YouCompleteMe/cpp/llvm/lib/VMCore/ConstantsContext.h
2012-07-05 17:51:06 -07:00

768 lines
26 KiB
C++

//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various helper methods and classes used by
// LLVMContextImpl for creating and managing constants.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CONSTANTSCONTEXT_H
#define LLVM_CONSTANTSCONTEXT_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
namespace llvm {
template<class ValType>
struct ConstantTraits;
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
: ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
Op<0>() = C;
}
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags)
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
SubclassOptionalData = Flags;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
ExtractElementConstantExpr(Constant *C1, Constant *C2)
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
Instruction::ExtractElement, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::InsertElement,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(VectorType::get(
cast<VectorType>(C1->getType())->getElementType(),
cast<VectorType>(C3->getType())->getNumElements()),
Instruction::ShuffleVector,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractvalue constant exprs.
class ExtractValueConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
ExtractValueConstantExpr(Constant *Agg,
const SmallVector<unsigned, 4> &IdxList,
Type *DestTy)
: ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
Indices(IdxList) {
Op<0>() = Agg;
}
/// Indices - These identify which value to extract.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertvalue constant exprs.
class InsertValueConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 2);
}
InsertValueConstantExpr(Constant *Agg, Constant *Val,
const SmallVector<unsigned, 4> &IdxList,
Type *DestTy)
: ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
Indices(IdxList) {
Op<0>() = Agg;
Op<1>() = Val;
}
/// Indices - These identify the position for the insertion.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class GetElementPtrConstantExpr : public ConstantExpr {
virtual void anchor();
GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
Type *DestTy);
public:
static GetElementPtrConstantExpr *Create(Constant *C,
ArrayRef<Constant*> IdxList,
Type *DestTy,
unsigned Flags) {
GetElementPtrConstantExpr *Result =
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
Result->SubclassOptionalData = Flags;
return Result;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
class CompareConstantExpr : public ConstantExpr {
virtual void anchor();
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
unsigned short predicate;
CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
unsigned short pred, Constant* LHS, Constant* RHS)
: ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
Op<0>() = LHS;
Op<1>() = RHS;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
template <>
struct OperandTraits<UnaryConstantExpr> :
public FixedNumOperandTraits<UnaryConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
template <>
struct OperandTraits<BinaryConstantExpr> :
public FixedNumOperandTraits<BinaryConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
template <>
struct OperandTraits<SelectConstantExpr> :
public FixedNumOperandTraits<SelectConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
template <>
struct OperandTraits<ExtractElementConstantExpr> :
public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
template <>
struct OperandTraits<InsertElementConstantExpr> :
public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
template <>
struct OperandTraits<ShuffleVectorConstantExpr> :
public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
template <>
struct OperandTraits<ExtractValueConstantExpr> :
public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
template <>
struct OperandTraits<InsertValueConstantExpr> :
public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
template <>
struct OperandTraits<GetElementPtrConstantExpr> :
public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
template <>
struct OperandTraits<CompareConstantExpr> :
public FixedNumOperandTraits<CompareConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
struct ExprMapKeyType {
ExprMapKeyType(unsigned opc,
ArrayRef<Constant*> ops,
unsigned short flags = 0,
unsigned short optionalflags = 0,
ArrayRef<unsigned> inds = ArrayRef<unsigned>())
: opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
uint8_t opcode;
uint8_t subclassoptionaldata;
uint16_t subclassdata;
std::vector<Constant*> operands;
SmallVector<unsigned, 4> indices;
bool operator==(const ExprMapKeyType& that) const {
return this->opcode == that.opcode &&
this->subclassdata == that.subclassdata &&
this->subclassoptionaldata == that.subclassoptionaldata &&
this->operands == that.operands &&
this->indices == that.indices;
}
bool operator<(const ExprMapKeyType & that) const {
if (this->opcode != that.opcode) return this->opcode < that.opcode;
if (this->operands != that.operands) return this->operands < that.operands;
if (this->subclassdata != that.subclassdata)
return this->subclassdata < that.subclassdata;
if (this->subclassoptionaldata != that.subclassoptionaldata)
return this->subclassoptionaldata < that.subclassoptionaldata;
if (this->indices != that.indices) return this->indices < that.indices;
return false;
}
bool operator!=(const ExprMapKeyType& that) const {
return !(*this == that);
}
};
struct InlineAsmKeyType {
InlineAsmKeyType(StringRef AsmString,
StringRef Constraints, bool hasSideEffects,
bool isAlignStack)
: asm_string(AsmString), constraints(Constraints),
has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
std::string asm_string;
std::string constraints;
bool has_side_effects;
bool is_align_stack;
bool operator==(const InlineAsmKeyType& that) const {
return this->asm_string == that.asm_string &&
this->constraints == that.constraints &&
this->has_side_effects == that.has_side_effects &&
this->is_align_stack == that.is_align_stack;
}
bool operator<(const InlineAsmKeyType& that) const {
if (this->asm_string != that.asm_string)
return this->asm_string < that.asm_string;
if (this->constraints != that.constraints)
return this->constraints < that.constraints;
if (this->has_side_effects != that.has_side_effects)
return this->has_side_effects < that.has_side_effects;
if (this->is_align_stack != that.is_align_stack)
return this->is_align_stack < that.is_align_stack;
return false;
}
bool operator!=(const InlineAsmKeyType& that) const {
return !(*this == that);
}
};
// The number of operands for each ConstantCreator::create method is
// determined by the ConstantTraits template.
// ConstantCreator - A class that is used to create constants by
// ConstantUniqueMap*. This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
template<typename T, typename Alloc>
struct ConstantTraits< std::vector<T, Alloc> > {
static unsigned uses(const std::vector<T, Alloc>& v) {
return v.size();
}
};
template<>
struct ConstantTraits<Constant *> {
static unsigned uses(Constant * const & v) {
return 1;
}
};
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator {
static ConstantClass *create(TypeClass *Ty, const ValType &V) {
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
}
};
template<class ConstantClass, class TypeClass>
struct ConstantArrayCreator {
static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
return new(V.size()) ConstantClass(Ty, V);
}
};
template<class ConstantClass>
struct ConstantKeyData {
typedef void ValType;
static ValType getValType(ConstantClass *C) {
llvm_unreachable("Unknown Constant type!");
}
};
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
unsigned short pred = 0) {
if (Instruction::isCast(V.opcode))
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
if ((V.opcode >= Instruction::BinaryOpsBegin &&
V.opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
V.subclassoptionaldata);
if (V.opcode == Instruction::Select)
return new SelectConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ExtractElement)
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
if (V.opcode == Instruction::InsertElement)
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ShuffleVector)
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::InsertValue)
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
V.indices, Ty);
if (V.opcode == Instruction::ExtractValue)
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
if (V.opcode == Instruction::GetElementPtr) {
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
V.subclassoptionaldata);
}
// The compare instructions are weird. We have to encode the predicate
// value and it is combined with the instruction opcode by multiplying
// the opcode by one hundred. We must decode this to get the predicate.
if (V.opcode == Instruction::ICmp)
return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
V.operands[0], V.operands[1]);
if (V.opcode == Instruction::FCmp)
return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
V.operands[0], V.operands[1]);
llvm_unreachable("Invalid ConstantExpr!");
}
};
template<>
struct ConstantKeyData<ConstantExpr> {
typedef ExprMapKeyType ValType;
static ValType getValType(ConstantExpr *CE) {
std::vector<Constant*> Operands;
Operands.reserve(CE->getNumOperands());
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
Operands.push_back(cast<Constant>(CE->getOperand(i)));
return ExprMapKeyType(CE->getOpcode(), Operands,
CE->isCompare() ? CE->getPredicate() : 0,
CE->getRawSubclassOptionalData(),
CE->hasIndices() ?
CE->getIndices() : ArrayRef<unsigned>());
}
};
template<>
struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
return new InlineAsm(Ty, Key.asm_string, Key.constraints,
Key.has_side_effects, Key.is_align_stack);
}
};
template<>
struct ConstantKeyData<InlineAsm> {
typedef InlineAsmKeyType ValType;
static ValType getValType(InlineAsm *Asm) {
return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
Asm->hasSideEffects(), Asm->isAlignStack());
}
};
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class ConstantUniqueMap {
public:
typedef std::pair<TypeClass*, ValType> MapKey;
typedef std::map<MapKey, ConstantClass *> MapTy;
typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
InverseMapTy InverseMap;
public:
typename MapTy::iterator map_begin() { return Map.begin(); }
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
I != E; ++I) {
// Asserts that use_empty().
delete I->second;
}
}
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
&InsertVal,
bool &Exists) {
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
typename MapTy::iterator I =
Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
ConstantKeyData<ConstantClass>::getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
}
ConstantClass *Create(TypeClass *Ty, ValRefType V,
typename MapTy::iterator I) {
ConstantClass* Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
return Result;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
MapKey Lookup(Ty, V);
ConstantClass* Result = 0;
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = I->second;
if (!Result) {
// If no preexisting value, create one now...
Result = Create(Ty, V, I);
}
return Result;
}
void remove(ConstantClass *CP) {
typename MapTy::iterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void dump() const {
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
}
};
// Unique map for aggregate constants
template<class TypeClass, class ConstantClass>
class ConstantAggrUniqueMap {
public:
typedef ArrayRef<Constant*> Operands;
typedef std::pair<TypeClass*, Operands> LookupKey;
private:
struct MapInfo {
typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
typedef DenseMapInfo<Constant*> ConstantInfo;
typedef DenseMapInfo<TypeClass*> TypeClassInfo;
static inline ConstantClass* getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
static inline ConstantClass* getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
SmallVector<Constant*, 8> CPOperands;
CPOperands.reserve(CP->getNumOperands());
for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
CPOperands.push_back(CP->getOperand(I));
return getHashValue(LookupKey(CP->getType(), CPOperands));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
Val.second.end()));
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
if (LHS.first != RHS->getType()
|| LHS.second.size() != RHS->getNumOperands())
return false;
for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
if (LHS.second[I] != RHS->getOperand(I))
return false;
}
return true;
}
};
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
public:
typename MapTy::iterator map_begin() { return Map.begin(); }
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
I != E; ++I) {
// Asserts that use_empty().
delete I->first;
}
}
private:
typename MapTy::iterator findExistingElement(ConstantClass *CP) {
return Map.find(CP);
}
ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
ConstantClass* Result =
ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
Map[Result] = '\0';
return Result;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
LookupKey Lookup(Ty, V);
ConstantClass* Result = 0;
typename MapTy::iterator I = Map.find_as(Lookup);
// Is it in the map?
if (I != Map.end())
Result = I->first;
if (!Result) {
// If no preexisting value, create one now...
Result = Create(Ty, V, I);
}
return Result;
}
/// Find the constant by lookup key.
typename MapTy::iterator find(LookupKey Lookup) {
return Map.find_as(Lookup);
}
/// Insert the constant into its proper slot.
void insert(ConstantClass *CP) {
Map[CP] = '\0';
}
/// Remove this constant from the map
void remove(ConstantClass *CP) {
typename MapTy::iterator I = findExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
void dump() const {
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
}
};
}
#endif