|
}
|
|
|
|
static bool shouldConsiderTemplateLV(const ClassTemplateSpecializationDecl *d) {
|
|
return !(d->isExplicitSpecialization() && d->hasAttr<VisibilityAttr>());
|
|
}
|
|
|
|
static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, LVFlags F) {
|
|
assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
|
|
"Not a name having namespace scope");
|
|
ASTContext &Context = D->getASTContext();
|
|
|
|
// C++ [basic.link]p3:
|
|
// A name having namespace scope (3.3.6) has internal linkage if it
|
|
// is the name of
|
|
// - an object, reference, function or function template that is
|
|
// explicitly declared static; or,
|
|
// (This bullet corresponds to C99 6.2.2p3.)
|
|
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
// Explicitly declared static.
|
|
if (Var->getStorageClass() == SC_Static)
|
|
return LinkageInfo::internal();
|
|
|
|
// - an object or reference that is explicitly declared const
|
|
// and neither explicitly declared extern nor previously
|
|
// declared to have external linkage; or
|
|
// (there is no equivalent in C99)
|
|
if (Context.getLangOpts().CPlusPlus &&
|
|
Var->getType().isConstant(Context) &&
|
|
Var->getStorageClass() != SC_Extern &&
|
|
Var->getStorageClass() != SC_PrivateExtern) {
|
|
bool FoundExtern = false;
|
|
for (const VarDecl *PrevVar = Var->getPreviousDecl();
|
|
PrevVar && !FoundExtern;
|
|
PrevVar = PrevVar->getPreviousDecl())
|
|
if (isExternalLinkage(PrevVar->getLinkage()))
|
|
FoundExtern = true;
|
|
|
|
if (!FoundExtern)
|
|
return LinkageInfo::internal();
|
|
}
|
|
if (Var->getStorageClass() == SC_None) {
|
|
const VarDecl *PrevVar = Var->getPreviousDecl();
|
|
for (; PrevVar; PrevVar = PrevVar->getPreviousDecl())
|
|
if (PrevVar->getStorageClass() == SC_PrivateExtern)
|
|
break;
|
|
if (PrevVar)
|
|
return PrevVar->getLinkageAndVisibility();
|
|
}
|
|
} else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
|
|
// C++ [temp]p4:
|
|
// A non-member function template can have internal linkage; any
|
|
// other template name shall have external linkage.
|
|
const FunctionDecl *Function = 0;
|
|
if (const FunctionTemplateDecl *FunTmpl
|
|
= dyn_cast<FunctionTemplateDecl>(D))
|
|
Function = FunTmpl->getTemplatedDecl();
|
|
else
|
|
Function = cast<FunctionDecl>(D);
|
|
|
|
// Explicitly declared static.
|
|
if (Function->getStorageClass() == SC_Static)
|
|
return LinkageInfo(InternalLinkage, DefaultVisibility, false);
|
|
} else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
|
|
// - a data member of an anonymous union.
|
|
if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
|
|
return LinkageInfo::internal();
|
|
}
|
|
|
|
if (D->isInAnonymousNamespace()) {
|
|
const VarDecl *Var = dyn_cast<VarDecl>(D);
|
|
const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
|
|
if ((!Var || !Var->getDeclContext()->isExternCContext()) &&
|
|
(!Func || !Func->getDeclContext()->isExternCContext()))
|
|
return LinkageInfo::uniqueExternal();
|
|
}
|
|
|
|
// Set up the defaults.
|
|
|
|
// C99 6.2.2p5:
|
|
// If the declaration of an identifier for an object has file
|
|
// scope and no storage-class specifier, its linkage is
|
|
// external.
|
|
LinkageInfo LV;
|
|
LV.mergeVisibility(Context.getLangOpts().getVisibilityMode());
|
|
|
|
if (F.ConsiderVisibilityAttributes) {
|
|
if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
|
|
LV.setVisibility(*Vis, true);
|
|
} else {
|
|
// If we're declared in a namespace with a visibility attribute,
|
|
// use that namespace's visibility, but don't call it explicit.
|
|
for (const DeclContext *DC = D->getDeclContext();
|
|
!isa<TranslationUnitDecl>(DC);
|
|
DC = DC->getParent()) {
|
|
const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
|
|
if (!ND) continue;
|
|
if (llvm::Optional<Visibility> Vis = ND->getExplicitVisibility()) {
|
|
LV.setVisibility(*Vis, true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [basic.link]p4:
|
|
|
|
// A name having namespace scope has external linkage if it is the
|
|
// name of
|
|
//
|
|
// - an object or reference, unless it has internal linkage; or
|
|
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
// GCC applies the following optimization to variables and static
|
|
// data members, but not to functions:
|
|
//
|
|
// Modify the variable's LV by the LV of its type unless this is
|
|
// C or extern "C". This follows from [basic.link]p9:
|
|
// A type without linkage shall not be used as the type of a
|
|
// variable or function with external linkage unless
|
|
// - the entity has C language linkage, or
|
|
// - the entity is declared within an unnamed namespace, or
|
|
// - the entity is not used or is defined in the same
|
|
// translation unit.
|
|
// and [basic.link]p10:
|
|
// ...the types specified by all declarations referring to a
|
|
// given variable or function shall be identical...
|
|
// C does not have an equivalent rule.
|
|
//
|
|
// Ignore this if we've got an explicit attribute; the user
|
|
// probably knows what they're doing.
|
|
//
|
|
// Note that we don't want to make the variable non-external
|
|
// because of this, but unique-external linkage suits us.
|
|
if (Context.getLangOpts().CPlusPlus &&
|
|
!Var->getDeclContext()->isExternCContext()) {
|
|
LinkageInfo TypeLV = getLVForType(Var->getType());
|
|
if (TypeLV.linkage() != ExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
LV.mergeVisibilityWithMin(TypeLV);
|
|
}
|
|
|
|
if (Var->getStorageClass() == SC_PrivateExtern)
|
|
LV.setVisibility(HiddenVisibility, true);
|
|
|
|
if (!Context.getLangOpts().CPlusPlus &&
|
|
(Var->getStorageClass() == SC_Extern ||
|
|
Var->getStorageClass() == SC_PrivateExtern)) {
|
|
|
|
// C99 6.2.2p4:
|
|
// For an identifier declared with the storage-class specifier
|
|
// extern in a scope in which a prior declaration of that
|
|
// identifier is visible, if the prior declaration specifies
|
|
// internal or external linkage, the linkage of the identifier
|
|
// at the later declaration is the same as the linkage
|
|
// specified at the prior declaration. If no prior declaration
|
|
// is visible, or if the prior declaration specifies no
|
|
// linkage, then the identifier has external linkage.
|
|
if (const VarDecl *PrevVar = Var->getPreviousDecl()) {
|
|
LinkageInfo PrevLV = getLVForDecl(PrevVar, F);
|
|
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
|
|
LV.mergeVisibility(PrevLV);
|
|
}
|
|
}
|
|
|
|
// - a function, unless it has internal linkage; or
|
|
} else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
|
|
// In theory, we can modify the function's LV by the LV of its
|
|
// type unless it has C linkage (see comment above about variables
|
|
// for justification). In practice, GCC doesn't do this, so it's
|
|
// just too painful to make work.
|
|
|
|
if (Function->getStorageClass() == SC_PrivateExtern)
|
|
LV.setVisibility(HiddenVisibility, true);
|
|
|
|
// C99 6.2.2p5:
|
|
// If the declaration of an identifier for a function has no
|
|
// storage-class specifier, its linkage is determined exactly
|
|
// as if it were declared with the storage-class specifier
|
|
// extern.
|
|
if (!Context.getLangOpts().CPlusPlus &&
|
|
(Function->getStorageClass() == SC_Extern ||
|
|
Function->getStorageClass() == SC_PrivateExtern ||
|
|
Function->getStorageClass() == SC_None)) {
|
|
// C99 6.2.2p4:
|
|
// For an identifier declared with the storage-class specifier
|
|
// extern in a scope in which a prior declaration of that
|
|
// identifier is visible, if the prior declaration specifies
|
|
// internal or external linkage, the linkage of the identifier
|
|
// at the later declaration is the same as the linkage
|
|
// specified at the prior declaration. If no prior declaration
|
|
// is visible, or if the prior declaration specifies no
|
|
// linkage, then the identifier has external linkage.
|
|
if (const FunctionDecl *PrevFunc = Function->getPreviousDecl()) {
|
|
LinkageInfo PrevLV = getLVForDecl(PrevFunc, F);
|
|
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
|
|
LV.mergeVisibility(PrevLV);
|
|
}
|
|
}
|
|
|
|
// In C++, then if the type of the function uses a type with
|
|
// unique-external linkage, it's not legally usable from outside
|
|
// this translation unit. However, we should use the C linkage
|
|
// rules instead for extern "C" declarations.
|
|
if (Context.getLangOpts().CPlusPlus &&
|
|
!Function->getDeclContext()->isExternCContext() &&
|
|
Function->getType()->getLinkage() == UniqueExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
// Consider LV from the template and the template arguments unless
|
|
// this is an explicit specialization with a visibility attribute.
|
|
if (FunctionTemplateSpecializationInfo *specInfo
|
|
= Function->getTemplateSpecializationInfo()) {
|
|
if (shouldConsiderTemplateLV(Function, specInfo)) {
|
|
LV.merge(getLVForDecl(specInfo->getTemplate(),
|
|
LVFlags::CreateOnlyDeclLinkage()));
|
|
const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
|
|
LV.mergeWithMin(getLVForTemplateArgumentList(templateArgs, F));
|
|
}
|
|
}
|
|
|
|
// - a named class (Clause 9), or an unnamed class defined in a
|
|
// typedef declaration in which the class has the typedef name
|
|
// for linkage purposes (7.1.3); or
|
|
// - a named enumeration (7.2), or an unnamed enumeration
|
|
// defined in a typedef declaration in which the enumeration
|
|
// has the typedef name for linkage purposes (7.1.3); or
|
|
} else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
|
|
// Unnamed tags have no linkage.
|
|
if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl())
|
|
return LinkageInfo::none();
|
|
|
|
// If this is a class template specialization, consider the
|
|
// linkage of the template and template arguments.
|
|
if (const ClassTemplateSpecializationDecl *spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
|
|
if (shouldConsiderTemplateLV(spec)) {
|
|
// From the template.
|
|
LV.merge(getLVForDecl(spec->getSpecializedTemplate(),
|
|
LVFlags::CreateOnlyDeclLinkage()));
|
|
|
|
// The arguments at which the template was instantiated.
|
|
const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
|
|
LV.mergeWithMin(getLVForTemplateArgumentList(TemplateArgs, F));
|
|
}
|
|
}
|
|
|
|
// - an enumerator belonging to an enumeration with external linkage;
|
|
} else if (isa<EnumConstantDecl>(D)) {
|
|
LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), F);
|
|
if (!isExternalLinkage(EnumLV.linkage()))
|
|
return LinkageInfo::none();
|
|
LV.merge(EnumLV);
|
|
|
|
// - a template, unless it is a function template that has
|
|
// internal linkage (Clause 14);
|
|
} else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
|
|
if (F.ConsiderTemplateParameterTypes)
|
|
LV.merge(getLVForTemplateParameterList(temp->getTemplateParameters()));
|
|
|
|
// - a namespace (7.3), unless it is declared within an unnamed
|
|
// namespace.
|
|
} else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
|
|
return LV;
|
|
|
|
// By extension, we assign external linkage to Objective-C
|
|
// interfaces.
|
|
} else if (isa<ObjCInterfaceDecl>(D)) {
|
|
// fallout
|
|
|
|
// Everything not covered here has no linkage.
|
|
} else {
|
|
return LinkageInfo::none();
|
|
}
|
|
|
|
// If we ended up with non-external linkage, visibility should
|
|
// always be default.
|
|
if (LV.linkage() != ExternalLinkage)
|
|
return LinkageInfo(LV.linkage(), DefaultVisibility, false);
|
|
|
|
return LV;
|
|
}
|
|
|
|
static LinkageInfo getLVForClassMember(const NamedDecl *D, LVFlags F) {
|
|
// Only certain class members have linkage. Note that fields don't
|
|
// really have linkage, but it's convenient to say they do for the
|
|
// purposes of calculating linkage of pointer-to-data-member
|
|
// template arguments.
|
|
if (!(isa<CXXMethodDecl>(D) ||
|
|
isa<VarDecl>(D) ||
|
|
isa<FieldDecl>(D) ||
|
|
(isa<TagDecl>(D) &&
|
|
(D->getDeclName() || cast<TagDecl>(D)->getTypedefNameForAnonDecl()))))
|
|
return LinkageInfo::none();
|
|
|
|
LinkageInfo LV;
|
|
LV.mergeVisibility(D->getASTContext().getLangOpts().getVisibilityMode());
|
|
|
|
bool DHasExplicitVisibility = false;
|
|
// If we have an explicit visibility attribute, merge that in.
|
|
if (F.ConsiderVisibilityAttributes) {
|
|
if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
|
|
LV.mergeVisibility(*Vis, true);
|
|
|
|
DHasExplicitVisibility = true;
|
|
}
|
|
}
|
|
// Ignore both global visibility and attributes when computing our
|
|
// parent's visibility if we already have an explicit one.
|
|
LVFlags ClassF = DHasExplicitVisibility ?
|
|
LVFlags::CreateOnlyDeclLinkage() : F;
|
|
|
|
// If we're paying attention to global visibility, apply
|
|
// -finline-visibility-hidden if this is an inline method.
|
|
//
|
|
// Note that we do this before merging information about
|
|
// the class visibility.
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
TemplateSpecializationKind TSK = TSK_Undeclared;
|
|
if (FunctionTemplateSpecializationInfo *spec
|
|
= MD->getTemplateSpecializationInfo()) {
|
|
TSK = spec->getTemplateSpecializationKind();
|
|
} else if (MemberSpecializationInfo *MSI =
|
|
MD->getMemberSpecializationInfo()) {
|
|
TSK = MSI->getTemplateSpecializationKind();
|
|
}
|
|
|
|
const FunctionDecl *Def = 0;
|
|
// InlineVisibilityHidden only applies to definitions, and
|
|
// isInlined() only gives meaningful answers on definitions
|
|
// anyway.
|
|
if (TSK != TSK_ExplicitInstantiationDeclaration &&
|
|
TSK != TSK_ExplicitInstantiationDefinition &&
|
|
F.ConsiderGlobalVisibility &&
|
|
!LV.visibilityExplicit() &&
|
|
MD->getASTContext().getLangOpts().InlineVisibilityHidden &&
|
|
MD->hasBody(Def) && Def->isInlined())
|
|
LV.mergeVisibility(HiddenVisibility, true);
|
|
}
|
|
|
|
// Class members only have linkage if their class has external
|
|
// linkage.
|
|
LV.merge(getLVForDecl(cast<RecordDecl>(D->getDeclContext()), ClassF));
|
|
if (!isExternalLinkage(LV.linkage()))
|
|
return LinkageInfo::none();
|
|
|
|
// If the class already has unique-external linkage, we can't improve.
|
|
if (LV.linkage() == UniqueExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
// If the type of the function uses a type with unique-external
|
|
// linkage, it's not legally usable from outside this translation unit.
|
|
if (MD->getType()->getLinkage() == UniqueExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
// If this is a method template specialization, use the linkage for
|
|
// the template parameters and arguments.
|
|
if (FunctionTemplateSpecializationInfo *spec
|
|
= MD->getTemplateSpecializationInfo()) {
|
|
if (shouldConsiderTemplateLV(MD, spec)) {
|
|
LV.mergeWithMin(getLVForTemplateArgumentList(*spec->TemplateArguments,
|
|
F));
|
|
if (F.ConsiderTemplateParameterTypes)
|
|
LV.merge(getLVForTemplateParameterList(
|
|
spec->getTemplate()->getTemplateParameters()));
|
|
}
|
|
}
|
|
|
|
// Note that in contrast to basically every other situation, we
|
|
// *do* apply -fvisibility to method declarations.
|
|
|
|
} else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (const ClassTemplateSpecializationDecl *spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
|
|
if (shouldConsiderTemplateLV(spec)) {
|
|
// Merge template argument/parameter information for member
|
|
// class template specializations.
|
|
LV.mergeWithMin(getLVForTemplateArgumentList(spec->getTemplateArgs(),
|
|
F));
|
|
if (F.ConsiderTemplateParameterTypes)
|
|
LV.merge(getLVForTemplateParameterList(
|
|
spec->getSpecializedTemplate()->getTemplateParameters()));
|
|
}
|
|
}
|
|
|
|
// Static data members.
|
|
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// Modify the variable's linkage by its type, but ignore the
|
|
// type's visibility unless it's a definition.
|
|
LinkageInfo TypeLV = getLVForType(VD->getType());
|
|
if (TypeLV.linkage() != ExternalLinkage)
|
|
LV.mergeLinkage(UniqueExternalLinkage);
|
|
if (!LV.visibilityExplicit())
|
|
LV.mergeVisibility(TypeLV);
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
static void clearLinkageForClass(const CXXRecordDecl *record) {
|
|
for (CXXRecordDecl::decl_iterator
|
|
i = record->decls_begin(), e = record->decls_end(); i != e; ++i) {
|
|
Decl *child = *i;
|
|
if (isa<NamedDecl>(child))
|
|
cast<NamedDecl>(child)->ClearLinkageCache();
|
|
}
|
|
}
|
|
|
|
void NamedDecl::anchor() { }
|
|
|
|
void NamedDecl::ClearLinkageCache() {
|
|
// Note that we can't skip clearing the linkage of children just
|
|
// because the parent doesn't have cached linkage: we don't cache
|
|
// when computing linkage for parent contexts.
|
|
|
|
HasCachedLinkage = 0;
|
|
|
|
// If we're changing the linkage of a class, we need to reset the
|
|
// linkage of child declarations, too.
|
|
if (const CXXRecordDecl *record = dyn_cast<CXXRecordDecl>(this))
|
|
clearLinkageForClass(record);
|
|
|
|
if (ClassTemplateDecl *temp =
|
|
dyn_cast<ClassTemplateDecl>(const_cast<NamedDecl*>(this))) {
|
|
// Clear linkage for the template pattern.
|
|
CXXRecordDecl *record = temp->getTemplatedDecl();
|
|
record->HasCachedLinkage = 0;
|
|
clearLinkageForClass(record);
|
|
|
|
// We need to clear linkage for specializations, too.
|
|
for (ClassTemplateDecl::spec_iterator
|
|
i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
|
|
i->ClearLinkageCache();
|
|
}
|
|
|
|
// Clear cached linkage for function template decls, too.
|
|
if (FunctionTemplateDecl *temp =
|
|
dyn_cast<FunctionTemplateDecl>(const_cast<NamedDecl*>(this))) {
|
|
temp->getTemplatedDecl()->ClearLinkageCache();
|
|
for (FunctionTemplateDecl::spec_iterator
|
|
i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
|
|
i->ClearLinkageCache();
|
|
}
|
|
|
|
}
|
|
|
|
Linkage NamedDecl::getLinkage() const {
|
|
if (HasCachedLinkage) {
|
|
assert(Linkage(CachedLinkage) ==
|
|
getLVForDecl(this, LVFlags::CreateOnlyDeclLinkage()).linkage());
|
|
return Linkage(CachedLinkage);
|
|
}
|
|
|
|
CachedLinkage = getLVForDecl(this,
|
|
LVFlags::CreateOnlyDeclLinkage()).linkage();
|
|
HasCachedLinkage = 1;
|
|
return Linkage(CachedLinkage);
|
|
}
|
|
|
|
LinkageInfo NamedDecl::getLinkageAndVisibility() const {
|
|
LinkageInfo LI = getLVForDecl(this, LVFlags());
|
|
assert(!HasCachedLinkage || Linkage(CachedLinkage) == LI.linkage());
|
|
HasCachedLinkage = 1;
|
|
CachedLinkage = LI.linkage();
|
|
return LI;
|
|
}
|
|
|
|
llvm::Optional<Visibility> NamedDecl::getExplicitVisibility() const {
|
|
// Use the most recent declaration of a variable.
|
|
if (const VarDecl *var = dyn_cast<VarDecl>(this))
|
|
return getVisibilityOf(var->getMostRecentDecl());
|
|
|
|
// Use the most recent declaration of a function, and also handle
|
|
// function template specializations.
|
|
if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
|
|
if (llvm::Optional<Visibility> V
|
|
= getVisibilityOf(fn->getMostRecentDecl()))
|
|
return V;
|
|
|
|
// If the function is a specialization of a template with an
|
|
// explicit visibility attribute, use that.
|
|
if (FunctionTemplateSpecializationInfo *templateInfo
|
|
= fn->getTemplateSpecializationInfo())
|
|
return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl());
|
|
|
|
// If the function is a member of a specialization of a class template
|
|
// and the corresponding decl has explicit visibility, use that.
|
|
FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
|
|
if (InstantiatedFrom)
|
|
return getVisibilityOf(InstantiatedFrom);
|
|
|
|
return llvm::Optional<Visibility>();
|
|
}
|
|
|
|
// Otherwise, just check the declaration itself first.
|
|
if (llvm::Optional<Visibility> V = getVisibilityOf(this))
|
|
return V;
|
|
|
|
// If there wasn't explicit visibility there, and this is a
|
|
// specialization of a class template, check for visibility
|
|
// on the pattern.
|
|
if (const ClassTemplateSpecializationDecl *spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(this))
|
|
return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl());
|
|
|
|
// If this is a member class of a specialization of a class template
|
|
// and the corresponding decl has explicit visibility, use that.
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
|
|
CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
|
|
if (InstantiatedFrom)
|
|
return getVisibilityOf(InstantiatedFrom);
|
|
}
|
|
|
|
return llvm::Optional<Visibility>();
|
|
}
|
|
|
|
static LinkageInfo getLVForDecl(const NamedDecl *D, LVFlags Flags) {
|
|
// Objective-C: treat all Objective-C declarations as having external
|
|
// linkage.
|
|
switch (D->getKind()) {
|
|
default:
|
|
break;
|
|
case Decl::ParmVar:
|
|
return LinkageInfo::none();
|
|
case Decl::TemplateTemplateParm: // count these as external
|
|
case Decl::NonTypeTemplateParm:
|
|
case Decl::ObjCAtDefsField:
|
|
case Decl::ObjCCategory:
|
|
case Decl::ObjCCategoryImpl:
|
|
case Decl::ObjCCompatibleAlias:
|
|
case Decl::ObjCImplementation:
|
|
case Decl::ObjCMethod:
|
|
case Decl::ObjCProperty:
|
|
case Decl::ObjCPropertyImpl:
|
|
case Decl::ObjCProtocol:
|
|
return LinkageInfo::external();
|
|
|
|
case Decl::CXXRecord: {
|
|
const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
|
|
if (Record->isLambda()) {
|
|
if (!Record->getLambdaManglingNumber()) {
|
|
// This lambda has no mangling number, so it's internal.
|
|
return LinkageInfo::internal();
|
|
}
|
|
|
|
// This lambda has its linkage/visibility determined by its owner.
|
|
const DeclContext *DC = D->getDeclContext()->getRedeclContext();
|
|
if (Decl *ContextDecl = Record->getLambdaContextDecl()) {
|
|
if (isa<ParmVarDecl>(ContextDecl))
|
|
DC = ContextDecl->getDeclContext()->getRedeclContext();
|
|
else
|
|
return getLVForDecl(cast<NamedDecl>(ContextDecl), Flags);
|
|
}
|
|
|
|
if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
|
|
return getLVForDecl(ND, Flags);
|
|
|
|
return LinkageInfo::external();
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle linkage for namespace-scope names.
|
|
if (D->getDeclContext()->getRedeclContext()->isFileContext())
|
|
return getLVForNamespaceScopeDecl(D, Flags);
|
|
|
|
// C++ [basic.link]p5:
|
|
// In addition, a member function, static data member, a named
|
|
// class or enumeration of class scope, or an unnamed class or
|
|
// enumeration defined in a class-scope typedef declaration such
|
|
// that the class or enumeration has the typedef name for linkage
|
|
// purposes (7.1.3), has external linkage if the name of the class
|
|
// has external linkage.
|
|
if (D->getDeclContext()->isRecord())
|
|
return getLVForClassMember(D, Flags);
|
|
|
|
// C++ [basic.link]p6:
|
|
// The name of a function declared in block scope and the name of
|
|
// an object declared by a block scope extern declaration have
|
|
// linkage. If there is a visible declaration of an entity with
|
|
// linkage having the same name and type, ignoring entities
|
|
// declared outside the innermost enclosing namespace scope, the
|
|
// block scope declaration declares that same entity and receives
|
|
// the linkage of the previous declaration. If there is more than
|
|
// one such matching entity, the program is ill-formed. Otherwise,
|
|
// if no matching entity is found, the block scope entity receives
|
|
// external linkage.
|
|
if (D->getLexicalDeclContext()->isFunctionOrMethod()) {
|
|
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
|
|
if (Function->isInAnonymousNamespace() &&
|
|
!Function->getDeclContext()->isExternCContext())
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
LinkageInfo LV;
|
|
if (Flags.ConsiderVisibilityAttributes) {
|
|
if (llvm::Optional<Visibility> Vis = Function->getExplicitVisibility())
|
|
LV.setVisibility(*Vis, true);
|
|
}
|
|
|
|
if (const FunctionDecl *Prev = Function->getPreviousDecl()) {
|
|
LinkageInfo PrevLV = getLVForDecl(Prev, Flags);
|
|
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
|
|
LV.mergeVisibility(PrevLV);
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
if (const VarDecl *Var = dyn_cast<VarDecl>(D))
|
|
if (Var->getStorageClass() == SC_Extern ||
|
|
Var->getStorageClass() == SC_PrivateExtern) {
|
|
if (Var->isInAnonymousNamespace() &&
|
|
!Var->getDeclContext()->isExternCContext())
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
LinkageInfo LV;
|
|
if (Var->getStorageClass() == SC_PrivateExtern)
|
|
LV.setVisibility(HiddenVisibility, true);
|
|
else if (Flags.ConsiderVisibilityAttributes) {
|
|
if (llvm::Optional<Visibility> Vis = Var->getExplicitVisibility())
|
|
LV.setVisibility(*Vis, true);
|
|
}
|
|
|
|
if (const VarDecl *Prev = Var->getPreviousDecl()) {
|
|
LinkageInfo PrevLV = getLVForDecl(Prev, Flags);
|
|
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
|
|
LV.mergeVisibility(PrevLV);
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
}
|
|
|
|
// C++ [basic.link]p6:
|
|
// Names not covered by these rules have no linkage.
|
|
return LinkageInfo::none();
|
|
}
|
|
|
|
std::string NamedDecl::getQualifiedNameAsString() const {
|
|
return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
|
|
}
|
|
|
|
std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
|
|
const DeclContext *Ctx = getDeclContext();
|
|
|
|
if (Ctx->isFunctionOrMethod())
|
|
return getNameAsString();
|
|
|
|
typedef SmallVector<const DeclContext *, 8> ContextsTy;
|
|
ContextsTy Contexts;
|
|
|
|
// Collect contexts.
|
|
while (Ctx && isa<NamedDecl>(Ctx)) {
|
|
Contexts.push_back(Ctx);
|
|
Ctx = Ctx->getParent();
|
|
};
|
|
|
|
std::string QualName;
|
|
llvm::raw_string_ostream OS(QualName);
|
|
|
|
for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
|
|
I != E; ++I) {
|
|
if (const ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
|
|
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
|
std::string TemplateArgsStr
|
|
= TemplateSpecializationType::PrintTemplateArgumentList(
|
|
TemplateArgs.data(),
|
|
TemplateArgs.size(),
|
|
P);
|
|
OS << Spec->getName() << TemplateArgsStr;
|
|
} else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
|
|
if (ND->isAnonymousNamespace())
|
|
OS << "<anonymous namespace>";
|
|
else
|
|
OS << *ND;
|
|
} else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
|
|
if (!RD->getIdentifier())
|
|
OS << "<anonymous " << RD->getKindName() << '>';
|
|
else
|
|
OS << *RD;
|
|
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
|
|
const FunctionProtoType *FT = 0;
|
|
if (FD->hasWrittenPrototype())
|
|
FT = dyn_cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
|
|
|
|
OS << *FD << '(';
|
|
if (FT) {
|
|
unsigned NumParams = FD->getNumParams();
|
|
for (unsigned i = 0; i < NumParams; ++i) {
|
|
if (i)
|
|
OS << ", ";
|
|
std::string Param;
|
|
FD->getParamDecl(i)->getType().getAsStringInternal(Param, P);
|
|
OS << Param;
|
|
}
|
|
|
|
if (FT->isVariadic()) {
|
|
if (NumParams > 0)
|
|
OS << ", ";
|
|
OS << "...";
|
|
}
|
|
}
|
|
OS << ')';
|
|
} else {
|
|
OS << *cast<NamedDecl>(*I);
|
|
}
|
|
OS << "::";
|
|
}
|
|
|
|
if (getDeclName())
|
|
OS << *this;
|
|
else
|
|
OS << "<anonymous>";
|
|
|
|
return OS.str();
|
|
}
|
|
|
|
bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
|
|
assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
|
|
|
|
// UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
|
|
// We want to keep it, unless it nominates same namespace.
|
|
if (getKind() == Decl::UsingDirective) {
|
|
return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
|
|
->getOriginalNamespace() ==
|
|
cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
|
|
->getOriginalNamespace();
|
|
}
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
|
|
// For function declarations, we keep track of redeclarations.
|
|
return FD->getPreviousDecl() == OldD;
|
|
|
|
// For function templates, the underlying function declarations are linked.
|
|
if (const FunctionTemplateDecl *FunctionTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(this))
|
|
if (const FunctionTemplateDecl *OldFunctionTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(OldD))
|
|
return FunctionTemplate->getTemplatedDecl()
|
|
->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
|
|
|
|
// For method declarations, we keep track of redeclarations.
|
|
if (isa<ObjCMethodDecl>(this))
|
|
return false;
|
|
|
|
if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
|
|
return true;
|
|
|
|
if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
|
|
return cast<UsingShadowDecl>(this)->getTargetDecl() ==
|
|
cast<UsingShadowDecl>(OldD)->getTargetDecl();
|
|
|
|
if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
|
|
ASTContext &Context = getASTContext();
|
|
return Context.getCanonicalNestedNameSpecifier(
|
|
cast<UsingDecl>(this)->getQualifier()) ==
|
|
Context.getCanonicalNestedNameSpecifier(
|
|
cast<UsingDecl>(OldD)->getQualifier());
|
|
}
|
|
|
|
// A typedef of an Objective-C class type can replace an Objective-C class
|
|
// declaration or definition, and vice versa.
|
|
if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
|
|
(isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
|
|
return true;
|
|
|
|
// For non-function declarations, if the declarations are of the
|
|
// same kind then this must be a redeclaration, or semantic analysis
|
|
// would not have given us the new declaration.
|
|
return this->getKind() == OldD->getKind();
|
|
}
|
|
|
|
bool NamedDecl::hasLinkage() const {
|
|
return getLinkage() != NoLinkage;
|
|
}
|
|
|
|
NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
|
|
NamedDecl *ND = this;
|
|
while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
|
|
ND = UD->getTargetDecl();
|
|
|
|
if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
|
|
return AD->getClassInterface();
|
|
|
|
return ND;
|
|
}
|
|
|
|
bool NamedDecl::isCXXInstanceMember() const {
|
|
if (!isCXXClassMember())
|
|
return false;
|
|
|
|
const NamedDecl *D = this;
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
|
|
return true;
|
|
if (isa<CXXMethodDecl>(D))
|
|
return cast<CXXMethodDecl>(D)->isInstance();
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
|
|
->getTemplatedDecl())->isInstance();
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DeclaratorDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename DeclT>
|
|
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
|
|
if (decl->getNumTemplateParameterLists() > 0)
|
|
return decl->getTemplateParameterList(0)->getTemplateLoc();
|
|
else
|
|
return decl->getInnerLocStart();
|
|
}
|
|
|
|
SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
|
|
TypeSourceInfo *TSI = getTypeSourceInfo();
|
|
if (TSI) return TSI->getTypeLoc().getBeginLoc();
|
|
return SourceLocation();
|
|
}
|
|
|
|
void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
|
|
if (QualifierLoc) {
|
|
// Make sure the extended decl info is allocated.
|
|
if (!hasExtInfo()) {
|
|
// Save (non-extended) type source info pointer.
|
|
TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
|
|
// Allocate external info struct.
|
|
DeclInfo = new (getASTContext()) ExtInfo;
|
|
// Restore savedTInfo into (extended) decl info.
|
|
getExtInfo()->TInfo = savedTInfo;
|
|
}
|
|
// Set qualifier info.
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
} else {
|
|
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
|
|
if (hasExtInfo()) {
|
|
if (getExtInfo()->NumTemplParamLists == 0) {
|
|
// Save type source info pointer.
|
|
TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
|
|
// Deallocate the extended decl info.
|
|
getASTContext().Deallocate(getExtInfo());
|
|
// Restore savedTInfo into (non-extended) decl info.
|
|
DeclInfo = savedTInfo;
|
|
}
|
|
else
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
|
|
unsigned NumTPLists,
|
|
TemplateParameterList **TPLists) {
|
|
assert(NumTPLists > 0);
|
|
// Make sure the extended decl info is allocated.
|
|
if (!hasExtInfo()) {
|
|
// Save (non-extended) type source info pointer.
|
|
TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
|
|
// Allocate external info struct.
|
|
DeclInfo = new (getASTContext()) ExtInfo;
|
|
// Restore savedTInfo into (extended) decl info.
|
|
getExtInfo()->TInfo = savedTInfo;
|
|
}
|
|
// Set the template parameter lists info.
|
|
getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
|
|
}
|
|
|
|
SourceLocation DeclaratorDecl::getOuterLocStart() const {
|
|
return getTemplateOrInnerLocStart(this);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Helper function: returns true if QT is or contains a type
|
|
// having a postfix component.
|
|
bool typeIsPostfix(clang::QualType QT) {
|
|
while (true) {
|
|
const Type* T = QT.getTypePtr();
|
|
switch (T->getTypeClass()) {
|
|
default:
|
|
return false;
|
|
case Type::Pointer:
|
|
QT = cast<PointerType>(T)->getPointeeType();
|
|
break;
|
|
case Type::BlockPointer:
|
|
QT = cast<BlockPointerType>(T)->getPointeeType();
|
|
break;
|
|
case Type::MemberPointer:
|
|
QT = cast<MemberPointerType>(T)->getPointeeType();
|
|
break;
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
QT = cast<ReferenceType>(T)->getPointeeType();
|
|
break;
|
|
case Type::PackExpansion:
|
|
QT = cast<PackExpansionType>(T)->getPattern();
|
|
break;
|
|
case Type::Paren:
|
|
case Type::ConstantArray:
|
|
case Type::DependentSizedArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::FunctionProto:
|
|
case Type::FunctionNoProto:
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SourceRange DeclaratorDecl::getSourceRange() const {
|
|
SourceLocation RangeEnd = getLocation();
|
|
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
|
|
if (typeIsPostfix(TInfo->getType()))
|
|
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
|
|
}
|
|
return SourceRange(getOuterLocStart(), RangeEnd);
|
|
}
|
|
|
|
void
|
|
QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
|
|
unsigned NumTPLists,
|
|
TemplateParameterList **TPLists) {
|
|
assert((NumTPLists == 0 || TPLists != 0) &&
|
|
"Empty array of template parameters with positive size!");
|
|
|
|
// Free previous template parameters (if any).
|
|
if (NumTemplParamLists > 0) {
|
|
Context.Deallocate(TemplParamLists);
|
|
TemplParamLists = 0;
|
|
NumTemplParamLists = 0;
|
|
}
|
|
// Set info on matched template parameter lists (if any).
|
|
if (NumTPLists > 0) {
|
|
TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
|
|
NumTemplParamLists = NumTPLists;
|
|
for (unsigned i = NumTPLists; i-- > 0; )
|
|
TemplParamLists[i] = TPLists[i];
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VarDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
|
|
switch (SC) {
|
|
case SC_None: break;
|
|
case SC_Auto: return "auto";
|
|
case SC_Extern: return "extern";
|
|
case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
|
|
case SC_PrivateExtern: return "__private_extern__";
|
|
case SC_Register: return "register";
|
|
case SC_Static: return "static";
|
|
}
|
|
|
|
llvm_unreachable("Invalid storage class");
|
|
}
|
|
|
|
VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartL, SourceLocation IdL,
|
|
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S, StorageClass SCAsWritten) {
|
|
return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
|
|
}
|
|
|
|
VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
|
|
return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
|
|
QualType(), 0, SC_None, SC_None);
|
|
}
|
|
|
|
void VarDecl::setStorageClass(StorageClass SC) {
|
|
assert(isLegalForVariable(SC));
|
|
if (getStorageClass() != SC)
|
|
ClearLinkageCache();
|
|
|
|
VarDeclBits.SClass = SC;
|
|
}
|
|
|
|
SourceRange VarDecl::getSourceRange() const {
|
|
if (getInit())
|
|
return SourceRange(getOuterLocStart(), getInit()->getLocEnd());
|
|
return DeclaratorDecl::getSourceRange();
|
|
}
|
|
|
|
bool VarDecl::isExternC() const {
|
|
if (getLinkage() != ExternalLinkage)
|
|
return false;
|
|
|
|
const DeclContext *DC = getDeclContext();
|
|
if (DC->isRecord())
|
|
return false;
|
|
|
|
ASTContext &Context = getASTContext();
|
|
if (!Context.getLangOpts().CPlusPlus)
|
|
return true;
|
|
return DC->isExternCContext();
|
|
}
|
|
|
|
VarDecl *VarDecl::getCanonicalDecl() {
|
|
return getFirstDeclaration();
|
|
}
|
|
|
|
VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
|
|
ASTContext &C) const
|
|
{
|
|
// C++ [basic.def]p2:
|
|
// A declaration is a definition unless [...] it contains the 'extern'
|
|
// specifier or a linkage-specification and neither an initializer [...],
|
|
// it declares a static data member in a class declaration [...].
|
|
// C++ [temp.expl.spec]p15:
|
|
// An explicit specialization of a static data member of a template is a
|
|
// definition if the declaration includes an initializer; otherwise, it is
|
|
// a declaration.
|
|
if (isStaticDataMember()) {
|
|
if (isOutOfLine() && (hasInit() ||
|
|
getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
|
|
return Definition;
|
|
else
|
|
return DeclarationOnly;
|
|
}
|
|
// C99 6.7p5:
|
|
// A definition of an identifier is a declaration for that identifier that
|
|
// [...] causes storage to be reserved for that object.
|
|
// Note: that applies for all non-file-scope objects.
|
|
// C99 6.9.2p1:
|
|
// If the declaration of an identifier for an object has file scope and an
|
|
// initializer, the declaration is an external definition for the identifier
|
|
if (hasInit())
|
|
return Definition;
|
|
// AST for 'extern "C" int foo;' is annotated with 'extern'.
|
|
if (hasExternalStorage())
|
|
return DeclarationOnly;
|
|
|
|
if (getStorageClassAsWritten() == SC_Extern ||
|
|
getStorageClassAsWritten() == SC_PrivateExtern) {
|
|
for (const VarDecl *PrevVar = getPreviousDecl();
|
|
PrevVar; PrevVar = PrevVar->getPreviousDecl()) {
|
|
if (PrevVar->getLinkage() == InternalLinkage && PrevVar->hasInit())
|
|
return DeclarationOnly;
|
|
}
|
|
}
|
|
// C99 6.9.2p2:
|
|
// A declaration of an object that has file scope without an initializer,
|
|
// and without a storage class specifier or the scs 'static', constitutes
|
|
// a tentative definition.
|
|
// No such thing in C++.
|
|
if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
|
|
return TentativeDefinition;
|
|
|
|
// What's left is (in C, block-scope) declarations without initializers or
|
|
// external storage. These are definitions.
|
|
return Definition;
|
|
}
|
|
|
|
VarDecl *VarDecl::getActingDefinition() {
|
|
DefinitionKind Kind = isThisDeclarationADefinition();
|
|
if (Kind != TentativeDefinition)
|
|
return 0;
|
|
|
|
VarDecl *LastTentative = 0;
|
|
VarDecl *First = getFirstDeclaration();
|
|
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
|
|
I != E; ++I) {
|
|
Kind = (*I)->isThisDeclarationADefinition();
|
|
if (Kind == Definition)
|
|
return 0;
|
|
else if (Kind == TentativeDefinition)
|
|
LastTentative = *I;
|
|
}
|
|
return LastTentative;
|
|
}
|
|
|
|
bool VarDecl::isTentativeDefinitionNow() const {
|
|
DefinitionKind Kind = isThisDeclarationADefinition();
|
|
if (Kind != TentativeDefinition)
|
|
return false;
|
|
|
|
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
|
|
if ((*I)->isThisDeclarationADefinition() == Definition)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
VarDecl *VarDecl::getDefinition(ASTContext &C) {
|
|
VarDecl *First = getFirstDeclaration();
|
|
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
|
|
I != E; ++I) {
|
|
if ((*I)->isThisDeclarationADefinition(C) == Definition)
|
|
return *I;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
|
|
DefinitionKind Kind = DeclarationOnly;
|
|
|
|
const VarDecl *First = getFirstDeclaration();
|
|
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
|
|
I != E; ++I) {
|
|
Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
|
|
if (Kind == Definition)
|
|
break;
|
|
}
|
|
|
|
return Kind;
|
|
}
|
|
|
|
const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
|
|
redecl_iterator I = redecls_begin(), E = redecls_end();
|
|
while (I != E && !I->getInit())
|
|
++I;
|
|
|
|
if (I != E) {
|
|
D = *I;
|
|
return I->getInit();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool VarDecl::isOutOfLine() const {
|
|
if (Decl::isOutOfLine())
|
|
return true;
|
|
|
|
if (!isStaticDataMember())
|
|
return false;
|
|
|
|
// If this static data member was instantiated from a static data member of
|
|
// a class template, check whether that static data member was defined
|
|
// out-of-line.
|
|
if (VarDecl *VD = getInstantiatedFromStaticDataMember())
|
|
return VD->isOutOfLine();
|
|
|
|
return false;
|
|
}
|
|
|
|
VarDecl *VarDecl::getOutOfLineDefinition() {
|
|
if (!isStaticDataMember())
|
|
return 0;
|
|
|
|
for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
|
|
RD != RDEnd; ++RD) {
|
|
if (RD->getLexicalDeclContext()->isFileContext())
|
|
return *RD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void VarDecl::setInit(Expr *I) {
|
|
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
|
|
Eval->~EvaluatedStmt();
|
|
getASTContext().Deallocate(Eval);
|
|
}
|
|
|
|
Init = I;
|
|
}
|
|
|
|
bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
|
|
const LangOptions &Lang = C.getLangOpts();
|
|
|
|
if (!Lang.CPlusPlus)
|
|
return false;
|
|
|
|
// In C++11, any variable of reference type can be used in a constant
|
|
// expression if it is initialized by a constant expression.
|
|
if (Lang.CPlusPlus0x && getType()->isReferenceType())
|
|
return true;
|
|
|
|
// Only const objects can be used in constant expressions in C++. C++98 does
|
|
// not require the variable to be non-volatile, but we consider this to be a
|
|
// defect.
|
|
if (!getType().isConstQualified() || getType().isVolatileQualified())
|
|
return false;
|
|
|
|
// In C++, const, non-volatile variables of integral or enumeration types
|
|
// can be used in constant expressions.
|
|
if (getType()->isIntegralOrEnumerationType())
|
|
return true;
|
|
|
|
// Additionally, in C++11, non-volatile constexpr variables can be used in
|
|
// constant expressions.
|
|
return Lang.CPlusPlus0x && isConstexpr();
|
|
}
|
|
|
|
/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
|
|
/// form, which contains extra information on the evaluated value of the
|
|
/// initializer.
|
|
EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
|
|
EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
|
|
if (!Eval) {
|
|
Stmt *S = Init.get<Stmt *>();
|
|
Eval = new (getASTContext()) EvaluatedStmt;
|
|
Eval->Value = S;
|
|
Init = Eval;
|
|
}
|
|
return Eval;
|
|
}
|
|
|
|
APValue *VarDecl::evaluateValue() const {
|
|
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
return evaluateValue(Notes);
|
|
}
|
|
|
|
APValue *VarDecl::evaluateValue(
|
|
llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
|
|
EvaluatedStmt *Eval = ensureEvaluatedStmt();
|
|
|
|
// We only produce notes indicating why an initializer is non-constant the
|
|
// first time it is evaluated. FIXME: The notes won't always be emitted the
|
|
// first time we try evaluation, so might not be produced at all.
|
|
if (Eval->WasEvaluated)
|
|
return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
|
|
|
|
const Expr *Init = cast<Expr>(Eval->Value);
|
|
assert(!Init->isValueDependent());
|
|
|
|
if (Eval->IsEvaluating) {
|
|
// FIXME: Produce a diagnostic for self-initialization.
|
|
Eval->CheckedICE = true;
|
|
Eval->IsICE = false;
|
|
return 0;
|
|
}
|
|
|
|
Eval->IsEvaluating = true;
|
|
|
|
bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
|
|
this, Notes);
|
|
|
|
// Ensure the result is an uninitialized APValue if evaluation fails.
|
|
if (!Result)
|
|
Eval->Evaluated = APValue();
|
|
|
|
Eval->IsEvaluating = false;
|
|
Eval->WasEvaluated = true;
|
|
|
|
// In C++11, we have determined whether the initializer was a constant
|
|
// expression as a side-effect.
|
|
if (getASTContext().getLangOpts().CPlusPlus0x && !Eval->CheckedICE) {
|
|
Eval->CheckedICE = true;
|
|
Eval->IsICE = Result && Notes.empty();
|
|
}
|
|
|
|
return Result ? &Eval->Evaluated : 0;
|
|
}
|
|
|
|
bool VarDecl::checkInitIsICE() const {
|
|
// Initializers of weak variables are never ICEs.
|
|
if (isWeak())
|
|
return false;
|
|
|
|
EvaluatedStmt *Eval = ensureEvaluatedStmt();
|
|
if (Eval->CheckedICE)
|
|
// We have already checked whether this subexpression is an
|
|
// integral constant expression.
|
|
return Eval->IsICE;
|
|
|
|
const Expr *Init = cast<Expr>(Eval->Value);
|
|
assert(!Init->isValueDependent());
|
|
|
|
// In C++11, evaluate the initializer to check whether it's a constant
|
|
// expression.
|
|
if (getASTContext().getLangOpts().CPlusPlus0x) {
|
|
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
evaluateValue(Notes);
|
|
return Eval->IsICE;
|
|
}
|
|
|
|
// It's an ICE whether or not the definition we found is
|
|
// out-of-line. See DR 721 and the discussion in Clang PR
|
|
// 6206 for details.
|
|
|
|
if (Eval->CheckingICE)
|
|
return false;
|
|
Eval->CheckingICE = true;
|
|
|
|
Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
|
|
Eval->CheckingICE = false;
|
|
Eval->CheckedICE = true;
|
|
return Eval->IsICE;
|
|
}
|
|
|
|
bool VarDecl::extendsLifetimeOfTemporary() const {
|
|
assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
|
|
|
|
const Expr *E = getInit();
|
|
if (!E)
|
|
return false;
|
|
|
|
if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
|
|
E = Cleanups->getSubExpr();
|
|
|
|
return isa<MaterializeTemporaryExpr>(E);
|
|
}
|
|
|
|
VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return cast<VarDecl>(MSI->getInstantiatedFrom());
|
|
|
|
return 0;
|
|
}
|
|
|
|
TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return MSI->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
|
|
return getASTContext().getInstantiatedFromStaticDataMember(this);
|
|
}
|
|
|
|
void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
|
|
assert(MSI && "Not an instantiated static data member?");
|
|
MSI->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
MSI->getPointOfInstantiation().isInvalid())
|
|
MSI->setPointOfInstantiation(PointOfInstantiation);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ParmVarDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S, StorageClass SCAsWritten,
|
|
Expr *DefArg) {
|
|
return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
|
|
S, SCAsWritten, DefArg);
|
|
}
|
|
|
|
ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
|
|
return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
|
|
0, QualType(), 0, SC_None, SC_None, 0);
|
|
}
|
|
|
|
SourceRange ParmVarDecl::getSourceRange() const {
|
|
if (!hasInheritedDefaultArg()) {
|
|
SourceRange ArgRange = getDefaultArgRange();
|
|
if (ArgRange.isValid())
|
|
return SourceRange(getOuterLocStart(), ArgRange.getEnd());
|
|
}
|
|
|
|
return DeclaratorDecl::getSourceRange();
|
|
}
|
|
|
|
Expr *ParmVarDecl::getDefaultArg() {
|
|
assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
|
|
assert(!hasUninstantiatedDefaultArg() &&
|
|
"Default argument is not yet instantiated!");
|
|
|
|
Expr *Arg = getInit();
|
|
if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
|
|
return E->getSubExpr();
|
|
|
|
return Arg;
|
|
}
|
|
|
|
SourceRange ParmVarDecl::getDefaultArgRange() const {
|
|
if (const Expr *E = getInit())
|
|
return E->getSourceRange();
|
|
|
|
if (hasUninstantiatedDefaultArg())
|
|
return getUninstantiatedDefaultArg()->getSourceRange();
|
|
|
|
return SourceRange();
|
|
}
|
|
|
|
bool ParmVarDecl::isParameterPack() const {
|
|
return isa<PackExpansionType>(getType());
|
|
}
|
|
|
|
void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
|
|
getASTContext().setParameterIndex(this, parameterIndex);
|
|
ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
|
|
}
|
|
|
|
unsigned ParmVarDecl::getParameterIndexLarge() const {
|
|
return getASTContext().getParameterIndex(this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void FunctionDecl::getNameForDiagnostic(std::string &S,
|
|
const PrintingPolicy &Policy,
|
|
bool Qualified) const {
|
|
NamedDecl::getNameForDiagnostic(S, Policy, Qualified);
|
|
const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
|
|
if (TemplateArgs)
|
|
S += TemplateSpecializationType::PrintTemplateArgumentList(
|
|
TemplateArgs->data(),
|
|
TemplateArgs->size(),
|
|
Policy);
|
|
|
|
}
|
|
|
|
bool FunctionDecl::isVariadic() const {
|
|
if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
|
|
return FT->isVariadic();
|
|
return false;
|
|
}
|
|
|
|
bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
|
|
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
|
|
if (I->Body || I->IsLateTemplateParsed) {
|
|
Definition = *I;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FunctionDecl::hasTrivialBody() const
|
|
{
|
|
Stmt *S = getBody();
|
|
if (!S) {
|
|
// Since we don't have a body for this function, we don't know if it's
|
|
// trivial or not.
|
|
return false;
|
|
}
|
|
|
|
if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
|
|
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
|
|
if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
|
|
Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
|
|
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
|
|
if (I->Body) {
|
|
Definition = *I;
|
|
return I->Body.get(getASTContext().getExternalSource());
|
|
} else if (I->IsLateTemplateParsed) {
|
|
Definition = *I;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void FunctionDecl::setBody(Stmt *B) {
|
|
Body = B;
|
|
if (B)
|
|
EndRangeLoc = B->getLocEnd();
|
|
}
|
|
|
|
void FunctionDecl::setPure(bool P) {
|
|
IsPure = P;
|
|
if (P)
|
|
if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
|
|
Parent->markedVirtualFunctionPure();
|
|
}
|
|
|
|
bool FunctionDecl::isMain() const {
|
|
const TranslationUnitDecl *tunit =
|
|
dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
|
|
return tunit &&
|
|
!tunit->getASTContext().getLangOpts().Freestanding &&
|
|
getIdentifier() &&
|
|
getIdentifier()->isStr("main");
|
|
}
|
|
|
|
bool FunctionDecl::isReservedGlobalPlacementOperator() const {
|
|
assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
|
|
assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Delete ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
|
|
|
|
if (isa<CXXRecordDecl>(getDeclContext())) return false;
|
|
assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
|
|
|
|
const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
|
|
if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
|
|
|
|
ASTContext &Context =
|
|
cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
|
|
->getASTContext();
|
|
|
|
// The result type and first argument type are constant across all
|
|
// these operators. The second argument must be exactly void*.
|
|
return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
|
|
}
|
|
|
|
bool FunctionDecl::isExternC() const {
|
|
if (getLinkage() != ExternalLinkage)
|
|
return false;
|
|
|
|
if (getAttr<OverloadableAttr>())
|
|
return false;
|
|
|
|
const DeclContext *DC = getDeclContext();
|
|
if (DC->isRecord())
|
|
return false;
|
|
|
|
ASTContext &Context = getASTContext();
|
|
if (!Context.getLangOpts().CPlusPlus)
|
|
return true;
|
|
|
|
return isMain() || DC->isExternCContext();
|
|
}
|
|
|
|
bool FunctionDecl::isGlobal() const {
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
|
|
return Method->isStatic();
|
|
|
|
if (getStorageClass() == SC_Static)
|
|
return false;
|
|
|
|
for (const DeclContext *DC = getDeclContext();
|
|
DC->isNamespace();
|
|
DC = DC->getParent()) {
|
|
if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
|
|
if (!Namespace->getDeclName())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
|
|
redeclarable_base::setPreviousDeclaration(PrevDecl);
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
|
|
FunctionTemplateDecl *PrevFunTmpl
|
|
= PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
|
|
assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
|
|
FunTmpl->setPreviousDeclaration(PrevFunTmpl);
|
|
}
|
|
|
|
if (PrevDecl && PrevDecl->IsInline)
|
|
IsInline = true;
|
|
}
|
|
|
|
const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
|
|
return getFirstDeclaration();
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getCanonicalDecl() {
|
|
return getFirstDeclaration();
|
|
}
|
|
|
|
void FunctionDecl::setStorageClass(StorageClass SC) {
|
|
assert(isLegalForFunction(SC));
|
|
if (getStorageClass() != SC)
|
|
ClearLinkageCache();
|
|
|
|
SClass = SC;
|
|
}
|
|
|
|
/// \brief Returns a value indicating whether this function
|
|
/// corresponds to a builtin function.
|
|
///
|
|
/// The function corresponds to a built-in function if it is
|
|
/// declared at translation scope or within an extern "C" block and
|
|
/// its name matches with the name of a builtin. The returned value
|
|
/// will be 0 for functions that do not correspond to a builtin, a
|
|
/// value of type \c Builtin::ID if in the target-independent range
|
|
/// \c [1,Builtin::First), or a target-specific builtin value.
|
|
unsigned FunctionDecl::getBuiltinID() const {
|
|
if (!getIdentifier())
|
|
return 0;
|
|
|
|
unsigned BuiltinID = getIdentifier()->getBuiltinID();
|
|
if (!BuiltinID)
|
|
return 0;
|
|
|
|
ASTContext &Context = getASTContext();
|
|
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
|
return BuiltinID;
|
|
|
|
// This function has the name of a known C library
|
|
// function. Determine whether it actually refers to the C library
|
|
// function or whether it just has the same name.
|
|
|
|
// If this is a static function, it's not a builtin.
|
|
if (getStorageClass() == SC_Static)
|
|
return 0;
|
|
|
|
// If this function is at translation-unit scope and we're not in
|
|
// C++, it refers to the C library function.
|
|
if (!Context.getLangOpts().CPlusPlus &&
|
|
getDeclContext()->isTranslationUnit())
|
|
return BuiltinID;
|
|
|
|
// If the function is in an extern "C" linkage specification and is
|
|
// not marked "overloadable", it's the real function.
|
|
if (isa<LinkageSpecDecl>(getDeclContext()) &&
|
|
cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
|
|
== LinkageSpecDecl::lang_c &&
|
|
!getAttr<OverloadableAttr>())
|
|
return BuiltinID;
|
|
|
|
// Not a builtin
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// getNumParams - Return the number of parameters this function must have
|
|
/// based on its FunctionType. This is the length of the ParamInfo array
|
|
/// after it has been created.
|
|
unsigned FunctionDecl::getNumParams() const {
|
|
const FunctionType *FT = getType()->getAs<FunctionType>();
|
|
if (isa<FunctionNoProtoType>(FT))
|
|
return 0;
|
|
return cast<FunctionProtoType>(FT)->getNumArgs();
|
|
|
|
}
|
|
|
|
void FunctionDecl::setParams(ASTContext &C,
|
|
llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
|
|
assert(ParamInfo == 0 && "Already has param info!");
|
|
assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
|
|
|
|
// Zero params -> null pointer.
|
|
if (!NewParamInfo.empty()) {
|
|
ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
|
|
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
|
|
}
|
|
}
|
|
|
|
void FunctionDecl::setDeclsInPrototypeScope(llvm::ArrayRef<NamedDecl *> NewDecls) {
|
|
assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
|
|
|
|
if (!NewDecls.empty()) {
|
|
NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
|
|
std::copy(NewDecls.begin(), NewDecls.end(), A);
|
|
DeclsInPrototypeScope = llvm::ArrayRef<NamedDecl*>(A, NewDecls.size());
|
|
}
|
|
}
|
|
|
|
/// getMinRequiredArguments - Returns the minimum number of arguments
|
|
/// needed to call this function. This may be fewer than the number of
|
|
/// function parameters, if some of the parameters have default
|
|
/// arguments (in C++) or the last parameter is a parameter pack.
|
|
unsigned FunctionDecl::getMinRequiredArguments() const {
|
|
if (!getASTContext().getLangOpts().CPlusPlus)
|
|
return getNumParams();
|
|
|
|
unsigned NumRequiredArgs = getNumParams();
|
|
|
|
// If the last parameter is a parameter pack, we don't need an argument for
|
|
// it.
|
|
if (NumRequiredArgs > 0 &&
|
|
getParamDecl(NumRequiredArgs - 1)->isParameterPack())
|
|
--NumRequiredArgs;
|
|
|
|
// If this parameter has a default argument, we don't need an argument for
|
|
// it.
|
|
while (NumRequiredArgs > 0 &&
|
|
getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
|
|
--NumRequiredArgs;
|
|
|
|
// We might have parameter packs before the end. These can't be deduced,
|
|
// but they can still handle multiple arguments.
|
|
unsigned ArgIdx = NumRequiredArgs;
|
|
while (ArgIdx > 0) {
|
|
if (getParamDecl(ArgIdx - 1)->isParameterPack())
|
|
NumRequiredArgs = ArgIdx;
|
|
|
|
--ArgIdx;
|
|
}
|
|
|
|
return NumRequiredArgs;
|
|
}
|
|
|
|
bool FunctionDecl::isInlined() const {
|
|
if (IsInline)
|
|
return true;
|
|
|
|
if (isa<CXXMethodDecl>(this)) {
|
|
if (!isOutOfLine() || getCanonicalDecl()->isInlineSpecified())
|
|
return true;
|
|
}
|
|
|
|
switch (getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
return false;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
// Handle below.
|
|
break;
|
|
}
|
|
|
|
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
|
|
bool HasPattern = false;
|
|
if (PatternDecl)
|
|
HasPattern = PatternDecl->hasBody(PatternDecl);
|
|
|
|
if (HasPattern && PatternDecl)
|
|
return PatternDecl->isInlined();
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
|
|
// Only consider file-scope declarations in this test.
|
|
if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
|
|
return false;
|
|
|
|
// Only consider explicit declarations; the presence of a builtin for a
|
|
// libcall shouldn't affect whether a definition is externally visible.
|
|
if (Redecl->isImplicit())
|
|
return false;
|
|
|
|
if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
|
|
return true; // Not an inline definition
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief For a function declaration in C or C++, determine whether this
|
|
/// declaration causes the definition to be externally visible.
|
|
///
|
|
/// Specifically, this determines if adding the current declaration to the set
|
|
/// of redeclarations of the given functions causes
|
|
/// isInlineDefinitionExternallyVisible to change from false to true.
|
|
bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
|
|
assert(!doesThisDeclarationHaveABody() &&
|
|
"Must have a declaration without a body.");
|
|
|
|
ASTContext &Context = getASTContext();
|
|
|
|
if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
|
|
// With GNU inlining, a declaration with 'inline' but not 'extern', forces
|
|
// an externally visible definition.
|
|
//
|
|
// FIXME: What happens if gnu_inline gets added on after the first
|
|
// declaration?
|
|
if (!isInlineSpecified() || getStorageClassAsWritten() == SC_Extern)
|
|
return false;
|
|
|
|
const FunctionDecl *Prev = this;
|
|
bool FoundBody = false;
|
|
while ((Prev = Prev->getPreviousDecl())) {
|
|
FoundBody |= Prev->Body;
|
|
|
|
if (Prev->Body) {
|
|
// If it's not the case that both 'inline' and 'extern' are
|
|
// specified on the definition, then it is always externally visible.
|
|
if (!Prev->isInlineSpecified() ||
|
|
Prev->getStorageClassAsWritten() != SC_Extern)
|
|
return false;
|
|
} else if (Prev->isInlineSpecified() &&
|
|
Prev->getStorageClassAsWritten() != SC_Extern) {
|
|
return false;
|
|
}
|
|
}
|
|
return FoundBody;
|
|
}
|
|
|
|
if (Context.getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// C99 6.7.4p6:
|
|
// [...] If all of the file scope declarations for a function in a
|
|
// translation unit include the inline function specifier without extern,
|
|
// then the definition in that translation unit is an inline definition.
|
|
if (isInlineSpecified() && getStorageClass() != SC_Extern)
|
|
return false;
|
|
const FunctionDecl *Prev = this;
|
|
bool FoundBody = false;
|
|
while ((Prev = Prev->getPreviousDecl())) {
|
|
FoundBody |= Prev->Body;
|
|
if (RedeclForcesDefC99(Prev))
|
|
return false;
|
|
}
|
|
return FoundBody;
|
|
}
|
|
|
|
/// \brief For an inline function definition in C or C++, determine whether the
|
|
/// definition will be externally visible.
|
|
///
|
|
/// Inline function definitions are always available for inlining optimizations.
|
|
/// However, depending on the language dialect, declaration specifiers, and
|
|
/// attributes, the definition of an inline function may or may not be
|
|
/// "externally" visible to other translation units in the program.
|
|
///
|
|
/// In C99, inline definitions are not externally visible by default. However,
|
|
/// if even one of the global-scope declarations is marked "extern inline", the
|
|
/// inline definition becomes externally visible (C99 6.7.4p6).
|
|
///
|
|
/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
|
|
/// definition, we use the GNU semantics for inline, which are nearly the
|
|
/// opposite of C99 semantics. In particular, "inline" by itself will create
|
|
/// an externally visible symbol, but "extern inline" will not create an
|
|
/// externally visible symbol.
|
|
bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
|
|
assert(doesThisDeclarationHaveABody() && "Must have the function definition");
|
|
assert(isInlined() && "Function must be inline");
|
|
ASTContext &Context = getASTContext();
|
|
|
|
if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
|
|
// Note: If you change the logic here, please change
|
|
// doesDeclarationForceExternallyVisibleDefinition as well.
|
|
//
|
|
// If it's not the case that both 'inline' and 'extern' are
|
|
// specified on the definition, then this inline definition is
|
|
// externally visible.
|
|
if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
|
|
return true;
|
|
|
|
// If any declaration is 'inline' but not 'extern', then this definition
|
|
// is externally visible.
|
|
for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
|
|
Redecl != RedeclEnd;
|
|
++Redecl) {
|
|
if (Redecl->isInlineSpecified() &&
|
|
Redecl->getStorageClassAsWritten() != SC_Extern)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// C99 6.7.4p6:
|
|
// [...] If all of the file scope declarations for a function in a
|
|
// translation unit include the inline function specifier without extern,
|
|
// then the definition in that translation unit is an inline definition.
|
|
for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
|
|
Redecl != RedeclEnd;
|
|
++Redecl) {
|
|
if (RedeclForcesDefC99(*Redecl))
|
|
return true;
|
|
}
|
|
|
|
// C99 6.7.4p6:
|
|
// An inline definition does not provide an external definition for the
|
|
// function, and does not forbid an external definition in another
|
|
// translation unit.
|
|
return false;
|
|
}
|
|
|
|
/// getOverloadedOperator - Which C++ overloaded operator this
|
|
/// function represents, if any.
|
|
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
|
|
if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
|
|
return getDeclName().getCXXOverloadedOperator();
|
|
else
|
|
return OO_None;
|
|
}
|
|
|
|
/// getLiteralIdentifier - The literal suffix identifier this function
|
|
/// represents, if any.
|
|
const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
|
|
if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
|
|
return getDeclName().getCXXLiteralIdentifier();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
|
|
if (TemplateOrSpecialization.isNull())
|
|
return TK_NonTemplate;
|
|
if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
|
|
return TK_FunctionTemplate;
|
|
if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
|
|
return TK_MemberSpecialization;
|
|
if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
|
|
return TK_FunctionTemplateSpecialization;
|
|
if (TemplateOrSpecialization.is
|
|
<DependentFunctionTemplateSpecializationInfo*>())
|
|
return TK_DependentFunctionTemplateSpecialization;
|
|
|
|
llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
|
|
if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
|
|
return cast<FunctionDecl>(Info->getInstantiatedFrom());
|
|
|
|
return 0;
|
|
}
|
|
|
|
MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
|
|
return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
|
|
FunctionDecl *FD,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(TemplateOrSpecialization.isNull() &&
|
|
"Member function is already a specialization");
|
|
MemberSpecializationInfo *Info
|
|
= new (C) MemberSpecializationInfo(FD, TSK);
|
|
TemplateOrSpecialization = Info;
|
|
}
|
|
|
|
bool FunctionDecl::isImplicitlyInstantiable() const {
|
|
// If the function is invalid, it can't be implicitly instantiated.
|
|
if (isInvalidDecl())
|
|
return false;
|
|
|
|
switch (getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return false;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
return true;
|
|
|
|
// It is possible to instantiate TSK_ExplicitSpecialization kind
|
|
// if the FunctionDecl has a class scope specialization pattern.
|
|
case TSK_ExplicitSpecialization:
|
|
return getClassScopeSpecializationPattern() != 0;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// Handled below.
|
|
break;
|
|
}
|
|
|
|
// Find the actual template from which we will instantiate.
|
|
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
|
|
bool HasPattern = false;
|
|
if (PatternDecl)
|
|
HasPattern = PatternDecl->hasBody(PatternDecl);
|
|
|
|
// C++0x [temp.explicit]p9:
|
|
// Except for inline functions, other explicit instantiation declarations
|
|
// have the effect of suppressing the implicit instantiation of the entity
|
|
// to which they refer.
|
|
if (!HasPattern || !PatternDecl)
|
|
return true;
|
|
|
|
return PatternDecl->isInlined();
|
|
}
|
|
|
|
bool FunctionDecl::isTemplateInstantiation() const {
|
|
switch (getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
return false;
|
|
case TSK_ImplicitInstantiation:
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return true;
|
|
}
|
|
llvm_unreachable("All TSK values handled.");
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
|
|
// Handle class scope explicit specialization special case.
|
|
if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
|
|
return getClassScopeSpecializationPattern();
|
|
|
|
if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
|
|
while (Primary->getInstantiatedFromMemberTemplate()) {
|
|
// If we have hit a point where the user provided a specialization of
|
|
// this template, we're done looking.
|
|
if (Primary->isMemberSpecialization())
|
|
break;
|
|
|
|
Primary = Primary->getInstantiatedFromMemberTemplate();
|
|
}
|
|
|
|
return Primary->getTemplatedDecl();
|
|
}
|
|
|
|
return getInstantiatedFromMemberFunction();
|
|
}
|
|
|
|
FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
|
|
if (FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
|
|
return Info->Template.getPointer();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
|
|
return getASTContext().getClassScopeSpecializationPattern(this);
|
|
}
|
|
|
|
const TemplateArgumentList *
|
|
FunctionDecl::getTemplateSpecializationArgs() const {
|
|
if (FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
|
|
return Info->TemplateArguments;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const ASTTemplateArgumentListInfo *
|
|
FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
|
|
if (FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
|
|
return Info->TemplateArgumentsAsWritten;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
|
|
FunctionTemplateDecl *Template,
|
|
const TemplateArgumentList *TemplateArgs,
|
|
void *InsertPos,
|
|
TemplateSpecializationKind TSK,
|
|
const TemplateArgumentListInfo *TemplateArgsAsWritten,
|
|
SourceLocation PointOfInstantiation) {
|
|
assert(TSK != TSK_Undeclared &&
|
|
"Must specify the type of function template specialization");
|
|
FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
|
|
if (!Info)
|
|
Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
|
|
TemplateArgs,
|
|
TemplateArgsAsWritten,
|
|
PointOfInstantiation);
|
|
TemplateOrSpecialization = Info;
|
|
Template->addSpecialization(Info, InsertPos);
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
|
|
const UnresolvedSetImpl &Templates,
|
|
const TemplateArgumentListInfo &TemplateArgs) {
|
|
assert(TemplateOrSpecialization.isNull());
|
|
size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
|
|
Size += Templates.size() * sizeof(FunctionTemplateDecl*);
|
|
Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
|
|
void *Buffer = Context.Allocate(Size);
|
|
DependentFunctionTemplateSpecializationInfo *Info =
|
|
new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
|
|
TemplateArgs);
|
|
TemplateOrSpecialization = Info;
|
|
}
|
|
|
|
DependentFunctionTemplateSpecializationInfo::
|
|
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
|
|
const TemplateArgumentListInfo &TArgs)
|
|
: AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
|
|
|
|
d.NumTemplates = Ts.size();
|
|
d.NumArgs = TArgs.size();
|
|
|
|
FunctionTemplateDecl **TsArray =
|
|
const_cast<FunctionTemplateDecl**>(getTemplates());
|
|
for (unsigned I = 0, E = Ts.size(); I != E; ++I)
|
|
TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
|
|
|
|
TemplateArgumentLoc *ArgsArray =
|
|
const_cast<TemplateArgumentLoc*>(getTemplateArgs());
|
|
for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
|
|
new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
|
|
}
|
|
|
|
TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
|
|
// For a function template specialization, query the specialization
|
|
// information object.
|
|
FunctionTemplateSpecializationInfo *FTSInfo
|
|
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
|
|
if (FTSInfo)
|
|
return FTSInfo->getTemplateSpecializationKind();
|
|
|
|
MemberSpecializationInfo *MSInfo
|
|
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
|
|
if (MSInfo)
|
|
return MSInfo->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
if (FunctionTemplateSpecializationInfo *FTSInfo
|
|
= TemplateOrSpecialization.dyn_cast<
|
|
FunctionTemplateSpecializationInfo*>()) {
|
|
FTSInfo->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
FTSInfo->getPointOfInstantiation().isInvalid())
|
|
FTSInfo->setPointOfInstantiation(PointOfInstantiation);
|
|
} else if (MemberSpecializationInfo *MSInfo
|
|
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
|
|
MSInfo->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
MSInfo->getPointOfInstantiation().isInvalid())
|
|
MSInfo->setPointOfInstantiation(PointOfInstantiation);
|
|
} else
|
|
llvm_unreachable("Function cannot have a template specialization kind");
|
|
}
|
|
|
|
SourceLocation FunctionDecl::getPointOfInstantiation() const {
|
|
if (FunctionTemplateSpecializationInfo *FTSInfo
|
|
= TemplateOrSpecialization.dyn_cast<
|
|
FunctionTemplateSpecializationInfo*>())
|
|
return FTSInfo->getPointOfInstantiation();
|
|
else if (MemberSpecializationInfo *MSInfo
|
|
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
|
|
return MSInfo->getPointOfInstantiation();
|
|
|
|
return SourceLocation();
|
|
}
|
|
|
|
bool FunctionDecl::isOutOfLine() const {
|
|
if (Decl::isOutOfLine())
|
|
return true;
|
|
|
|
// If this function was instantiated from a member function of a
|
|
// class template, check whether that member function was defined out-of-line.
|
|
if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
|
|
const FunctionDecl *Definition;
|
|
if (FD->hasBody(Definition))
|
|
return Definition->isOutOfLine();
|
|
}
|
|
|
|
// If this function was instantiated from a function template,
|
|
// check whether that function template was defined out-of-line.
|
|
if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
|
|
const FunctionDecl *Definition;
|
|
if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
|
|
return Definition->isOutOfLine();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SourceRange FunctionDecl::getSourceRange() const {
|
|
return SourceRange(getOuterLocStart(), EndRangeLoc);
|
|
}
|
|
|
|
unsigned FunctionDecl::getMemoryFunctionKind() const {
|
|
IdentifierInfo *FnInfo = getIdentifier();
|
|
|
|
if (!FnInfo)
|
|
return 0;
|
|
|
|
// Builtin handling.
|
|
switch (getBuiltinID()) {
|
|
case Builtin::BI__builtin_memset:
|
|
case Builtin::BI__builtin___memset_chk:
|
|
case Builtin::BImemset:
|
|
return Builtin::BImemset;
|
|
|
|
case Builtin::BI__builtin_memcpy:
|
|
case Builtin::BI__builtin___memcpy_chk:
|
|
case Builtin::BImemcpy:
|
|
return Builtin::BImemcpy;
|
|
|
|
case Builtin::BI__builtin_memmove:
|
|
case Builtin::BI__builtin___memmove_chk:
|
|
case Builtin::BImemmove:
|
|
return Builtin::BImemmove;
|
|
|
|
case Builtin::BIstrlcpy:
|
|
return Builtin::BIstrlcpy;
|
|
case Builtin::BIstrlcat:
|
|
return Builtin::BIstrlcat;
|
|
|
|
case Builtin::BI__builtin_memcmp:
|
|
case Builtin::BImemcmp:
|
|
return Builtin::BImemcmp;
|
|
|
|
case Builtin::BI__builtin_strncpy:
|
|
case Builtin::BI__builtin___strncpy_chk:
|
|
case Builtin::BIstrncpy:
|
|
return Builtin::BIstrncpy;
|
|
|
|
case Builtin::BI__builtin_strncmp:
|
|
case Builtin::BIstrncmp:
|
|
return Builtin::BIstrncmp;
|
|
|
|
case Builtin::BI__builtin_strncasecmp:
|
|
case Builtin::BIstrncasecmp:
|
|
return Builtin::BIstrncasecmp;
|
|
|
|
case Builtin::BI__builtin_strncat:
|
|
case Builtin::BI__builtin___strncat_chk:
|
|
case Builtin::BIstrncat:
|
|
return Builtin::BIstrncat;
|
|
|
|
case Builtin::BI__builtin_strndup:
|
|
case Builtin::BIstrndup:
|
|
return Builtin::BIstrndup;
|
|
|
|
case Builtin::BI__builtin_strlen:
|
|
case Builtin::BIstrlen:
|
|
return Builtin::BIstrlen;
|
|
|
|
default:
|
|
if (isExternC()) {
|
|
if (FnInfo->isStr("memset"))
|
|
return Builtin::BImemset;
|
|
else if (FnInfo->isStr("memcpy"))
|
|
return Builtin::BImemcpy;
|
|
else if (FnInfo->isStr("memmove"))
|
|
return Builtin::BImemmove;
|
|
else if (FnInfo->isStr("memcmp"))
|
|
return Builtin::BImemcmp;
|
|
else if (FnInfo->isStr("strncpy"))
|
|
return Builtin::BIstrncpy;
|
|
else if (FnInfo->isStr("strncmp"))
|
|
return Builtin::BIstrncmp;
|
|
else if (FnInfo->isStr("strncasecmp"))
|
|
return Builtin::BIstrncasecmp;
|
|
else if (FnInfo->isStr("strncat"))
|
|
return Builtin::BIstrncat;
|
|
else if (FnInfo->isStr("strndup"))
|
|
return Builtin::BIstrndup;
|
|
else if (FnInfo->isStr("strlen"))
|
|
return Builtin::BIstrlen;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FieldDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, QualType T,
|
|
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
|
|
bool HasInit) {
|
|
return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
|
|
BW, Mutable, HasInit);
|
|
}
|
|
|
|
FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
|
|
return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
|
|
0, QualType(), 0, 0, false, false);
|
|
}
|
|
|
|
bool FieldDecl::isAnonymousStructOrUnion() const {
|
|
if (!isImplicit() || getDeclName())
|
|
return false;
|
|
|
|
if (const RecordType *Record = getType()->getAs<RecordType>())
|
|
return Record->getDecl()->isAnonymousStructOrUnion();
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
|
|
assert(isBitField() && "not a bitfield");
|
|
Expr *BitWidth = InitializerOrBitWidth.getPointer();
|
|
return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
|
|
}
|
|
|
|
unsigned FieldDecl::getFieldIndex() const {
|
|
if (CachedFieldIndex) return CachedFieldIndex - 1;
|
|
|
|
unsigned Index = 0;
|
|
const RecordDecl *RD = getParent();
|
|
const FieldDecl *LastFD = 0;
|
|
bool IsMsStruct = RD->hasAttr<MsStructAttr>();
|
|
|
|
for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I, ++Index) {
|
|
(*I)->CachedFieldIndex = Index + 1;
|
|
|
|
if (IsMsStruct) {
|
|
// Zero-length bitfields following non-bitfield members are ignored.
|
|
if (getASTContext().ZeroBitfieldFollowsNonBitfield((*I), LastFD)) {
|
|
--Index;
|
|
continue;
|
|
}
|
|
LastFD = (*I);
|
|
}
|
|
}
|
|
|
|
assert(CachedFieldIndex && "failed to find field in parent");
|
|
return CachedFieldIndex - 1;
|
|
}
|
|
|
|
SourceRange FieldDecl::getSourceRange() const {
|
|
if (const Expr *E = InitializerOrBitWidth.getPointer())
|
|
return SourceRange(getInnerLocStart(), E->getLocEnd());
|
|
return DeclaratorDecl::getSourceRange();
|
|
}
|
|
|
|
void FieldDecl::setInClassInitializer(Expr *Init) {
|
|
assert(!InitializerOrBitWidth.getPointer() &&
|
|
"bit width or initializer already set");
|
|
InitializerOrBitWidth.setPointer(Init);
|
|
InitializerOrBitWidth.setInt(0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TagDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SourceLocation TagDecl::getOuterLocStart() const {
|
|
return getTemplateOrInnerLocStart(this);
|
|
}
|
|
|
|
SourceRange TagDecl::getSourceRange() const {
|
|
SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
|
|
return SourceRange(getOuterLocStart(), E);
|
|
}
|
|
|
|
TagDecl* TagDecl::getCanonicalDecl() {
|
|
return getFirstDeclaration();
|
|
}
|
|
|
|
void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
|
|
TypedefNameDeclOrQualifier = TDD;
|
|
if (TypeForDecl)
|
|
const_cast<Type*>(TypeForDecl)->ClearLinkageCache();
|
|
ClearLinkageCache();
|
|
}
|
|
|
|
void TagDecl::startDefinition() {
|
|
IsBeingDefined = true;
|
|
|
|
if (isa<CXXRecordDecl>(this)) {
|
|
CXXRecordDecl *D = cast<CXXRecordDecl>(this);
|
|
struct CXXRecordDecl::DefinitionData *Data =
|
|
new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
|
|
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
|
|
cast<CXXRecordDecl>(*I)->DefinitionData = Data;
|
|
}
|
|
}
|
|
|
|
void TagDecl::completeDefinition() {
|
|
assert((!isa<CXXRecordDecl>(this) ||
|
|
cast<CXXRecordDecl>(this)->hasDefinition()) &&
|
|
"definition completed but not started");
|
|
|
|
IsCompleteDefinition = true;
|
|
IsBeingDefined = false;
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->CompletedTagDefinition(this);
|
|
}
|
|
|
|
TagDecl *TagDecl::getDefinition() const {
|
|
if (isCompleteDefinition())
|
|
return const_cast<TagDecl *>(this);
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
|
|
return CXXRD->getDefinition();
|
|
|
|
for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
|
|
R != REnd; ++R)
|
|
if (R->isCompleteDefinition())
|
|
return *R;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
|
|
if (QualifierLoc) {
|
|
// Make sure the extended qualifier info is allocated.
|
|
if (!hasExtInfo())
|
|
TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
|
|
// Set qualifier info.
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
} else {
|
|
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
|
|
if (hasExtInfo()) {
|
|
if (getExtInfo()->NumTemplParamLists == 0) {
|
|
getASTContext().Deallocate(getExtInfo());
|
|
TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
|
|
}
|
|
else
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
|
|
unsigned NumTPLists,
|
|
TemplateParameterList **TPLists) {
|
|
assert(NumTPLists > 0);
|
|
// Make sure the extended decl info is allocated.
|
|
if (!hasExtInfo())
|
|
// Allocate external info struct.
|
|
TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
|
|
// Set the template parameter lists info.
|
|
getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EnumDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void EnumDecl::anchor() { }
|
|
|
|
EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
EnumDecl *PrevDecl, bool IsScoped,
|
|
bool IsScopedUsingClassTag, bool IsFixed) {
|
|
EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
|
|
IsScoped, IsScopedUsingClassTag, IsFixed);
|
|
C.getTypeDeclType(Enum, PrevDecl);
|
|
return Enum;
|
|
}
|
|
|
|
EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
|
|
return new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), 0, 0,
|
|
false, false, false);
|
|
}
|
|
|
|
void EnumDecl::completeDefinition(QualType NewType,
|
|
QualType NewPromotionType,
|
|
unsigned NumPositiveBits,
|
|
unsigned NumNegativeBits) {
|
|
assert(!isCompleteDefinition() && "Cannot redefine enums!");
|
|
if (!IntegerType)
|
|
IntegerType = NewType.getTypePtr();
|
|
PromotionType = NewPromotionType;
|
|
setNumPositiveBits(NumPositiveBits);
|
|
setNumNegativeBits(NumNegativeBits);
|
|
TagDecl::completeDefinition();
|
|
}
|
|
|
|
TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return MSI->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
|
|
assert(MSI && "Not an instantiated member enumeration?");
|
|
MSI->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
MSI->getPointOfInstantiation().isInvalid())
|
|
MSI->setPointOfInstantiation(PointOfInstantiation);
|
|
}
|
|
|
|
EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
|
|
if (SpecializationInfo)
|
|
return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
|
|
|
|
return 0;
|
|
}
|
|
|
|
void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(!SpecializationInfo && "Member enum is already a specialization");
|
|
SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RecordDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, RecordDecl *PrevDecl)
|
|
: TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
|
|
HasFlexibleArrayMember = false;
|
|
AnonymousStructOrUnion = false;
|
|
HasObjectMember = false;
|
|
LoadedFieldsFromExternalStorage = false;
|
|
assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
|
|
}
|
|
|
|
RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, RecordDecl* PrevDecl) {
|
|
RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
|
|
PrevDecl);
|
|
C.getTypeDeclType(R, PrevDecl);
|
|
return R;
|
|
}
|
|
|
|
RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
|
|
return new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
|
|
SourceLocation(), 0, 0);
|
|
}
|
|
|
|
bool RecordDecl::isInjectedClassName() const {
|
|
return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
|
|
cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
|
|
}
|
|
|
|
RecordDecl::field_iterator RecordDecl::field_begin() const {
|
|
if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
|
|
LoadFieldsFromExternalStorage();
|
|
|
|
return field_iterator(decl_iterator(FirstDecl));
|
|
}
|
|
|
|
/// completeDefinition - Notes that the definition of this type is now
|
|
/// complete.
|
|
void RecordDecl::completeDefinition() {
|
|
assert(!isCompleteDefinition() && "Cannot redefine record!");
|
|
TagDecl::completeDefinition();
|
|
}
|
|
|
|
void RecordDecl::LoadFieldsFromExternalStorage() const {
|
|
ExternalASTSource *Source = getASTContext().getExternalSource();
|
|
assert(hasExternalLexicalStorage() && Source && "No external storage?");
|
|
|
|
// Notify that we have a RecordDecl doing some initialization.
|
|
ExternalASTSource::Deserializing TheFields(Source);
|
|
|
|
SmallVector<Decl*, 64> Decls;
|
|
LoadedFieldsFromExternalStorage = true;
|
|
switch (Source->FindExternalLexicalDeclsBy<FieldDecl>(this, Decls)) {
|
|
case ELR_Success:
|
|
break;
|
|
|
|
case ELR_AlreadyLoaded:
|
|
case ELR_Failure:
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Check that all decls we got were FieldDecls.
|
|
for (unsigned i=0, e=Decls.size(); i != e; ++i)
|
|
assert(isa<FieldDecl>(Decls[i]));
|
|
#endif
|
|
|
|
if (Decls.empty())
|
|
return;
|
|
|
|
llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
|
|
/*FieldsAlreadyLoaded=*/false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BlockDecl::setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
|
|
assert(ParamInfo == 0 && "Already has param info!");
|
|
|
|
// Zero params -> null pointer.
|
|
if (!NewParamInfo.empty()) {
|
|
NumParams = NewParamInfo.size();
|
|
ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
|
|
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
|
|
}
|
|
}
|
|
|
|
void BlockDecl::setCaptures(ASTContext &Context,
|
|
const Capture *begin,
|
|
const Capture *end,
|
|
bool capturesCXXThis) {
|
|
CapturesCXXThis = capturesCXXThis;
|
|
|
|
if (begin == end) {
|
|
NumCaptures = 0;
|
|
Captures = 0;
|
|
return;
|
|
}
|
|
|
|
NumCaptures = end - begin;
|
|
|
|
// Avoid new Capture[] because we don't want to provide a default
|
|
// constructor.
|
|
size_t allocationSize = NumCaptures * sizeof(Capture);
|
|
void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
|
|
memcpy(buffer, begin, allocationSize);
|
|
Captures = static_cast<Capture*>(buffer);
|
|
}
|
|
|
|
bool BlockDecl::capturesVariable(const VarDecl *variable) const {
|
|
for (capture_const_iterator
|
|
i = capture_begin(), e = capture_end(); i != e; ++i)
|
|
// Only auto vars can be captured, so no redeclaration worries.
|
|
if (i->getVariable() == variable)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
SourceRange BlockDecl::getSourceRange() const {
|
|
return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Decl Allocation/Deallocation Method Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TranslationUnitDecl::anchor() { }
|
|
|
|
TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
|
|
return new (C) TranslationUnitDecl(C);
|
|
}
|
|
|
|
void LabelDecl::anchor() { }
|
|
|
|
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdentL, IdentifierInfo *II) {
|
|
return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
|
|
}
|
|
|
|
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdentL, IdentifierInfo *II,
|
|
SourceLocation GnuLabelL) {
|
|
assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
|
|
return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
|
|
}
|
|
|
|
LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
|
|
return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
|
|
}
|
|
|
|
void ValueDecl::anchor() { }
|
|
|
|
void ImplicitParamDecl::anchor() { }
|
|
|
|
ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
QualType Type) {
|
|
return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
|
|
}
|
|
|
|
ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
|
|
return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass SC, StorageClass SCAsWritten,
|
|
bool isInlineSpecified,
|
|
bool hasWrittenPrototype,
|
|
bool isConstexprSpecified) {
|
|
FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
|
|
T, TInfo, SC, SCAsWritten,
|
|
isInlineSpecified,
|
|
isConstexprSpecified);
|
|
New->HasWrittenPrototype = hasWrittenPrototype;
|
|
return New;
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
|
|
return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
|
|
DeclarationNameInfo(), QualType(), 0,
|
|
SC_None, SC_None, false, false);
|
|
}
|
|
|
|
BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
|
|
return new (C) BlockDecl(DC, L);
|
|
}
|
|
|
|
BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
|
|
return new (Mem) BlockDecl(0, SourceLocation());
|
|
}
|
|
|
|
EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
|
|
SourceLocation L,
|
|
IdentifierInfo *Id, QualType T,
|
|
Expr *E, const llvm::APSInt &V) {
|
|
return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
|
|
}
|
|
|
|
EnumConstantDecl *
|
|
EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
|
|
return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
|
|
llvm::APSInt());
|
|
}
|
|
|
|
void IndirectFieldDecl::anchor() { }
|
|
|
|
IndirectFieldDecl *
|
|
IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
|
|
IdentifierInfo *Id, QualType T, NamedDecl **CH,
|
|
unsigned CHS) {
|
|
return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
|
|
}
|
|
|
|
IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
|
|
return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
|
|
QualType(), 0, 0);
|
|
}
|
|
|
|
SourceRange EnumConstantDecl::getSourceRange() const {
|
|
SourceLocation End = getLocation();
|
|
if (Init)
|
|
End = Init->getLocEnd();
|
|
return SourceRange(getLocation(), End);
|
|
}
|
|
|
|
void TypeDecl::anchor() { }
|
|
|
|
TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, TypeSourceInfo *TInfo) {
|
|
return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
|
|
}
|
|
|
|
void TypedefNameDecl::anchor() { }
|
|
|
|
TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
|
|
return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
|
|
}
|
|
|
|
TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
TypeSourceInfo *TInfo) {
|
|
return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
|
|
}
|
|
|
|
TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
|
|
return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
|
|
}
|
|
|
|
SourceRange TypedefDecl::getSourceRange() const {
|
|
SourceLocation RangeEnd = getLocation();
|
|
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
|
|
if (typeIsPostfix(TInfo->getType()))
|
|
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
|
|
}
|
|
return SourceRange(getLocStart(), RangeEnd);
|
|
}
|
|
|
|
SourceRange TypeAliasDecl::getSourceRange() const {
|
|
SourceLocation RangeEnd = getLocStart();
|
|
if (TypeSourceInfo *TInfo = getTypeSourceInfo())
|
|
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
|
|
return SourceRange(getLocStart(), RangeEnd);
|
|
}
|
|
|
|
void FileScopeAsmDecl::anchor() { }
|
|
|
|
FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
|
|
StringLiteral *Str,
|
|
SourceLocation AsmLoc,
|
|
SourceLocation RParenLoc) {
|
|
return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
|
|
}
|
|
|
|
FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
|
|
return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ImportDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Retrieve the number of module identifiers needed to name the given
|
|
/// module.
|
|
static unsigned getNumModuleIdentifiers(Module *Mod) {
|
|
unsigned Result = 1;
|
|
while (Mod->Parent) {
|
|
Mod = Mod->Parent;
|
|
++Result;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
|
|
Module *Imported,
|
|
ArrayRef<SourceLocation> IdentifierLocs)
|
|
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
|
|
NextLocalImport()
|
|
{
|
|
assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
|
|
SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
|
|
memcpy(StoredLocs, IdentifierLocs.data(),
|
|
IdentifierLocs.size() * sizeof(SourceLocation));
|
|
}
|
|
|
|
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
|
|
Module *Imported, SourceLocation EndLoc)
|
|
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
|
|
NextLocalImport()
|
|
{
|
|
*reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
|
|
}
|
|
|
|
ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, Module *Imported,
|
|
ArrayRef<SourceLocation> IdentifierLocs) {
|
|
void *Mem = C.Allocate(sizeof(ImportDecl) +
|
|
IdentifierLocs.size() * sizeof(SourceLocation));
|
|
return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
|
|
}
|
|
|
|
ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
Module *Imported,
|
|
SourceLocation EndLoc) {
|
|
void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
|
|
ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
|
|
Import->setImplicit();
|
|
return Import;
|
|
}
|
|
|
|
ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumLocations) {
|
|
void *Mem = AllocateDeserializedDecl(C, ID,
|
|
(sizeof(ImportDecl) +
|
|
NumLocations * sizeof(SourceLocation)));
|
|
return new (Mem) ImportDecl(EmptyShell());
|
|
}
|
|
|
|
ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
|
|
if (!ImportedAndComplete.getInt())
|
|
return ArrayRef<SourceLocation>();
|
|
|
|
const SourceLocation *StoredLocs
|
|
= reinterpret_cast<const SourceLocation *>(this + 1);
|
|
return ArrayRef<SourceLocation>(StoredLocs,
|
|
getNumModuleIdentifiers(getImportedModule()));
|
|
}
|
|
|
|
SourceRange ImportDecl::getSourceRange() const {
|
|
if (!ImportedAndComplete.getInt())
|
|
return SourceRange(getLocation(),
|
|
*reinterpret_cast<const SourceLocation *>(this + 1));
|
|
|
|
return SourceRange(getLocation(), getIdentifierLocs().back());
|
|
}
|