// Boost Lambda Library ret.hpp ----------------------------------------- // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi) // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // For more information, see www.boost.org #ifndef BOOST_LAMBDA_RET_HPP #define BOOST_LAMBDA_RET_HPP namespace boost { namespace lambda { // TODO: // Add specializations for function references for ret, protect and unlambda // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier // for a function type. // on the other hand unlambda(*foo) does work // -- ret ------------------------- // the explicit return type template // TODO: It'd be nice to make ret a nop for other than lambda functors // but causes an ambiguiyty with gcc (not with KCC), check what is the // right interpretation. // // ret for others than lambda functors has no effect // template <class U, class T> // inline const T& ret(const T& t) { return t; } template<class RET, class Arg> inline const lambda_functor< lambda_functor_base< explicit_return_type_action<RET>, tuple<lambda_functor<Arg> > > > ret(const lambda_functor<Arg>& a1) { return lambda_functor_base< explicit_return_type_action<RET>, tuple<lambda_functor<Arg> > > (tuple<lambda_functor<Arg> >(a1)); } // protect ------------------ // protecting others than lambda functors has no effect template <class T> inline const T& protect(const T& t) { return t; } template<class Arg> inline const lambda_functor< lambda_functor_base< protect_action, tuple<lambda_functor<Arg> > > > protect(const lambda_functor<Arg>& a1) { return lambda_functor_base< protect_action, tuple<lambda_functor<Arg> > > (tuple<lambda_functor<Arg> >(a1)); } // ------------------------------------------------------------------- // Hides the lambda functorness of a lambda functor. // After this, the functor is immune to argument substitution, etc. // This can be used, e.g. to make it safe to pass lambda functors as // arguments to functions, which might use them as target functions // note, unlambda and protect are different things. Protect hides the lambda // functor for one application, unlambda for good. template <class LambdaFunctor> class non_lambda_functor { LambdaFunctor lf; public: // This functor defines the result_type typedef. // The result type must be deducible without knowing the arguments template <class SigArgs> struct sig { typedef typename LambdaFunctor::inherited:: template sig<typename SigArgs::tail_type>::type type; }; explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {} typename LambdaFunctor::nullary_return_type operator()() const { return lf.template call<typename LambdaFunctor::nullary_return_type> (cnull_type(), cnull_type(), cnull_type(), cnull_type()); } template<class A> typename sig<tuple<const non_lambda_functor, A&> >::type operator()(A& a) const { return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); } template<class A, class B> typename sig<tuple<const non_lambda_functor, A&, B&> >::type operator()(A& a, B& b) const { return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type()); } template<class A, class B, class C> typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type operator()(A& a, B& b, C& c) const { return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type()); } }; template <class Arg> inline const Arg& unlambda(const Arg& a) { return a; } template <class Arg> inline const non_lambda_functor<lambda_functor<Arg> > unlambda(const lambda_functor<Arg>& a) { return non_lambda_functor<lambda_functor<Arg> >(a); } // Due to a language restriction, lambda functors cannot be made to // accept non-const rvalue arguments. Usually iterators do not return // temporaries, but sometimes they do. That's why a workaround is provided. // Note, that this potentially breaks const correctness, so be careful! // any lambda functor can be turned into a const_incorrect_lambda_functor // The operator() takes arguments as consts and then casts constness // away. So this breaks const correctness!!! but is a necessary workaround // in some cases due to language limitations. // Note, that this is not a lambda_functor anymore, so it can not be used // as a sub lambda expression. template <class LambdaFunctor> struct const_incorrect_lambda_functor { LambdaFunctor lf; public: explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {} template <class SigArgs> struct sig { typedef typename LambdaFunctor::inherited::template sig<typename SigArgs::tail_type>::type type; }; // The nullary case is not needed (no arguments, no parameter type problems) template<class A> typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type operator()(const A& a) const { return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type()); } template<class A, class B> typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type operator()(const A& a, const B& b) const { return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type()); } template<class A, class B, class C> typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type operator()(const A& a, const B& b, const C& c) const { return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type()); } }; // ------------------------------------------------------------------------ // any lambda functor can be turned into a const_parameter_lambda_functor // The operator() takes arguments as const. // This is useful if lambda functors are called with non-const rvalues. // Note, that this is not a lambda_functor anymore, so it can not be used // as a sub lambda expression. template <class LambdaFunctor> struct const_parameter_lambda_functor { LambdaFunctor lf; public: explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {} template <class SigArgs> struct sig { typedef typename LambdaFunctor::inherited::template sig<typename SigArgs::tail_type>::type type; }; // The nullary case is not needed: no arguments, no constness problems. template<class A> typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type operator()(const A& a) const { return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); } template<class A, class B> typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type operator()(const A& a, const B& b) const { return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type()); } template<class A, class B, class C> typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type operator()(const A& a, const B& b, const C& c) const { return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type()); } }; template <class Arg> inline const const_incorrect_lambda_functor<lambda_functor<Arg> > break_const(const lambda_functor<Arg>& lf) { return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf); } template <class Arg> inline const const_parameter_lambda_functor<lambda_functor<Arg> > const_parameters(const lambda_functor<Arg>& lf) { return const_parameter_lambda_functor<lambda_functor<Arg> >(lf); } // make void ------------------------------------------------ // make_void( x ) turns a lambda functor x with some return type y into // another lambda functor, which has a void return type // when called, the original return type is discarded // we use this action. The action class will be called, which means that // the wrapped lambda functor is evaluated, but we just don't do anything // with the result. struct voidifier_action { template<class Ret, class A> static void apply(A&) {} }; template<class Args> struct return_type_N<voidifier_action, Args> { typedef void type; }; template<class Arg1> inline const lambda_functor< lambda_functor_base< action<1, voidifier_action>, tuple<lambda_functor<Arg1> > > > make_void(const lambda_functor<Arg1>& a1) { return lambda_functor_base< action<1, voidifier_action>, tuple<lambda_functor<Arg1> > > (tuple<lambda_functor<Arg1> > (a1)); } // for non-lambda functors, make_void does nothing // (the argument gets evaluated immediately) template<class Arg1> inline const lambda_functor< lambda_functor_base<do_nothing_action, null_type> > make_void(const Arg1&) { return lambda_functor_base<do_nothing_action, null_type>(); } // std_functor ----------------------------------------------------- // The STL uses the result_type typedef as the convention to let binders know // the return type of a function object. // LL uses the sig template. // To let LL know that the function object has the result_type typedef // defined, it can be wrapped with the std_functor function. // Just inherit form the template parameter (the standard functor), // and provide a sig template. So we have a class which is still the // same functor + the sig template. template<class T> struct result_type_to_sig : public T { template<class Args> struct sig { typedef typename T::result_type type; }; result_type_to_sig(const T& t) : T(t) {} }; template<class F> inline result_type_to_sig<F> std_functor(const F& f) { return f; } } // namespace lambda } // namespace boost #endif