1743 lines
63 KiB
C++
1743 lines
63 KiB
C++
/////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// (C) Copyright Ion Gaztanaga 2007-2012
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// See http://www.boost.org/libs/intrusive for documentation.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef BOOST_INTRUSIVE_TREE_ALGORITHMS_HPP
|
|
#define BOOST_INTRUSIVE_TREE_ALGORITHMS_HPP
|
|
|
|
#include <boost/intrusive/detail/config_begin.hpp>
|
|
#include <boost/intrusive/detail/assert.hpp>
|
|
#include <boost/intrusive/intrusive_fwd.hpp>
|
|
#include <cstddef>
|
|
#include <boost/intrusive/detail/utilities.hpp>
|
|
#include <boost/intrusive/pointer_traits.hpp>
|
|
|
|
namespace boost {
|
|
namespace intrusive {
|
|
namespace detail {
|
|
|
|
//! This is an implementation of a binary search tree.
|
|
//! A node in the search tree has references to its children and its parent. This
|
|
//! is to allow traversal of the whole tree from a given node making the
|
|
//! implementation of iterator a pointer to a node.
|
|
//! At the top of the tree a node is used specially. This node's parent pointer
|
|
//! is pointing to the root of the tree. Its left pointer points to the
|
|
//! leftmost node in the tree and the right pointer to the rightmost one.
|
|
//! This node is used to represent the end-iterator.
|
|
//!
|
|
//! +---------+
|
|
//! header------------------------------>| |
|
|
//! | |
|
|
//! +----------(left)--------| |--------(right)---------+
|
|
//! | +---------+ |
|
|
//! | | |
|
|
//! | | (parent) |
|
|
//! | | |
|
|
//! | | |
|
|
//! | +---------+ |
|
|
//! root of tree ..|......................> | | |
|
|
//! | | D | |
|
|
//! | | | |
|
|
//! | +-------+---------+-------+ |
|
|
//! | | | |
|
|
//! | | | |
|
|
//! | | | |
|
|
//! | | | |
|
|
//! | | | |
|
|
//! | +---------+ +---------+ |
|
|
//! | | | | | |
|
|
//! | | B | | F | |
|
|
//! | | | | | |
|
|
//! | +--+---------+--+ +--+---------+--+ |
|
|
//! | | | | | |
|
|
//! | | | | | |
|
|
//! | | | | | |
|
|
//! | +---+-----+ +-----+---+ +---+-----+ +-----+---+ |
|
|
//! +-->| | | | | | | |<--+
|
|
//! | A | | C | | E | | G |
|
|
//! | | | | | | | |
|
|
//! +---------+ +---------+ +---------+ +---------+
|
|
//!
|
|
|
|
//! tree_algorithms is configured with a NodeTraits class, which encapsulates the
|
|
//! information about the node to be manipulated. NodeTraits must support the
|
|
//! following interface:
|
|
//!
|
|
//! <b>Typedefs</b>:
|
|
//!
|
|
//! <tt>node</tt>: The type of the node that forms the circular list
|
|
//!
|
|
//! <tt>node_ptr</tt>: A pointer to a node
|
|
//!
|
|
//! <tt>const_node_ptr</tt>: A pointer to a const node
|
|
//!
|
|
//! <b>Static functions</b>:
|
|
//!
|
|
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
|
|
//!
|
|
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
|
|
//!
|
|
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
|
|
//!
|
|
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
|
|
//!
|
|
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
|
|
//!
|
|
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
|
|
template<class NodeTraits>
|
|
class tree_algorithms
|
|
{
|
|
public:
|
|
typedef typename NodeTraits::node node;
|
|
typedef NodeTraits node_traits;
|
|
typedef typename NodeTraits::node_ptr node_ptr;
|
|
typedef typename NodeTraits::const_node_ptr const_node_ptr;
|
|
|
|
//! This type is the information that will be filled by insert_unique_check
|
|
struct insert_commit_data
|
|
{
|
|
insert_commit_data()
|
|
: link_left(false)
|
|
, node()
|
|
{}
|
|
bool link_left;
|
|
node_ptr node;
|
|
};
|
|
|
|
struct nop_erase_fixup
|
|
{
|
|
void operator()(const node_ptr&, const node_ptr&){}
|
|
};
|
|
|
|
/// @cond
|
|
private:
|
|
template<class Disposer>
|
|
struct dispose_subtree_disposer
|
|
{
|
|
dispose_subtree_disposer(Disposer &disp, const node_ptr & subtree)
|
|
: disposer_(&disp), subtree_(subtree)
|
|
{}
|
|
|
|
void release()
|
|
{ disposer_ = 0; }
|
|
|
|
~dispose_subtree_disposer()
|
|
{
|
|
if(disposer_){
|
|
dispose_subtree(subtree_, *disposer_);
|
|
}
|
|
}
|
|
Disposer *disposer_;
|
|
node_ptr subtree_;
|
|
};
|
|
|
|
static node_ptr uncast(const const_node_ptr & ptr)
|
|
{ return pointer_traits<node_ptr>::const_cast_from(ptr); }
|
|
|
|
/// @endcond
|
|
|
|
public:
|
|
static node_ptr begin_node(const const_node_ptr & header)
|
|
{ return node_traits::get_left(header); }
|
|
|
|
static node_ptr end_node(const const_node_ptr & header)
|
|
{ return uncast(header); }
|
|
|
|
//! <b>Requires</b>: 'node' is a node of the tree or an node initialized
|
|
//! by init(...) or init_node.
|
|
//!
|
|
//! <b>Effects</b>: Returns true if the node is initialized by init() or init_node().
|
|
//!
|
|
//! <b>Complexity</b>: Constant time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool unique(const const_node_ptr & node)
|
|
{ return !NodeTraits::get_parent(node); }
|
|
|
|
static node_ptr get_header(const const_node_ptr & node)
|
|
{
|
|
node_ptr h = uncast(node);
|
|
if(NodeTraits::get_parent(node)){
|
|
h = NodeTraits::get_parent(node);
|
|
while(!is_header(h))
|
|
h = NodeTraits::get_parent(h);
|
|
}
|
|
return h;
|
|
}
|
|
|
|
//! <b>Requires</b>: node1 and node2 can't be header nodes
|
|
//! of two trees.
|
|
//!
|
|
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
|
|
//! in the position node2 before the function. node2 will be inserted in the
|
|
//! position node1 had before the function.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Note</b>: This function will break container ordering invariants if
|
|
//! node1 and node2 are not equivalent according to the ordering rules.
|
|
//!
|
|
//!Experimental function
|
|
static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
|
|
{
|
|
if(node1 == node2)
|
|
return;
|
|
|
|
node_ptr header1(get_header(node1)), header2(get_header(node2));
|
|
swap_nodes(node1, header1, node2, header2);
|
|
}
|
|
|
|
//! <b>Requires</b>: node1 and node2 can't be header nodes
|
|
//! of two trees with header header1 and header2.
|
|
//!
|
|
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
|
|
//! in the position node2 before the function. node2 will be inserted in the
|
|
//! position node1 had before the function.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Note</b>: This function will break container ordering invariants if
|
|
//! node1 and node2 are not equivalent according to the ordering rules.
|
|
//!
|
|
//!Experimental function
|
|
static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
|
|
{
|
|
if(node1 == node2)
|
|
return;
|
|
|
|
//node1 and node2 must not be header nodes
|
|
//BOOST_INTRUSIVE_INVARIANT_ASSERT((header1 != node1 && header2 != node2));
|
|
if(header1 != header2){
|
|
//Update header1 if necessary
|
|
if(node1 == NodeTraits::get_left(header1)){
|
|
NodeTraits::set_left(header1, node2);
|
|
}
|
|
|
|
if(node1 == NodeTraits::get_right(header1)){
|
|
NodeTraits::set_right(header1, node2);
|
|
}
|
|
|
|
if(node1 == NodeTraits::get_parent(header1)){
|
|
NodeTraits::set_parent(header1, node2);
|
|
}
|
|
|
|
//Update header2 if necessary
|
|
if(node2 == NodeTraits::get_left(header2)){
|
|
NodeTraits::set_left(header2, node1);
|
|
}
|
|
|
|
if(node2 == NodeTraits::get_right(header2)){
|
|
NodeTraits::set_right(header2, node1);
|
|
}
|
|
|
|
if(node2 == NodeTraits::get_parent(header2)){
|
|
NodeTraits::set_parent(header2, node1);
|
|
}
|
|
}
|
|
else{
|
|
//If both nodes are from the same tree
|
|
//Update header if necessary
|
|
if(node1 == NodeTraits::get_left(header1)){
|
|
NodeTraits::set_left(header1, node2);
|
|
}
|
|
else if(node2 == NodeTraits::get_left(header2)){
|
|
NodeTraits::set_left(header2, node1);
|
|
}
|
|
|
|
if(node1 == NodeTraits::get_right(header1)){
|
|
NodeTraits::set_right(header1, node2);
|
|
}
|
|
else if(node2 == NodeTraits::get_right(header2)){
|
|
NodeTraits::set_right(header2, node1);
|
|
}
|
|
|
|
if(node1 == NodeTraits::get_parent(header1)){
|
|
NodeTraits::set_parent(header1, node2);
|
|
}
|
|
else if(node2 == NodeTraits::get_parent(header2)){
|
|
NodeTraits::set_parent(header2, node1);
|
|
}
|
|
|
|
//Adjust data in nodes to be swapped
|
|
//so that final link swap works as expected
|
|
if(node1 == NodeTraits::get_parent(node2)){
|
|
NodeTraits::set_parent(node2, node2);
|
|
|
|
if(node2 == NodeTraits::get_right(node1)){
|
|
NodeTraits::set_right(node1, node1);
|
|
}
|
|
else{
|
|
NodeTraits::set_left(node1, node1);
|
|
}
|
|
}
|
|
else if(node2 == NodeTraits::get_parent(node1)){
|
|
NodeTraits::set_parent(node1, node1);
|
|
|
|
if(node1 == NodeTraits::get_right(node2)){
|
|
NodeTraits::set_right(node2, node2);
|
|
}
|
|
else{
|
|
NodeTraits::set_left(node2, node2);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Now swap all the links
|
|
node_ptr temp;
|
|
//swap left link
|
|
temp = NodeTraits::get_left(node1);
|
|
NodeTraits::set_left(node1, NodeTraits::get_left(node2));
|
|
NodeTraits::set_left(node2, temp);
|
|
//swap right link
|
|
temp = NodeTraits::get_right(node1);
|
|
NodeTraits::set_right(node1, NodeTraits::get_right(node2));
|
|
NodeTraits::set_right(node2, temp);
|
|
//swap parent link
|
|
temp = NodeTraits::get_parent(node1);
|
|
NodeTraits::set_parent(node1, NodeTraits::get_parent(node2));
|
|
NodeTraits::set_parent(node2, temp);
|
|
|
|
//Now adjust adjacent nodes for newly inserted node 1
|
|
if((temp = NodeTraits::get_left(node1))){
|
|
NodeTraits::set_parent(temp, node1);
|
|
}
|
|
if((temp = NodeTraits::get_right(node1))){
|
|
NodeTraits::set_parent(temp, node1);
|
|
}
|
|
if((temp = NodeTraits::get_parent(node1)) &&
|
|
//The header has been already updated so avoid it
|
|
temp != header2){
|
|
if(NodeTraits::get_left(temp) == node2){
|
|
NodeTraits::set_left(temp, node1);
|
|
}
|
|
if(NodeTraits::get_right(temp) == node2){
|
|
NodeTraits::set_right(temp, node1);
|
|
}
|
|
}
|
|
//Now adjust adjacent nodes for newly inserted node 2
|
|
if((temp = NodeTraits::get_left(node2))){
|
|
NodeTraits::set_parent(temp, node2);
|
|
}
|
|
if((temp = NodeTraits::get_right(node2))){
|
|
NodeTraits::set_parent(temp, node2);
|
|
}
|
|
if((temp = NodeTraits::get_parent(node2)) &&
|
|
//The header has been already updated so avoid it
|
|
temp != header1){
|
|
if(NodeTraits::get_left(temp) == node1){
|
|
NodeTraits::set_left(temp, node2);
|
|
}
|
|
if(NodeTraits::get_right(temp) == node1){
|
|
NodeTraits::set_right(temp, node2);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
|
|
//! and new_node must not be inserted in a tree.
|
|
//!
|
|
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
|
|
//! tree with new_node. The tree does not need to be rebalanced
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Note</b>: This function will break container ordering invariants if
|
|
//! new_node is not equivalent to node_to_be_replaced according to the
|
|
//! ordering rules. This function is faster than erasing and inserting
|
|
//! the node, since no rebalancing and comparison is needed.
|
|
//!
|
|
//!Experimental function
|
|
static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
|
|
{
|
|
if(node_to_be_replaced == new_node)
|
|
return;
|
|
replace_node(node_to_be_replaced, get_header(node_to_be_replaced), new_node);
|
|
}
|
|
|
|
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
|
|
//! with header "header" and new_node must not be inserted in a tree.
|
|
//!
|
|
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
|
|
//! tree with new_node. The tree does not need to be rebalanced
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Note</b>: This function will break container ordering invariants if
|
|
//! new_node is not equivalent to node_to_be_replaced according to the
|
|
//! ordering rules. This function is faster than erasing and inserting
|
|
//! the node, since no rebalancing or comparison is needed.
|
|
//!
|
|
//!Experimental function
|
|
static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
|
|
{
|
|
if(node_to_be_replaced == new_node)
|
|
return;
|
|
|
|
//Update header if necessary
|
|
if(node_to_be_replaced == NodeTraits::get_left(header)){
|
|
NodeTraits::set_left(header, new_node);
|
|
}
|
|
|
|
if(node_to_be_replaced == NodeTraits::get_right(header)){
|
|
NodeTraits::set_right(header, new_node);
|
|
}
|
|
|
|
if(node_to_be_replaced == NodeTraits::get_parent(header)){
|
|
NodeTraits::set_parent(header, new_node);
|
|
}
|
|
|
|
//Now set data from the original node
|
|
node_ptr temp;
|
|
NodeTraits::set_left(new_node, NodeTraits::get_left(node_to_be_replaced));
|
|
NodeTraits::set_right(new_node, NodeTraits::get_right(node_to_be_replaced));
|
|
NodeTraits::set_parent(new_node, NodeTraits::get_parent(node_to_be_replaced));
|
|
|
|
//Now adjust adjacent nodes for newly inserted node
|
|
if((temp = NodeTraits::get_left(new_node))){
|
|
NodeTraits::set_parent(temp, new_node);
|
|
}
|
|
if((temp = NodeTraits::get_right(new_node))){
|
|
NodeTraits::set_parent(temp, new_node);
|
|
}
|
|
if((temp = NodeTraits::get_parent(new_node)) &&
|
|
//The header has been already updated so avoid it
|
|
temp != header){
|
|
if(NodeTraits::get_left(temp) == node_to_be_replaced){
|
|
NodeTraits::set_left(temp, new_node);
|
|
}
|
|
if(NodeTraits::get_right(temp) == node_to_be_replaced){
|
|
NodeTraits::set_right(temp, new_node);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! <b>Requires</b>: 'node' is a node from the tree except the header.
|
|
//!
|
|
//! <b>Effects</b>: Returns the next node of the tree.
|
|
//!
|
|
//! <b>Complexity</b>: Average constant time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr next_node(const node_ptr & node)
|
|
{
|
|
node_ptr p_right(NodeTraits::get_right(node));
|
|
if(p_right){
|
|
return minimum(p_right);
|
|
}
|
|
else {
|
|
node_ptr p(node);
|
|
node_ptr x = NodeTraits::get_parent(p);
|
|
while(p == NodeTraits::get_right(x)){
|
|
p = x;
|
|
x = NodeTraits::get_parent(x);
|
|
}
|
|
return NodeTraits::get_right(p) != x ? x : uncast(p);
|
|
}
|
|
}
|
|
|
|
//! <b>Requires</b>: 'node' is a node from the tree except the leftmost node.
|
|
//!
|
|
//! <b>Effects</b>: Returns the previous node of the tree.
|
|
//!
|
|
//! <b>Complexity</b>: Average constant time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr prev_node(const node_ptr & node)
|
|
{
|
|
if(is_header(node)){
|
|
return NodeTraits::get_right(node);
|
|
//return maximum(NodeTraits::get_parent(node));
|
|
}
|
|
else if(NodeTraits::get_left(node)){
|
|
return maximum(NodeTraits::get_left(node));
|
|
}
|
|
else {
|
|
node_ptr p(node);
|
|
node_ptr x = NodeTraits::get_parent(p);
|
|
while(p == NodeTraits::get_left(x)){
|
|
p = x;
|
|
x = NodeTraits::get_parent(x);
|
|
}
|
|
return x;
|
|
}
|
|
}
|
|
|
|
//! <b>Requires</b>: 'node' is a node of a tree but not the header.
|
|
//!
|
|
//! <b>Effects</b>: Returns the minimum node of the subtree starting at p.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic to the size of the subtree.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr minimum (node_ptr node)
|
|
{
|
|
for(node_ptr p_left = NodeTraits::get_left(node)
|
|
;p_left
|
|
;p_left = NodeTraits::get_left(node)){
|
|
node = p_left;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
//! <b>Requires</b>: 'node' is a node of a tree but not the header.
|
|
//!
|
|
//! <b>Effects</b>: Returns the maximum node of the subtree starting at p.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic to the size of the subtree.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr maximum(node_ptr node)
|
|
{
|
|
for(node_ptr p_right = NodeTraits::get_right(node)
|
|
;p_right
|
|
;p_right = NodeTraits::get_right(node)){
|
|
node = p_right;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
//! <b>Requires</b>: 'node' must not be part of any tree.
|
|
//!
|
|
//! <b>Effects</b>: After the function unique(node) == true.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
|
|
static void init(const node_ptr & node)
|
|
{
|
|
NodeTraits::set_parent(node, node_ptr());
|
|
NodeTraits::set_left(node, node_ptr());
|
|
NodeTraits::set_right(node, node_ptr());
|
|
};
|
|
|
|
//! <b>Effects</b>: Returns true if node is in the same state as if called init(node)
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool inited(const const_node_ptr & node)
|
|
{
|
|
return !NodeTraits::get_parent(node) &&
|
|
!NodeTraits::get_left(node) &&
|
|
!NodeTraits::get_right(node) ;
|
|
};
|
|
|
|
//! <b>Requires</b>: node must not be part of any tree.
|
|
//!
|
|
//! <b>Effects</b>: Initializes the header to represent an empty tree.
|
|
//! unique(header) == true.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
|
|
static void init_header(const node_ptr & header)
|
|
{
|
|
NodeTraits::set_parent(header, node_ptr());
|
|
NodeTraits::set_left(header, header);
|
|
NodeTraits::set_right(header, header);
|
|
}
|
|
|
|
//! <b>Requires</b>: "disposer" must be an object function
|
|
//! taking a node_ptr parameter and shouldn't throw.
|
|
//!
|
|
//! <b>Effects</b>: Empties the target tree calling
|
|
//! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
|
|
//! except the header.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
|
|
//! number of elements of tree target tree when calling this function.
|
|
//!
|
|
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
|
|
template<class Disposer>
|
|
static void clear_and_dispose(const node_ptr & header, Disposer disposer)
|
|
{
|
|
node_ptr source_root = NodeTraits::get_parent(header);
|
|
if(!source_root)
|
|
return;
|
|
dispose_subtree(source_root, disposer);
|
|
init_header(header);
|
|
}
|
|
|
|
//! <b>Requires</b>: header is the header of a tree.
|
|
//!
|
|
//! <b>Effects</b>: Unlinks the leftmost node from the tree, and
|
|
//! updates the header link to the new leftmost node.
|
|
//!
|
|
//! <b>Complexity</b>: Average complexity is constant time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Notes</b>: This function breaks the tree and the tree can
|
|
//! only be used for more unlink_leftmost_without_rebalance calls.
|
|
//! This function is normally used to achieve a step by step
|
|
//! controlled destruction of the tree.
|
|
static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header)
|
|
{
|
|
node_ptr leftmost = NodeTraits::get_left(header);
|
|
if (leftmost == header)
|
|
return node_ptr();
|
|
node_ptr leftmost_parent(NodeTraits::get_parent(leftmost));
|
|
node_ptr leftmost_right (NodeTraits::get_right(leftmost));
|
|
bool is_root = leftmost_parent == header;
|
|
|
|
if (leftmost_right){
|
|
NodeTraits::set_parent(leftmost_right, leftmost_parent);
|
|
NodeTraits::set_left(header, tree_algorithms::minimum(leftmost_right));
|
|
|
|
if (is_root)
|
|
NodeTraits::set_parent(header, leftmost_right);
|
|
else
|
|
NodeTraits::set_left(NodeTraits::get_parent(header), leftmost_right);
|
|
}
|
|
else if (is_root){
|
|
NodeTraits::set_parent(header, node_ptr());
|
|
NodeTraits::set_left(header, header);
|
|
NodeTraits::set_right(header, header);
|
|
}
|
|
else{
|
|
NodeTraits::set_left(leftmost_parent, node_ptr());
|
|
NodeTraits::set_left(header, leftmost_parent);
|
|
}
|
|
return leftmost;
|
|
}
|
|
|
|
//! <b>Requires</b>: node is a node of the tree but it's not the header.
|
|
//!
|
|
//! <b>Effects</b>: Returns the number of nodes of the subtree.
|
|
//!
|
|
//! <b>Complexity</b>: Linear time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static std::size_t count(const const_node_ptr & subtree)
|
|
{
|
|
if(!subtree) return 0;
|
|
std::size_t count = 0;
|
|
node_ptr p = minimum(uncast(subtree));
|
|
bool continue_looping = true;
|
|
while(continue_looping){
|
|
++count;
|
|
node_ptr p_right(NodeTraits::get_right(p));
|
|
if(p_right){
|
|
p = minimum(p_right);
|
|
}
|
|
else {
|
|
for(;;){
|
|
node_ptr q;
|
|
if (p == subtree){
|
|
continue_looping = false;
|
|
break;
|
|
}
|
|
q = p;
|
|
p = NodeTraits::get_parent(p);
|
|
if (NodeTraits::get_left(p) == q)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
//! <b>Requires</b>: node is a node of the tree but it's not the header.
|
|
//!
|
|
//! <b>Effects</b>: Returns the number of nodes of the subtree.
|
|
//!
|
|
//! <b>Complexity</b>: Linear time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static std::size_t size(const const_node_ptr & header)
|
|
{
|
|
node_ptr beg(begin_node(header));
|
|
node_ptr end(end_node(header));
|
|
std::size_t i = 0;
|
|
for(;beg != end; beg = next_node(beg)) ++i;
|
|
return i;
|
|
}
|
|
|
|
//! <b>Requires</b>: header1 and header2 must be the header nodes
|
|
//! of two trees.
|
|
//!
|
|
//! <b>Effects</b>: Swaps two trees. After the function header1 will contain
|
|
//! links to the second tree and header2 will have links to the first tree.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void swap_tree(const node_ptr & header1, const node_ptr & header2)
|
|
{
|
|
if(header1 == header2)
|
|
return;
|
|
|
|
node_ptr tmp;
|
|
|
|
//Parent swap
|
|
tmp = NodeTraits::get_parent(header1);
|
|
NodeTraits::set_parent(header1, NodeTraits::get_parent(header2));
|
|
NodeTraits::set_parent(header2, tmp);
|
|
//Left swap
|
|
tmp = NodeTraits::get_left(header1);
|
|
NodeTraits::set_left(header1, NodeTraits::get_left(header2));
|
|
NodeTraits::set_left(header2, tmp);
|
|
//Right swap
|
|
tmp = NodeTraits::get_right(header1);
|
|
NodeTraits::set_right(header1, NodeTraits::get_right(header2));
|
|
NodeTraits::set_right(header2, tmp);
|
|
|
|
//Now test parent
|
|
node_ptr h1_parent(NodeTraits::get_parent(header1));
|
|
if(h1_parent){
|
|
NodeTraits::set_parent(h1_parent, header1);
|
|
}
|
|
else{
|
|
NodeTraits::set_left(header1, header1);
|
|
NodeTraits::set_right(header1, header1);
|
|
}
|
|
|
|
node_ptr h2_parent(NodeTraits::get_parent(header2));
|
|
if(h2_parent){
|
|
NodeTraits::set_parent(h2_parent, header2);
|
|
}
|
|
else{
|
|
NodeTraits::set_left(header2, header2);
|
|
NodeTraits::set_right(header2, header2);
|
|
}
|
|
}
|
|
|
|
static bool is_header(const const_node_ptr & p)
|
|
{
|
|
node_ptr p_left (NodeTraits::get_left(p));
|
|
node_ptr p_right(NodeTraits::get_right(p));
|
|
if(!NodeTraits::get_parent(p) || //Header condition when empty tree
|
|
(p_left && p_right && //Header always has leftmost and rightmost
|
|
(p_left == p_right || //Header condition when only node
|
|
(NodeTraits::get_parent(p_left) != p ||
|
|
NodeTraits::get_parent(p_right) != p ))
|
|
//When tree size > 1 headers can't be leftmost's
|
|
//and rightmost's parent
|
|
)){
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! KeyNodePtrCompare is a function object that induces a strict weak
|
|
//! ordering compatible with the strict weak ordering used to create the
|
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
|
|
//!
|
|
//! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
|
|
//! "key" according to "comp" or "header" if that element does not exist.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: If "comp" throws.
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static node_ptr find
|
|
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
|
|
{
|
|
node_ptr end = uncast(header);
|
|
node_ptr y = lower_bound(header, key, comp);
|
|
return (y == end || comp(key, y)) ? end : y;
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! KeyNodePtrCompare is a function object that induces a strict weak
|
|
//! ordering compatible with the strict weak ordering used to create the
|
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
|
|
//! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If
|
|
//! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false.
|
|
//!
|
|
//! <b>Effects</b>: Returns an a pair with the following criteria:
|
|
//!
|
|
//! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
|
|
//!
|
|
//! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: If "comp" throws.
|
|
//!
|
|
//! <b>Note</b>: This function can be more efficient than calling upper_bound
|
|
//! and lower_bound for lower_key and upper_key.
|
|
template< class KeyType, class KeyNodePtrCompare>
|
|
static std::pair<node_ptr, node_ptr> bounded_range
|
|
( const const_node_ptr & header
|
|
, const KeyType &lower_key
|
|
, const KeyType &upper_key
|
|
, KeyNodePtrCompare comp
|
|
, bool left_closed
|
|
, bool right_closed)
|
|
{
|
|
node_ptr y = uncast(header);
|
|
node_ptr x = NodeTraits::get_parent(header);
|
|
|
|
while(x){
|
|
//If x is less than lower_key the target
|
|
//range is on the right part
|
|
if(comp(x, lower_key)){
|
|
//Check for invalid input range
|
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(comp(x, upper_key));
|
|
x = NodeTraits::get_right(x);
|
|
}
|
|
//If the upper_key is less than x, the target
|
|
//range is on the left part
|
|
else if(comp(upper_key, x)){
|
|
//y > upper_key
|
|
y = x;
|
|
x = NodeTraits::get_left(x);
|
|
}
|
|
else{
|
|
//x is inside the bounded range( x >= lower_key && x <= upper_key),
|
|
//so we must split lower and upper searches
|
|
//
|
|
//Sanity check: if lower_key and upper_key are equal, then both left_closed and right_closed can't be false
|
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(left_closed || right_closed || comp(lower_key, x) || comp(x, upper_key));
|
|
return std::pair<node_ptr,node_ptr>(
|
|
left_closed
|
|
//If left_closed, then comp(x, lower_key) is already the lower_bound
|
|
//condition so we save one comparison and go to the next level
|
|
//following traditional lower_bound algo
|
|
? lower_bound_loop(NodeTraits::get_left(x), x, lower_key, comp)
|
|
//If left-open, comp(x, lower_key) is not the upper_bound algo
|
|
//condition so we must recheck current 'x' node with upper_bound algo
|
|
: upper_bound_loop(x, y, lower_key, comp)
|
|
,
|
|
right_closed
|
|
//If right_closed, then comp(upper_key, x) is already the upper_bound
|
|
//condition so we can save one comparison and go to the next level
|
|
//following lower_bound algo
|
|
? upper_bound_loop(NodeTraits::get_right(x), y, upper_key, comp)
|
|
//If right-open, comp(upper_key, x) is not the lower_bound algo
|
|
//condition so we must recheck current 'x' node with lower_bound algo
|
|
: lower_bound_loop(x, y, upper_key, comp)
|
|
);
|
|
}
|
|
}
|
|
return std::pair<node_ptr,node_ptr> (y, y);
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! KeyNodePtrCompare is a function object that induces a strict weak
|
|
//! ordering compatible with the strict weak ordering used to create the
|
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
|
|
//!
|
|
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
|
|
//! all elements that are equivalent to "key" according to "comp" or an
|
|
//! empty range that indicates the position where those elements would be
|
|
//! if there are no equivalent elements.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: If "comp" throws.
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static std::pair<node_ptr, node_ptr> equal_range
|
|
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
|
|
{
|
|
return bounded_range(header, key, key, comp, true, true);
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! KeyNodePtrCompare is a function object that induces a strict weak
|
|
//! ordering compatible with the strict weak ordering used to create the
|
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
|
|
//!
|
|
//! <b>Effects</b>: Returns an node_ptr to the first element that is
|
|
//! not less than "key" according to "comp" or "header" if that element does
|
|
//! not exist.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: If "comp" throws.
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static node_ptr lower_bound
|
|
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
|
|
{
|
|
return lower_bound_loop(NodeTraits::get_parent(header), uncast(header), key, comp);
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! KeyNodePtrCompare is a function object that induces a strict weak
|
|
//! ordering compatible with the strict weak ordering used to create the
|
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
|
|
//!
|
|
//! <b>Effects</b>: Returns an node_ptr to the first element that is greater
|
|
//! than "key" according to "comp" or "header" if that element does not exist.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: If "comp" throws.
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static node_ptr upper_bound
|
|
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
|
|
{
|
|
return upper_bound_loop(NodeTraits::get_parent(header), uncast(header), key, comp);
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! "commit_data" must have been obtained from a previous call to
|
|
//! "insert_unique_check". No objects should have been inserted or erased
|
|
//! from the set between the "insert_unique_check" that filled "commit_data"
|
|
//! and the call to "insert_commit".
|
|
//!
|
|
//!
|
|
//! <b>Effects</b>: Inserts new_node in the set using the information obtained
|
|
//! from the "commit_data" that a previous "insert_check" filled.
|
|
//!
|
|
//! <b>Complexity</b>: Constant time.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
|
|
//! previously executed to fill "commit_data". No value should be inserted or
|
|
//! erased between the "insert_check" and "insert_commit" calls.
|
|
static void insert_unique_commit
|
|
(const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
|
|
{ return insert_commit(header, new_value, commit_data); }
|
|
|
|
static void insert_commit
|
|
(const node_ptr & header, const node_ptr & new_node, const insert_commit_data &commit_data)
|
|
{
|
|
//Check if commit_data has not been initialized by a insert_unique_check call.
|
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(commit_data.node != node_ptr());
|
|
node_ptr parent_node(commit_data.node);
|
|
if(parent_node == header){
|
|
NodeTraits::set_parent(header, new_node);
|
|
NodeTraits::set_right(header, new_node);
|
|
NodeTraits::set_left(header, new_node);
|
|
}
|
|
else if(commit_data.link_left){
|
|
NodeTraits::set_left(parent_node, new_node);
|
|
if(parent_node == NodeTraits::get_left(header))
|
|
NodeTraits::set_left(header, new_node);
|
|
}
|
|
else{
|
|
NodeTraits::set_right(parent_node, new_node);
|
|
if(parent_node == NodeTraits::get_right(header))
|
|
NodeTraits::set_right(header, new_node);
|
|
}
|
|
NodeTraits::set_parent(new_node, parent_node);
|
|
NodeTraits::set_right(new_node, node_ptr());
|
|
NodeTraits::set_left(new_node, node_ptr());
|
|
}
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree.
|
|
//! KeyNodePtrCompare is a function object that induces a strict weak
|
|
//! ordering compatible with the strict weak ordering used to create the
|
|
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
|
|
//!
|
|
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
|
|
//! tree according to "comp" and obtains the needed information to realize
|
|
//! a constant-time node insertion if there is no equivalent node.
|
|
//!
|
|
//! <b>Returns</b>: If there is an equivalent value
|
|
//! returns a pair containing a node_ptr to the already present node
|
|
//! and false. If there is not equivalent key can be inserted returns true
|
|
//! in the returned pair's boolean and fills "commit_data" that is meant to
|
|
//! be used with the "insert_commit" function to achieve a constant-time
|
|
//! insertion function.
|
|
//!
|
|
//! <b>Complexity</b>: Average complexity is at most logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: If "comp" throws.
|
|
//!
|
|
//! <b>Notes</b>: This function is used to improve performance when constructing
|
|
//! a node is expensive and the user does not want to have two equivalent nodes
|
|
//! in the tree: if there is an equivalent value
|
|
//! the constructed object must be discarded. Many times, the part of the
|
|
//! node that is used to impose the order is much cheaper to construct
|
|
//! than the node and this function offers the possibility to use that part
|
|
//! to check if the insertion will be successful.
|
|
//!
|
|
//! If the check is successful, the user can construct the node and use
|
|
//! "insert_commit" to insert the node in constant-time. This gives a total
|
|
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
|
|
//!
|
|
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
|
|
//! if no more objects are inserted or erased from the set.
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static std::pair<node_ptr, bool> insert_unique_check
|
|
(const const_node_ptr & header, const KeyType &key
|
|
,KeyNodePtrCompare comp, insert_commit_data &commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
std::size_t depth = 0;
|
|
node_ptr h(uncast(header));
|
|
node_ptr y(h);
|
|
node_ptr x(NodeTraits::get_parent(y));
|
|
node_ptr prev = node_ptr();
|
|
|
|
//Find the upper bound, cache the previous value and if we should
|
|
//store it in the left or right node
|
|
bool left_child = true;
|
|
while(x){
|
|
++depth;
|
|
y = x;
|
|
x = (left_child = comp(key, x)) ?
|
|
NodeTraits::get_left(x) : (prev = y, NodeTraits::get_right(x));
|
|
}
|
|
|
|
if(pdepth) *pdepth = depth;
|
|
|
|
//Since we've found the upper bound there is no other value with the same key if:
|
|
// - There is no previous node
|
|
// - The previous node is less than the key
|
|
if(!prev || comp(prev, key)){
|
|
commit_data.link_left = left_child;
|
|
commit_data.node = y;
|
|
return std::pair<node_ptr, bool>(node_ptr(), true);
|
|
}
|
|
//If the previous value was not less than key, it means that it's equal
|
|
//(because we've checked the upper bound)
|
|
else{
|
|
return std::pair<node_ptr, bool>(prev, false);
|
|
}
|
|
}
|
|
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static std::pair<node_ptr, bool> insert_unique_check
|
|
(const const_node_ptr & header, const node_ptr &hint, const KeyType &key
|
|
,KeyNodePtrCompare comp, insert_commit_data &commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
//hint must be bigger than the key
|
|
if(hint == header || comp(key, hint)){
|
|
node_ptr prev(hint);
|
|
//Previous value should be less than the key
|
|
if(hint == begin_node(header) || comp((prev = prev_node(hint)), key)){
|
|
commit_data.link_left = unique(header) || !NodeTraits::get_left(hint);
|
|
commit_data.node = commit_data.link_left ? hint : prev;
|
|
if(pdepth){
|
|
*pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
|
|
}
|
|
return std::pair<node_ptr, bool>(node_ptr(), true);
|
|
}
|
|
}
|
|
//Hint was wrong, use hintless insertion
|
|
return insert_unique_check(header, key, comp, commit_data, pdepth);
|
|
}
|
|
|
|
template<class NodePtrCompare>
|
|
static void insert_equal_check
|
|
(const node_ptr &header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
|
|
, insert_commit_data &commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
if(hint == header || !comp(hint, new_node)){
|
|
node_ptr prev(hint);
|
|
if(hint == NodeTraits::get_left(header) ||
|
|
!comp(new_node, (prev = prev_node(hint)))){
|
|
bool link_left = unique(header) || !NodeTraits::get_left(hint);
|
|
commit_data.link_left = link_left;
|
|
commit_data.node = link_left ? hint : prev;
|
|
if(pdepth){
|
|
*pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
|
|
}
|
|
}
|
|
else{
|
|
insert_equal_upper_bound_check(header, new_node, comp, commit_data, pdepth);
|
|
}
|
|
}
|
|
else{
|
|
insert_equal_lower_bound_check(header, new_node, comp, commit_data, pdepth);
|
|
}
|
|
}
|
|
|
|
template<class NodePtrCompare>
|
|
static void insert_equal_upper_bound_check
|
|
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
|
|
{ insert_equal_check_impl(true, h, new_node, comp, commit_data, pdepth); }
|
|
|
|
template<class NodePtrCompare>
|
|
static void insert_equal_lower_bound_check
|
|
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
|
|
{ insert_equal_check_impl(false, h, new_node, comp, commit_data, pdepth); }
|
|
|
|
template<class NodePtrCompare>
|
|
static node_ptr insert_equal
|
|
(const node_ptr & h, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp, std::size_t *pdepth = 0)
|
|
{
|
|
insert_commit_data commit_data;
|
|
insert_equal_check(h, hint, new_node, comp, commit_data, pdepth);
|
|
insert_commit(h, new_node, commit_data);
|
|
return new_node;
|
|
}
|
|
|
|
template<class NodePtrCompare>
|
|
static node_ptr insert_equal_upper_bound
|
|
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, std::size_t *pdepth = 0)
|
|
{
|
|
insert_commit_data commit_data;
|
|
insert_equal_upper_bound_check(h, new_node, comp, commit_data, pdepth);
|
|
insert_commit(h, new_node, commit_data);
|
|
return new_node;
|
|
}
|
|
|
|
template<class NodePtrCompare>
|
|
static node_ptr insert_equal_lower_bound
|
|
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, std::size_t *pdepth = 0)
|
|
{
|
|
insert_commit_data commit_data;
|
|
insert_equal_lower_bound_check(h, new_node, comp, commit_data, pdepth);
|
|
insert_commit(h, new_node, commit_data);
|
|
return new_node;
|
|
}
|
|
|
|
static node_ptr insert_before
|
|
(const node_ptr & header, const node_ptr & pos, const node_ptr & new_node, std::size_t *pdepth = 0)
|
|
{
|
|
insert_commit_data commit_data;
|
|
insert_before_check(header, pos, commit_data, pdepth);
|
|
insert_commit(header, new_node, commit_data);
|
|
return new_node;
|
|
}
|
|
|
|
static void insert_before_check
|
|
(const node_ptr &header, const node_ptr & pos
|
|
, insert_commit_data &commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
node_ptr prev(pos);
|
|
if(pos != NodeTraits::get_left(header))
|
|
prev = prev_node(pos);
|
|
bool link_left = unique(header) || !NodeTraits::get_left(pos);
|
|
commit_data.link_left = link_left;
|
|
commit_data.node = link_left ? pos : prev;
|
|
if(pdepth){
|
|
*pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
|
|
}
|
|
}
|
|
|
|
static void push_back
|
|
(const node_ptr & header, const node_ptr & new_node, std::size_t *pdepth = 0)
|
|
{
|
|
insert_commit_data commit_data;
|
|
push_back_check(header, commit_data, pdepth);
|
|
insert_commit(header, new_node, commit_data);
|
|
}
|
|
|
|
static void push_back_check
|
|
(const node_ptr & header, insert_commit_data &commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
node_ptr prev(NodeTraits::get_right(header));
|
|
if(pdepth){
|
|
*pdepth = prev == header ? 0 : depth(prev) + 1;
|
|
}
|
|
commit_data.link_left = false;
|
|
commit_data.node = prev;
|
|
}
|
|
|
|
static void push_front
|
|
(const node_ptr & header, const node_ptr & new_node, std::size_t *pdepth = 0)
|
|
{
|
|
insert_commit_data commit_data;
|
|
push_front_check(header, commit_data, pdepth);
|
|
insert_commit(header, new_node, commit_data);
|
|
}
|
|
|
|
static void push_front_check
|
|
(const node_ptr & header, insert_commit_data &commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
node_ptr pos(NodeTraits::get_left(header));
|
|
if(pdepth){
|
|
*pdepth = pos == header ? 0 : depth(pos) + 1;
|
|
}
|
|
commit_data.link_left = true;
|
|
commit_data.node = pos;
|
|
}
|
|
|
|
//! <b>Requires</b>: 'node' can't be a header node.
|
|
//!
|
|
//! <b>Effects</b>: Calculates the depth of a node: the depth of a
|
|
//! node is the length (number of edges) of the path from the root
|
|
//! to that node. (The root node is at depth 0.)
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic to the number of nodes in the tree.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static std::size_t depth(const_node_ptr node)
|
|
{
|
|
std::size_t depth = 0;
|
|
node_ptr p_parent;
|
|
while(node != NodeTraits::get_parent(p_parent = NodeTraits::get_parent(node))){
|
|
++depth;
|
|
node = p_parent;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
//! <b>Requires</b>: "cloner" must be a function
|
|
//! object taking a node_ptr and returning a new cloned node of it. "disposer" must
|
|
//! take a node_ptr and shouldn't throw.
|
|
//!
|
|
//! <b>Effects</b>: First empties target tree calling
|
|
//! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
|
|
//! except the header.
|
|
//!
|
|
//! Then, duplicates the entire tree pointed by "source_header" cloning each
|
|
//! source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
|
|
//! the nodes of the target tree. If "cloner" throws, the cloned target nodes
|
|
//! are disposed using <tt>void disposer(const node_ptr &)</tt>.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
|
|
//! number of elements of tree target tree when calling this function.
|
|
//!
|
|
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
|
|
template <class Cloner, class Disposer>
|
|
static void clone
|
|
(const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
|
|
{
|
|
if(!unique(target_header)){
|
|
clear_and_dispose(target_header, disposer);
|
|
}
|
|
|
|
node_ptr leftmost, rightmost;
|
|
node_ptr new_root = clone_subtree
|
|
(source_header, target_header, cloner, disposer, leftmost, rightmost);
|
|
|
|
//Now update header node
|
|
NodeTraits::set_parent(target_header, new_root);
|
|
NodeTraits::set_left (target_header, leftmost);
|
|
NodeTraits::set_right (target_header, rightmost);
|
|
}
|
|
|
|
template <class Cloner, class Disposer>
|
|
static node_ptr clone_subtree
|
|
(const const_node_ptr &source_parent, const node_ptr &target_parent
|
|
, Cloner cloner, Disposer disposer
|
|
, node_ptr &leftmost_out, node_ptr &rightmost_out
|
|
)
|
|
{
|
|
node_ptr target_sub_root = target_parent;
|
|
node_ptr source_root = NodeTraits::get_parent(source_parent);
|
|
if(!source_root){
|
|
leftmost_out = rightmost_out = source_root;
|
|
}
|
|
else{
|
|
//We'll calculate leftmost and rightmost nodes while iterating
|
|
node_ptr current = source_root;
|
|
node_ptr insertion_point = target_sub_root = cloner(current);
|
|
|
|
//We'll calculate leftmost and rightmost nodes while iterating
|
|
node_ptr leftmost = target_sub_root;
|
|
node_ptr rightmost = target_sub_root;
|
|
|
|
//First set the subroot
|
|
NodeTraits::set_left(target_sub_root, node_ptr());
|
|
NodeTraits::set_right(target_sub_root, node_ptr());
|
|
NodeTraits::set_parent(target_sub_root, target_parent);
|
|
|
|
dispose_subtree_disposer<Disposer> rollback(disposer, target_sub_root);
|
|
while(true) {
|
|
//First clone left nodes
|
|
if( NodeTraits::get_left(current) &&
|
|
!NodeTraits::get_left(insertion_point)) {
|
|
current = NodeTraits::get_left(current);
|
|
node_ptr temp = insertion_point;
|
|
//Clone and mark as leaf
|
|
insertion_point = cloner(current);
|
|
NodeTraits::set_left (insertion_point, node_ptr());
|
|
NodeTraits::set_right (insertion_point, node_ptr());
|
|
//Insert left
|
|
NodeTraits::set_parent(insertion_point, temp);
|
|
NodeTraits::set_left (temp, insertion_point);
|
|
//Update leftmost
|
|
if(rightmost == target_sub_root)
|
|
leftmost = insertion_point;
|
|
}
|
|
//Then clone right nodes
|
|
else if( NodeTraits::get_right(current) &&
|
|
!NodeTraits::get_right(insertion_point)){
|
|
current = NodeTraits::get_right(current);
|
|
node_ptr temp = insertion_point;
|
|
//Clone and mark as leaf
|
|
insertion_point = cloner(current);
|
|
NodeTraits::set_left (insertion_point, node_ptr());
|
|
NodeTraits::set_right (insertion_point, node_ptr());
|
|
//Insert right
|
|
NodeTraits::set_parent(insertion_point, temp);
|
|
NodeTraits::set_right (temp, insertion_point);
|
|
//Update rightmost
|
|
rightmost = insertion_point;
|
|
}
|
|
//If not, go up
|
|
else if(current == source_root){
|
|
break;
|
|
}
|
|
else{
|
|
//Branch completed, go up searching more nodes to clone
|
|
current = NodeTraits::get_parent(current);
|
|
insertion_point = NodeTraits::get_parent(insertion_point);
|
|
}
|
|
}
|
|
rollback.release();
|
|
leftmost_out = leftmost;
|
|
rightmost_out = rightmost;
|
|
}
|
|
return target_sub_root;
|
|
}
|
|
|
|
template<class Disposer>
|
|
static void dispose_subtree(node_ptr x, Disposer disposer)
|
|
{
|
|
while (x){
|
|
node_ptr save(NodeTraits::get_left(x));
|
|
if (save) {
|
|
// Right rotation
|
|
NodeTraits::set_left(x, NodeTraits::get_right(save));
|
|
NodeTraits::set_right(save, x);
|
|
}
|
|
else {
|
|
save = NodeTraits::get_right(x);
|
|
init(x);
|
|
disposer(x);
|
|
}
|
|
x = save;
|
|
}
|
|
}
|
|
|
|
//! <b>Requires</b>: p is a node of a tree.
|
|
//!
|
|
//! <b>Effects</b>: Returns true if p is a left child.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool is_left_child(const node_ptr & p)
|
|
{ return NodeTraits::get_left(NodeTraits::get_parent(p)) == p; }
|
|
|
|
//! <b>Requires</b>: p is a node of a tree.
|
|
//!
|
|
//! <b>Effects</b>: Returns true if p is a right child.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool is_right_child(const node_ptr & p)
|
|
{ return NodeTraits::get_right(NodeTraits::get_parent(p)) == p; }
|
|
|
|
//Fix header and own's parent data when replacing x with own, providing own's old data with parent
|
|
static void replace_own_impl(const node_ptr & own, const node_ptr & x, const node_ptr & header, const node_ptr & own_parent, bool own_was_left)
|
|
{
|
|
if(NodeTraits::get_parent(header) == own)
|
|
NodeTraits::set_parent(header, x);
|
|
else if(own_was_left)
|
|
NodeTraits::set_left(own_parent, x);
|
|
else
|
|
NodeTraits::set_right(own_parent, x);
|
|
}
|
|
|
|
//Fix header and own's parent data when replacing x with own, supposing own
|
|
//links with its parent are still ok
|
|
static void replace_own(const node_ptr & own, const node_ptr & x, const node_ptr & header)
|
|
{
|
|
node_ptr own_parent(NodeTraits::get_parent(own));
|
|
bool own_is_left(NodeTraits::get_left(own_parent) == own);
|
|
replace_own_impl(own, x, header, own_parent, own_is_left);
|
|
}
|
|
|
|
// rotate parent p to left (no header and p's parent fixup)
|
|
static node_ptr rotate_left(const node_ptr & p)
|
|
{
|
|
node_ptr x(NodeTraits::get_right(p));
|
|
node_ptr x_left(NodeTraits::get_left(x));
|
|
NodeTraits::set_right(p, x_left);
|
|
if(x_left){
|
|
NodeTraits::set_parent(x_left, p);
|
|
}
|
|
NodeTraits::set_left(x, p);
|
|
NodeTraits::set_parent(p, x);
|
|
return x;
|
|
}
|
|
|
|
// rotate parent p to left (with header and p's parent fixup)
|
|
static void rotate_left(const node_ptr & p, const node_ptr & header)
|
|
{
|
|
bool p_was_left(is_left_child(p));
|
|
node_ptr p_old_parent(NodeTraits::get_parent(p));
|
|
node_ptr x(rotate_left(p));
|
|
NodeTraits::set_parent(x, p_old_parent);
|
|
replace_own_impl(p, x, header, p_old_parent, p_was_left);
|
|
}
|
|
|
|
// rotate parent p to right (no header and p's parent fixup)
|
|
static node_ptr rotate_right(const node_ptr & p)
|
|
{
|
|
node_ptr x(NodeTraits::get_left(p));
|
|
node_ptr x_right(NodeTraits::get_right(x));
|
|
NodeTraits::set_left(p, x_right);
|
|
if(x_right){
|
|
NodeTraits::set_parent(x_right, p);
|
|
}
|
|
NodeTraits::set_right(x, p);
|
|
NodeTraits::set_parent(p, x);
|
|
return x;
|
|
}
|
|
|
|
// rotate parent p to right (with header and p's parent fixup)
|
|
static void rotate_right(const node_ptr & p, const node_ptr & header)
|
|
{
|
|
bool p_was_left(is_left_child(p));
|
|
node_ptr p_old_parent(NodeTraits::get_parent(p));
|
|
node_ptr x(rotate_right(p));
|
|
NodeTraits::set_parent(x, p_old_parent);
|
|
replace_own_impl(p, x, header, p_old_parent, p_was_left);
|
|
}
|
|
|
|
static void erase(const node_ptr & header, const node_ptr & z)
|
|
{
|
|
data_for_rebalance ignored;
|
|
erase_impl(header, z, ignored);
|
|
}
|
|
|
|
struct data_for_rebalance
|
|
{
|
|
node_ptr x;
|
|
node_ptr x_parent;
|
|
node_ptr y;
|
|
};
|
|
|
|
template<class F>
|
|
static void erase(const node_ptr & header, const node_ptr & z, F z_and_successor_fixup, data_for_rebalance &info)
|
|
{
|
|
erase_impl(header, z, info);
|
|
if(info.y != z){
|
|
z_and_successor_fixup(z, info.y);
|
|
}
|
|
}
|
|
|
|
static void unlink(const node_ptr & node)
|
|
{
|
|
node_ptr x = NodeTraits::get_parent(node);
|
|
if(x){
|
|
while(!is_header(x))
|
|
x = NodeTraits::get_parent(x);
|
|
erase(x, node);
|
|
}
|
|
}
|
|
|
|
static void tree_to_vine(const node_ptr & header)
|
|
{ subtree_to_vine(NodeTraits::get_parent(header)); }
|
|
|
|
static void vine_to_tree(const node_ptr & header, std::size_t count)
|
|
{ vine_to_subtree(NodeTraits::get_parent(header), count); }
|
|
|
|
static void rebalance(const node_ptr & header)
|
|
{
|
|
//Taken from:
|
|
//"Tree rebalancing in optimal time and space"
|
|
//Quentin F. Stout and Bette L. Warren
|
|
std::size_t len = 0;
|
|
subtree_to_vine(NodeTraits::get_parent(header), &len);
|
|
vine_to_subtree(NodeTraits::get_parent(header), len);
|
|
}
|
|
|
|
static node_ptr rebalance_subtree(const node_ptr & old_root)
|
|
{
|
|
std::size_t len = 0;
|
|
node_ptr new_root = subtree_to_vine(old_root, &len);
|
|
return vine_to_subtree(new_root, len);
|
|
}
|
|
|
|
static node_ptr subtree_to_vine(const node_ptr & old_root, std::size_t *plen = 0)
|
|
{
|
|
std::size_t len;
|
|
len = 0;
|
|
if(!old_root) return node_ptr();
|
|
|
|
//To avoid irregularities in the algorithm (old_root can be a
|
|
//left or right child or even the root of the tree) just put the
|
|
//root as the right child of its parent. Before doing this backup
|
|
//information to restore the original relationship after
|
|
//the algorithm is applied.
|
|
node_ptr super_root = NodeTraits::get_parent(old_root);
|
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(super_root);
|
|
|
|
//Get info
|
|
node_ptr super_root_right_backup = NodeTraits::get_right(super_root);
|
|
bool super_root_is_header = is_header(super_root);
|
|
bool old_root_is_right = is_right_child(old_root);
|
|
|
|
node_ptr x(old_root);
|
|
node_ptr new_root(x);
|
|
node_ptr save;
|
|
bool moved_to_right = false;
|
|
for( ; x; x = save){
|
|
save = NodeTraits::get_left(x);
|
|
if(save){
|
|
// Right rotation
|
|
node_ptr save_right = NodeTraits::get_right(save);
|
|
node_ptr x_parent = NodeTraits::get_parent(x);
|
|
NodeTraits::set_parent(save, x_parent);
|
|
NodeTraits::set_right (x_parent, save);
|
|
NodeTraits::set_parent(x, save);
|
|
NodeTraits::set_right (save, x);
|
|
NodeTraits::set_left(x, save_right);
|
|
if(save_right)
|
|
NodeTraits::set_parent(save_right, x);
|
|
if(!moved_to_right)
|
|
new_root = save;
|
|
}
|
|
else{
|
|
moved_to_right = true;
|
|
save = NodeTraits::get_right(x);
|
|
++len;
|
|
}
|
|
}
|
|
|
|
if(super_root_is_header){
|
|
NodeTraits::set_right(super_root, super_root_right_backup);
|
|
NodeTraits::set_parent(super_root, new_root);
|
|
}
|
|
else if(old_root_is_right){
|
|
NodeTraits::set_right(super_root, new_root);
|
|
}
|
|
else{
|
|
NodeTraits::set_right(super_root, super_root_right_backup);
|
|
NodeTraits::set_left(super_root, new_root);
|
|
}
|
|
if(plen) *plen = len;
|
|
return new_root;
|
|
}
|
|
|
|
static node_ptr vine_to_subtree(const node_ptr & old_root, std::size_t count)
|
|
{
|
|
std::size_t leaf_nodes = count + 1 - ((std::size_t) 1 << floor_log2 (count + 1));
|
|
std::size_t vine_nodes = count - leaf_nodes;
|
|
|
|
node_ptr new_root = compress_subtree(old_root, leaf_nodes);
|
|
while(vine_nodes > 1){
|
|
vine_nodes /= 2;
|
|
new_root = compress_subtree(new_root, vine_nodes);
|
|
}
|
|
return new_root;
|
|
}
|
|
|
|
static node_ptr compress_subtree(const node_ptr & old_root, std::size_t count)
|
|
{
|
|
if(!old_root) return old_root;
|
|
|
|
//To avoid irregularities in the algorithm (old_root can be
|
|
//left or right child or even the root of the tree) just put the
|
|
//root as the right child of its parent. First obtain
|
|
//information to restore the original relationship after
|
|
//the algorithm is applied.
|
|
node_ptr super_root = NodeTraits::get_parent(old_root);
|
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(super_root);
|
|
|
|
//Get info
|
|
node_ptr super_root_right_backup = NodeTraits::get_right(super_root);
|
|
bool super_root_is_header = is_header(super_root);
|
|
bool old_root_is_right = is_right_child(old_root);
|
|
|
|
//Put old_root as right child
|
|
NodeTraits::set_right(super_root, old_root);
|
|
|
|
//Start the compression algorithm
|
|
node_ptr even_parent = super_root;
|
|
node_ptr new_root = old_root;
|
|
|
|
while(count--){
|
|
node_ptr even = NodeTraits::get_right(even_parent);
|
|
node_ptr odd = NodeTraits::get_right(even);
|
|
|
|
if(new_root == old_root)
|
|
new_root = odd;
|
|
|
|
node_ptr even_right = NodeTraits::get_left(odd);
|
|
NodeTraits::set_right(even, even_right);
|
|
if (even_right)
|
|
NodeTraits::set_parent(even_right, even);
|
|
|
|
NodeTraits::set_right(even_parent, odd);
|
|
NodeTraits::set_parent(odd, even_parent);
|
|
NodeTraits::set_left(odd, even);
|
|
NodeTraits::set_parent(even, odd);
|
|
even_parent = odd;
|
|
}
|
|
|
|
if(super_root_is_header){
|
|
NodeTraits::set_parent(super_root, new_root);
|
|
NodeTraits::set_right(super_root, super_root_right_backup);
|
|
}
|
|
else if(old_root_is_right){
|
|
NodeTraits::set_right(super_root, new_root);
|
|
}
|
|
else{
|
|
NodeTraits::set_left(super_root, new_root);
|
|
NodeTraits::set_right(super_root, super_root_right_backup);
|
|
}
|
|
return new_root;
|
|
}
|
|
|
|
//! <b>Requires</b>: "n" must be a node inserted in a tree.
|
|
//!
|
|
//! <b>Effects</b>: Returns a pointer to the header node of the tree.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr get_root(const node_ptr & node)
|
|
{
|
|
BOOST_INTRUSIVE_INVARIANT_ASSERT((!inited(node)));
|
|
node_ptr x = NodeTraits::get_parent(node);
|
|
if(x){
|
|
while(!is_header(x)){
|
|
x = NodeTraits::get_parent(x);
|
|
}
|
|
return x;
|
|
}
|
|
else{
|
|
return node;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static node_ptr lower_bound_loop
|
|
(node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
|
|
{
|
|
while(x){
|
|
if(comp(x, key)){
|
|
x = NodeTraits::get_right(x);
|
|
}
|
|
else{
|
|
y = x;
|
|
x = NodeTraits::get_left(x);
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
|
|
template<class KeyType, class KeyNodePtrCompare>
|
|
static node_ptr upper_bound_loop
|
|
(node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
|
|
{
|
|
while(x){
|
|
if(comp(key, x)){
|
|
y = x;
|
|
x = NodeTraits::get_left(x);
|
|
}
|
|
else{
|
|
x = NodeTraits::get_right(x);
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
|
|
|
|
template<class NodePtrCompare>
|
|
static void insert_equal_check_impl
|
|
(bool upper, const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
|
|
{
|
|
std::size_t depth = 0;
|
|
node_ptr y(h);
|
|
node_ptr x(NodeTraits::get_parent(y));
|
|
bool link_left;
|
|
|
|
if(upper){
|
|
while(x){
|
|
++depth;
|
|
y = x;
|
|
x = comp(new_node, x) ?
|
|
NodeTraits::get_left(x) : NodeTraits::get_right(x);
|
|
}
|
|
link_left = (y == h) || comp(new_node, y);
|
|
}
|
|
else{
|
|
while(x){
|
|
++depth;
|
|
y = x;
|
|
x = !comp(x, new_node) ?
|
|
NodeTraits::get_left(x) : NodeTraits::get_right(x);
|
|
}
|
|
link_left = (y == h) || !comp(y, new_node);
|
|
}
|
|
|
|
commit_data.link_left = link_left;
|
|
commit_data.node = y;
|
|
if(pdepth) *pdepth = depth;
|
|
}
|
|
|
|
static void erase_impl(const node_ptr & header, const node_ptr & z, data_for_rebalance &info)
|
|
{
|
|
node_ptr y(z);
|
|
node_ptr x;
|
|
node_ptr x_parent = node_ptr();
|
|
node_ptr z_left(NodeTraits::get_left(z));
|
|
node_ptr z_right(NodeTraits::get_right(z));
|
|
if(!z_left){
|
|
x = z_right; // x might be null.
|
|
}
|
|
else if(!z_right){ // z has exactly one non-null child. y == z.
|
|
x = z_left; // x is not null.
|
|
}
|
|
else{
|
|
// find z's successor
|
|
y = tree_algorithms::minimum (z_right);
|
|
x = NodeTraits::get_right(y); // x might be null.
|
|
}
|
|
|
|
if(y != z){
|
|
// relink y in place of z. y is z's successor
|
|
NodeTraits::set_parent(NodeTraits::get_left(z), y);
|
|
NodeTraits::set_left(y, NodeTraits::get_left(z));
|
|
if(y != NodeTraits::get_right(z)){
|
|
x_parent = NodeTraits::get_parent(y);
|
|
if(x)
|
|
NodeTraits::set_parent(x, x_parent);
|
|
NodeTraits::set_left(x_parent, x); // y must be a child of left_
|
|
NodeTraits::set_right(y, NodeTraits::get_right(z));
|
|
NodeTraits::set_parent(NodeTraits::get_right(z), y);
|
|
}
|
|
else
|
|
x_parent = y;
|
|
tree_algorithms::replace_own (z, y, header);
|
|
NodeTraits::set_parent(y, NodeTraits::get_parent(z));
|
|
}
|
|
else { // y == z --> z has only one child, or none
|
|
x_parent = NodeTraits::get_parent(z);
|
|
if(x)
|
|
NodeTraits::set_parent(x, x_parent);
|
|
tree_algorithms::replace_own (z, x, header);
|
|
if(NodeTraits::get_left(header) == z){
|
|
NodeTraits::set_left(header, !NodeTraits::get_right(z) ? // z->get_left() must be null also
|
|
NodeTraits::get_parent(z) : // makes leftmost == header if z == root
|
|
tree_algorithms::minimum (x));
|
|
}
|
|
if(NodeTraits::get_right(header) == z){
|
|
NodeTraits::set_right(header, !NodeTraits::get_left(z) ? // z->get_right() must be null also
|
|
NodeTraits::get_parent(z) : // makes rightmost == header if z == root
|
|
tree_algorithms::maximum(x));
|
|
}
|
|
}
|
|
|
|
info.x = x;
|
|
info.x_parent = x_parent;
|
|
info.y = y;
|
|
}
|
|
};
|
|
|
|
} //namespace detail {
|
|
} //namespace intrusive
|
|
} //namespace boost
|
|
|
|
#include <boost/intrusive/detail/config_end.hpp>
|
|
|
|
#endif //BOOST_INTRUSIVE_TREE_ALGORITHMS_HPP
|