//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a basic-block vectorization pass. The algorithm was // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral, // et al. It works by looking for chains of pairable operations and then // pairing them. // //===----------------------------------------------------------------------===// #define BBV_NAME "bb-vectorize" #define DEBUG_TYPE BBV_NAME #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Vectorize.h" #include #include using namespace llvm; static cl::opt ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden, cl::desc("The required chain depth for vectorization")); static cl::opt SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden, cl::desc("The maximum search distance for instruction pairs")); static cl::opt SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden, cl::desc("Replicating one element to a pair breaks the chain")); static cl::opt VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden, cl::desc("The size of the native vector registers")); static cl::opt MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden, cl::desc("The maximum number of pairing iterations")); static cl::opt MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden, cl::desc("The maximum number of pairable instructions per group")); static cl::opt MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200), cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use" " a full cycle check")); static cl::opt NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize integer values")); static cl::opt NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point values")); static cl::opt NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize pointer values")); static cl::opt NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize casting (conversion) operations")); static cl::opt NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point math intrinsics")); static cl::opt NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize the fused-multiply-add intrinsic")); static cl::opt NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize select instructions")); static cl::opt NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize getelementptr instructions")); static cl::opt NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize loads and stores")); static cl::opt AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden, cl::desc("Only generate aligned loads and stores")); static cl::opt NoMemOpBoost("bb-vectorize-no-mem-op-boost", cl::init(false), cl::Hidden, cl::desc("Don't boost the chain-depth contribution of loads and stores")); static cl::opt FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden, cl::desc("Use a fast instruction dependency analysis")); #ifndef NDEBUG static cl::opt DebugInstructionExamination("bb-vectorize-debug-instruction-examination", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " instruction-examination process")); static cl::opt DebugCandidateSelection("bb-vectorize-debug-candidate-selection", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " candidate-selection process")); static cl::opt DebugPairSelection("bb-vectorize-debug-pair-selection", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " pair-selection process")); static cl::opt DebugCycleCheck("bb-vectorize-debug-cycle-check", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " cycle-checking process")); #endif STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize"); namespace { struct BBVectorize : public BasicBlockPass { static char ID; // Pass identification, replacement for typeid const VectorizeConfig Config; BBVectorize(const VectorizeConfig &C = VectorizeConfig()) : BasicBlockPass(ID), Config(C) { initializeBBVectorizePass(*PassRegistry::getPassRegistry()); } BBVectorize(Pass *P, const VectorizeConfig &C) : BasicBlockPass(ID), Config(C) { AA = &P->getAnalysis(); SE = &P->getAnalysis(); TD = P->getAnalysisIfAvailable(); } typedef std::pair ValuePair; typedef std::pair ValuePairWithDepth; typedef std::pair VPPair; // A ValuePair pair typedef std::pair::iterator, std::multimap::iterator> VPIteratorPair; typedef std::pair::iterator, std::multimap::iterator> VPPIteratorPair; AliasAnalysis *AA; ScalarEvolution *SE; TargetData *TD; // FIXME: const correct? bool vectorizePairs(BasicBlock &BB); bool getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap &CandidatePairs, std::vector &PairableInsts); void computeConnectedPairs(std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs); void buildDepMap(BasicBlock &BB, std::multimap &CandidatePairs, std::vector &PairableInsts, DenseSet &PairableInstUsers); void choosePairs(std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, DenseMap& ChosenPairs); void fuseChosenPairs(BasicBlock &BB, std::vector &PairableInsts, DenseMap& ChosenPairs); bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore); bool areInstsCompatible(Instruction *I, Instruction *J, bool IsSimpleLoadStore); bool trackUsesOfI(DenseSet &Users, AliasSetTracker &WriteSet, Instruction *I, Instruction *J, bool UpdateUsers = true, std::multimap *LoadMoveSet = 0); void computePairsConnectedTo( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, ValuePair P); bool pairsConflict(ValuePair P, ValuePair Q, DenseSet &PairableInstUsers, std::multimap *PairableInstUserMap = 0); bool pairWillFormCycle(ValuePair P, std::multimap &PairableInstUsers, DenseSet &CurrentPairs); void pruneTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseMap &Tree, DenseSet &PrunedTree, ValuePair J, bool UseCycleCheck); void buildInitialTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, DenseMap &ChosenPairs, DenseMap &Tree, ValuePair J); void findBestTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseSet &BestTree, size_t &BestMaxDepth, size_t &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck); Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool &FlipMemInputs); void fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned NumElem, unsigned MaskOffset, unsigned NumInElem, unsigned IdxOffset, std::vector &Mask); Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I, Instruction *J); Value *getReplacementInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool FlipMemInputs); void getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector &ReplacedOperands, bool &FlipMemInputs); void replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, Instruction *&K1, Instruction *&K2, bool &FlipMemInputs); void collectPairLoadMoveSet(BasicBlock &BB, DenseMap &ChosenPairs, std::multimap &LoadMoveSet, Instruction *I); void collectLoadMoveSet(BasicBlock &BB, std::vector &PairableInsts, DenseMap &ChosenPairs, std::multimap &LoadMoveSet); bool canMoveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *I, Instruction *J); void moveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *&InsertionPt, Instruction *I, Instruction *J); bool vectorizeBB(BasicBlock &BB) { bool changed = false; // Iterate a sufficient number of times to merge types of size 1 bit, // then 2 bits, then 4, etc. up to half of the target vector width of the // target vector register. for (unsigned v = 2, n = 1; v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter); v *= 2, ++n) { DEBUG(dbgs() << "BBV: fusing loop #" << n << " for " << BB.getName() << " in " << BB.getParent()->getName() << "...\n"); if (vectorizePairs(BB)) changed = true; else break; } DEBUG(dbgs() << "BBV: done!\n"); return changed; } virtual bool runOnBasicBlock(BasicBlock &BB) { AA = &getAnalysis(); SE = &getAnalysis(); TD = getAnalysisIfAvailable(); return vectorizeBB(BB); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { BasicBlockPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } // This returns the vector type that holds a pair of the provided type. // If the provided type is already a vector, then its length is doubled. static inline VectorType *getVecTypeForPair(Type *ElemTy) { if (VectorType *VTy = dyn_cast(ElemTy)) { unsigned numElem = VTy->getNumElements(); return VectorType::get(ElemTy->getScalarType(), numElem*2); } return VectorType::get(ElemTy, 2); } // Returns the weight associated with the provided value. A chain of // candidate pairs has a length given by the sum of the weights of its // members (one weight per pair; the weight of each member of the pair // is assumed to be the same). This length is then compared to the // chain-length threshold to determine if a given chain is significant // enough to be vectorized. The length is also used in comparing // candidate chains where longer chains are considered to be better. // Note: when this function returns 0, the resulting instructions are // not actually fused. inline size_t getDepthFactor(Value *V) { // InsertElement and ExtractElement have a depth factor of zero. This is // for two reasons: First, they cannot be usefully fused. Second, because // the pass generates a lot of these, they can confuse the simple metric // used to compare the trees in the next iteration. Thus, giving them a // weight of zero allows the pass to essentially ignore them in // subsequent iterations when looking for vectorization opportunities // while still tracking dependency chains that flow through those // instructions. if (isa(V) || isa(V)) return 0; // Give a load or store half of the required depth so that load/store // pairs will vectorize. if (!Config.NoMemOpBoost && (isa(V) || isa(V))) return Config.ReqChainDepth/2; return 1; } // This determines the relative offset of two loads or stores, returning // true if the offset could be determined to be some constant value. // For example, if OffsetInElmts == 1, then J accesses the memory directly // after I; if OffsetInElmts == -1 then I accesses the memory // directly after J. This function assumes that both instructions // have the same type. bool getPairPtrInfo(Instruction *I, Instruction *J, Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment, int64_t &OffsetInElmts) { OffsetInElmts = 0; if (isa(I)) { IPtr = cast(I)->getPointerOperand(); JPtr = cast(J)->getPointerOperand(); IAlignment = cast(I)->getAlignment(); JAlignment = cast(J)->getAlignment(); } else { IPtr = cast(I)->getPointerOperand(); JPtr = cast(J)->getPointerOperand(); IAlignment = cast(I)->getAlignment(); JAlignment = cast(J)->getAlignment(); } const SCEV *IPtrSCEV = SE->getSCEV(IPtr); const SCEV *JPtrSCEV = SE->getSCEV(JPtr); // If this is a trivial offset, then we'll get something like // 1*sizeof(type). With target data, which we need anyway, this will get // constant folded into a number. const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV); if (const SCEVConstant *ConstOffSCEV = dyn_cast(OffsetSCEV)) { ConstantInt *IntOff = ConstOffSCEV->getValue(); int64_t Offset = IntOff->getSExtValue(); Type *VTy = cast(IPtr->getType())->getElementType(); int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy); assert(VTy == cast(JPtr->getType())->getElementType()); OffsetInElmts = Offset/VTyTSS; return (abs64(Offset) % VTyTSS) == 0; } return false; } // Returns true if the provided CallInst represents an intrinsic that can // be vectorized. bool isVectorizableIntrinsic(CallInst* I) { Function *F = I->getCalledFunction(); if (!F) return false; unsigned IID = F->getIntrinsicID(); if (!IID) return false; switch(IID) { default: return false; case Intrinsic::sqrt: case Intrinsic::powi: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::log: case Intrinsic::log2: case Intrinsic::log10: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::pow: return Config.VectorizeMath; case Intrinsic::fma: return Config.VectorizeFMA; } } // Returns true if J is the second element in some pair referenced by // some multimap pair iterator pair. template bool isSecondInIteratorPair(V J, std::pair< typename std::multimap::iterator, typename std::multimap::iterator> PairRange) { for (typename std::multimap::iterator K = PairRange.first; K != PairRange.second; ++K) if (K->second == J) return true; return false; } }; // This function implements one vectorization iteration on the provided // basic block. It returns true if the block is changed. bool BBVectorize::vectorizePairs(BasicBlock &BB) { bool ShouldContinue; BasicBlock::iterator Start = BB.getFirstInsertionPt(); std::vector AllPairableInsts; DenseMap AllChosenPairs; do { std::vector PairableInsts; std::multimap CandidatePairs; ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs, PairableInsts); if (PairableInsts.empty()) continue; // Now we have a map of all of the pairable instructions and we need to // select the best possible pairing. A good pairing is one such that the // users of the pair are also paired. This defines a (directed) forest // over the pairs such that two pairs are connected iff the second pair // uses the first. // Note that it only matters that both members of the second pair use some // element of the first pair (to allow for splatting). std::multimap ConnectedPairs; computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs); if (ConnectedPairs.empty()) continue; // Build the pairable-instruction dependency map DenseSet PairableInstUsers; buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers); // There is now a graph of the connected pairs. For each variable, pick // the pairing with the largest tree meeting the depth requirement on at // least one branch. Then select all pairings that are part of that tree // and remove them from the list of available pairings and pairable // variables. DenseMap ChosenPairs; choosePairs(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, ChosenPairs); if (ChosenPairs.empty()) continue; AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(), PairableInsts.end()); AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end()); } while (ShouldContinue); if (AllChosenPairs.empty()) return false; NumFusedOps += AllChosenPairs.size(); // A set of pairs has now been selected. It is now necessary to replace the // paired instructions with vector instructions. For this procedure each // operand must be replaced with a vector operand. This vector is formed // by using build_vector on the old operands. The replaced values are then // replaced with a vector_extract on the result. Subsequent optimization // passes should coalesce the build/extract combinations. fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs); return true; } // This function returns true if the provided instruction is capable of being // fused into a vector instruction. This determination is based only on the // type and other attributes of the instruction. bool BBVectorize::isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore) { IsSimpleLoadStore = false; if (CallInst *C = dyn_cast(I)) { if (!isVectorizableIntrinsic(C)) return false; } else if (LoadInst *L = dyn_cast(I)) { // Vectorize simple loads if possbile: IsSimpleLoadStore = L->isSimple(); if (!IsSimpleLoadStore || !Config.VectorizeMemOps) return false; } else if (StoreInst *S = dyn_cast(I)) { // Vectorize simple stores if possbile: IsSimpleLoadStore = S->isSimple(); if (!IsSimpleLoadStore || !Config.VectorizeMemOps) return false; } else if (CastInst *C = dyn_cast(I)) { // We can vectorize casts, but not casts of pointer types, etc. if (!Config.VectorizeCasts) return false; Type *SrcTy = C->getSrcTy(); if (!SrcTy->isSingleValueType()) return false; Type *DestTy = C->getDestTy(); if (!DestTy->isSingleValueType()) return false; } else if (isa(I)) { if (!Config.VectorizeSelect) return false; } else if (GetElementPtrInst *G = dyn_cast(I)) { if (!Config.VectorizeGEP) return false; // Currently, vector GEPs exist only with one index. if (G->getNumIndices() != 1) return false; } else if (!(I->isBinaryOp() || isa(I) || isa(I) || isa(I))) { return false; } // We can't vectorize memory operations without target data if (TD == 0 && IsSimpleLoadStore) return false; Type *T1, *T2; if (isa(I)) { // For stores, it is the value type, not the pointer type that matters // because the value is what will come from a vector register. Value *IVal = cast(I)->getValueOperand(); T1 = IVal->getType(); } else { T1 = I->getType(); } if (I->isCast()) T2 = cast(I)->getSrcTy(); else T2 = T1; // Not every type can be vectorized... if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) || !(VectorType::isValidElementType(T2) || T2->isVectorTy())) return false; if (!Config.VectorizeInts && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy())) return false; if (!Config.VectorizeFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy())) return false; if ((!Config.VectorizePointers || TD == 0) && (T1->getScalarType()->isPointerTy() || T2->getScalarType()->isPointerTy())) return false; if (T1->getPrimitiveSizeInBits() > Config.VectorBits/2 || T2->getPrimitiveSizeInBits() > Config.VectorBits/2) return false; return true; } // This function returns true if the two provided instructions are compatible // (meaning that they can be fused into a vector instruction). This assumes // that I has already been determined to be vectorizable and that J is not // in the use tree of I. bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J, bool IsSimpleLoadStore) { DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I << " <-> " << *J << "\n"); // Loads and stores can be merged if they have different alignments, // but are otherwise the same. LoadInst *LI, *LJ; StoreInst *SI, *SJ; if ((LI = dyn_cast(I)) && (LJ = dyn_cast(J))) { if (I->getType() != J->getType()) return false; if (LI->getPointerOperand()->getType() != LJ->getPointerOperand()->getType() || LI->isVolatile() != LJ->isVolatile() || LI->getOrdering() != LJ->getOrdering() || LI->getSynchScope() != LJ->getSynchScope()) return false; } else if ((SI = dyn_cast(I)) && (SJ = dyn_cast(J))) { if (SI->getValueOperand()->getType() != SJ->getValueOperand()->getType() || SI->getPointerOperand()->getType() != SJ->getPointerOperand()->getType() || SI->isVolatile() != SJ->isVolatile() || SI->getOrdering() != SJ->getOrdering() || SI->getSynchScope() != SJ->getSynchScope()) return false; } else if (!J->isSameOperationAs(I)) { return false; } // FIXME: handle addsub-type operations! if (IsSimpleLoadStore) { Value *IPtr, *JPtr; unsigned IAlignment, JAlignment; int64_t OffsetInElmts = 0; if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, OffsetInElmts) && abs64(OffsetInElmts) == 1) { if (Config.AlignedOnly) { Type *aType = isa(I) ? cast(I)->getValueOperand()->getType() : I->getType(); // An aligned load or store is possible only if the instruction // with the lower offset has an alignment suitable for the // vector type. unsigned BottomAlignment = IAlignment; if (OffsetInElmts < 0) BottomAlignment = JAlignment; Type *VType = getVecTypeForPair(aType); unsigned VecAlignment = TD->getPrefTypeAlignment(VType); if (BottomAlignment < VecAlignment) return false; } } else { return false; } } else if (isa(I)) { // Only merge two shuffles if they're both constant return isa(I->getOperand(2)) && isa(J->getOperand(2)); // FIXME: We may want to vectorize non-constant shuffles also. } // The powi intrinsic is special because only the first argument is // vectorized, the second arguments must be equal. CallInst *CI = dyn_cast(I); Function *FI; if (CI && (FI = CI->getCalledFunction()) && FI->getIntrinsicID() == Intrinsic::powi) { Value *A1I = CI->getArgOperand(1), *A1J = cast(J)->getArgOperand(1); const SCEV *A1ISCEV = SE->getSCEV(A1I), *A1JSCEV = SE->getSCEV(A1J); return (A1ISCEV == A1JSCEV); } return true; } // Figure out whether or not J uses I and update the users and write-set // structures associated with I. Specifically, Users represents the set of // instructions that depend on I. WriteSet represents the set // of memory locations that are dependent on I. If UpdateUsers is true, // and J uses I, then Users is updated to contain J and WriteSet is updated // to contain any memory locations to which J writes. The function returns // true if J uses I. By default, alias analysis is used to determine // whether J reads from memory that overlaps with a location in WriteSet. // If LoadMoveSet is not null, then it is a previously-computed multimap // where the key is the memory-based user instruction and the value is // the instruction to be compared with I. So, if LoadMoveSet is provided, // then the alias analysis is not used. This is necessary because this // function is called during the process of moving instructions during // vectorization and the results of the alias analysis are not stable during // that process. bool BBVectorize::trackUsesOfI(DenseSet &Users, AliasSetTracker &WriteSet, Instruction *I, Instruction *J, bool UpdateUsers, std::multimap *LoadMoveSet) { bool UsesI = false; // This instruction may already be marked as a user due, for example, to // being a member of a selected pair. if (Users.count(J)) UsesI = true; if (!UsesI) for (User::op_iterator JU = J->op_begin(), JE = J->op_end(); JU != JE; ++JU) { Value *V = *JU; if (I == V || Users.count(V)) { UsesI = true; break; } } if (!UsesI && J->mayReadFromMemory()) { if (LoadMoveSet) { VPIteratorPair JPairRange = LoadMoveSet->equal_range(J); UsesI = isSecondInIteratorPair(I, JPairRange); } else { for (AliasSetTracker::iterator W = WriteSet.begin(), WE = WriteSet.end(); W != WE; ++W) { if (W->aliasesUnknownInst(J, *AA)) { UsesI = true; break; } } } } if (UsesI && UpdateUsers) { if (J->mayWriteToMemory()) WriteSet.add(J); Users.insert(J); } return UsesI; } // This function iterates over all instruction pairs in the provided // basic block and collects all candidate pairs for vectorization. bool BBVectorize::getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap &CandidatePairs, std::vector &PairableInsts) { BasicBlock::iterator E = BB.end(); if (Start == E) return false; bool ShouldContinue = false, IAfterStart = false; for (BasicBlock::iterator I = Start++; I != E; ++I) { if (I == Start) IAfterStart = true; bool IsSimpleLoadStore; if (!isInstVectorizable(I, IsSimpleLoadStore)) continue; // Look for an instruction with which to pair instruction *I... DenseSet Users; AliasSetTracker WriteSet(*AA); bool JAfterStart = IAfterStart; BasicBlock::iterator J = llvm::next(I); for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) { if (J == Start) JAfterStart = true; // Determine if J uses I, if so, exit the loop. bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep); if (Config.FastDep) { // Note: For this heuristic to be effective, independent operations // must tend to be intermixed. This is likely to be true from some // kinds of grouped loop unrolling (but not the generic LLVM pass), // but otherwise may require some kind of reordering pass. // When using fast dependency analysis, // stop searching after first use: if (UsesI) break; } else { if (UsesI) continue; } // J does not use I, and comes before the first use of I, so it can be // merged with I if the instructions are compatible. if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue; // J is a candidate for merging with I. if (!PairableInsts.size() || PairableInsts[PairableInsts.size()-1] != I) { PairableInsts.push_back(I); } CandidatePairs.insert(ValuePair(I, J)); // The next call to this function must start after the last instruction // selected during this invocation. if (JAfterStart) { Start = llvm::next(J); IAfterStart = JAfterStart = false; } DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair " << *I << " <-> " << *J << "\n"); // If we have already found too many pairs, break here and this function // will be called again starting after the last instruction selected // during this invocation. if (PairableInsts.size() >= Config.MaxInsts) { ShouldContinue = true; break; } } if (ShouldContinue) break; } DEBUG(dbgs() << "BBV: found " << PairableInsts.size() << " instructions with candidate pairs\n"); return ShouldContinue; } // Finds candidate pairs connected to the pair P = . This means that // it looks for pairs such that both members have an input which is an // output of PI or PJ. void BBVectorize::computePairsConnectedTo( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, ValuePair P) { StoreInst *SI, *SJ; // For each possible pairing for this variable, look at the uses of // the first value... for (Value::use_iterator I = P.first->use_begin(), E = P.first->use_end(); I != E; ++I) { if (isa(*I)) { // A pair cannot be connected to a load because the load only takes one // operand (the address) and it is a scalar even after vectorization. continue; } else if ((SI = dyn_cast(*I)) && P.first == SI->getPointerOperand()) { // Similarly, a pair cannot be connected to a store through its // pointer operand. continue; } VPIteratorPair IPairRange = CandidatePairs.equal_range(*I); // For each use of the first variable, look for uses of the second // variable... for (Value::use_iterator J = P.second->use_begin(), E2 = P.second->use_end(); J != E2; ++J) { if ((SJ = dyn_cast(*J)) && P.second == SJ->getPointerOperand()) continue; VPIteratorPair JPairRange = CandidatePairs.equal_range(*J); // Look for : if (isSecondInIteratorPair(*J, IPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); // Look for : if (isSecondInIteratorPair(*I, JPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I))); } if (Config.SplatBreaksChain) continue; // Look for cases where just the first value in the pair is used by // both members of another pair (splatting). for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) { if ((SJ = dyn_cast(*J)) && P.first == SJ->getPointerOperand()) continue; if (isSecondInIteratorPair(*J, IPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); } } if (Config.SplatBreaksChain) return; // Look for cases where just the second value in the pair is used by // both members of another pair (splatting). for (Value::use_iterator I = P.second->use_begin(), E = P.second->use_end(); I != E; ++I) { if (isa(*I)) continue; else if ((SI = dyn_cast(*I)) && P.second == SI->getPointerOperand()) continue; VPIteratorPair IPairRange = CandidatePairs.equal_range(*I); for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) { if ((SJ = dyn_cast(*J)) && P.second == SJ->getPointerOperand()) continue; if (isSecondInIteratorPair(*J, IPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); } } } // This function figures out which pairs are connected. Two pairs are // connected if some output of the first pair forms an input to both members // of the second pair. void BBVectorize::computeConnectedPairs( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs) { for (std::vector::iterator PI = PairableInsts.begin(), PE = PairableInsts.end(); PI != PE; ++PI) { VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI); for (std::multimap::iterator P = choiceRange.first; P != choiceRange.second; ++P) computePairsConnectedTo(CandidatePairs, PairableInsts, ConnectedPairs, *P); } DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size() << " pair connections.\n"); } // This function builds a set of use tuples such that is in the set // if B is in the use tree of A. If B is in the use tree of A, then B // depends on the output of A. void BBVectorize::buildDepMap( BasicBlock &BB, std::multimap &CandidatePairs, std::vector &PairableInsts, DenseSet &PairableInstUsers) { DenseSet IsInPair; for (std::multimap::iterator C = CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) { IsInPair.insert(C->first); IsInPair.insert(C->second); } // Iterate through the basic block, recording all Users of each // pairable instruction. BasicBlock::iterator E = BB.end(); for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) { if (IsInPair.find(I) == IsInPair.end()) continue; DenseSet Users; AliasSetTracker WriteSet(*AA); for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) (void) trackUsesOfI(Users, WriteSet, I, J); for (DenseSet::iterator U = Users.begin(), E = Users.end(); U != E; ++U) PairableInstUsers.insert(ValuePair(I, *U)); } } // Returns true if an input to pair P is an output of pair Q and also an // input of pair Q is an output of pair P. If this is the case, then these // two pairs cannot be simultaneously fused. bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q, DenseSet &PairableInstUsers, std::multimap *PairableInstUserMap) { // Two pairs are in conflict if they are mutual Users of eachother. bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) || PairableInstUsers.count(ValuePair(P.first, Q.second)) || PairableInstUsers.count(ValuePair(P.second, Q.first)) || PairableInstUsers.count(ValuePair(P.second, Q.second)); bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) || PairableInstUsers.count(ValuePair(Q.first, P.second)) || PairableInstUsers.count(ValuePair(Q.second, P.first)) || PairableInstUsers.count(ValuePair(Q.second, P.second)); if (PairableInstUserMap) { // FIXME: The expensive part of the cycle check is not so much the cycle // check itself but this edge insertion procedure. This needs some // profiling and probably a different data structure (same is true of // most uses of std::multimap). if (PUsesQ) { VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q); if (!isSecondInIteratorPair(P, QPairRange)) PairableInstUserMap->insert(VPPair(Q, P)); } if (QUsesP) { VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P); if (!isSecondInIteratorPair(Q, PPairRange)) PairableInstUserMap->insert(VPPair(P, Q)); } } return (QUsesP && PUsesQ); } // This function walks the use graph of current pairs to see if, starting // from P, the walk returns to P. bool BBVectorize::pairWillFormCycle(ValuePair P, std::multimap &PairableInstUserMap, DenseSet &CurrentPairs) { DEBUG(if (DebugCycleCheck) dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> " << *P.second << "\n"); // A lookup table of visisted pairs is kept because the PairableInstUserMap // contains non-direct associations. DenseSet Visited; SmallVector Q; // General depth-first post-order traversal: Q.push_back(P); do { ValuePair QTop = Q.pop_back_val(); Visited.insert(QTop); DEBUG(if (DebugCycleCheck) dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> " << *QTop.second << "\n"); VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop); for (std::multimap::iterator C = QPairRange.first; C != QPairRange.second; ++C) { if (C->second == P) { DEBUG(dbgs() << "BBV: rejected to prevent non-trivial cycle formation: " << *C->first.first << " <-> " << *C->first.second << "\n"); return true; } if (CurrentPairs.count(C->second) && !Visited.count(C->second)) Q.push_back(C->second); } } while (!Q.empty()); return false; } // This function builds the initial tree of connected pairs with the // pair J at the root. void BBVectorize::buildInitialTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, DenseMap &ChosenPairs, DenseMap &Tree, ValuePair J) { // Each of these pairs is viewed as the root node of a Tree. The Tree // is then walked (depth-first). As this happens, we keep track of // the pairs that compose the Tree and the maximum depth of the Tree. SmallVector Q; // General depth-first post-order traversal: Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); do { ValuePairWithDepth QTop = Q.back(); // Push each child onto the queue: bool MoreChildren = false; size_t MaxChildDepth = QTop.second; VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap::iterator k = qtRange.first; k != qtRange.second; ++k) { // Make sure that this child pair is still a candidate: bool IsStillCand = false; VPIteratorPair checkRange = CandidatePairs.equal_range(k->second.first); for (std::multimap::iterator m = checkRange.first; m != checkRange.second; ++m) { if (m->second == k->second.second) { IsStillCand = true; break; } } if (IsStillCand) { DenseMap::iterator C = Tree.find(k->second); if (C == Tree.end()) { size_t d = getDepthFactor(k->second.first); Q.push_back(ValuePairWithDepth(k->second, QTop.second+d)); MoreChildren = true; } else { MaxChildDepth = std::max(MaxChildDepth, C->second); } } } if (!MoreChildren) { // Record the current pair as part of the Tree: Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth)); Q.pop_back(); } } while (!Q.empty()); } // Given some initial tree, prune it by removing conflicting pairs (pairs // that cannot be simultaneously chosen for vectorization). void BBVectorize::pruneTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseMap &Tree, DenseSet &PrunedTree, ValuePair J, bool UseCycleCheck) { SmallVector Q; // General depth-first post-order traversal: Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); do { ValuePairWithDepth QTop = Q.pop_back_val(); PrunedTree.insert(QTop.first); // Visit each child, pruning as necessary... DenseMap BestChildren; VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap::iterator K = QTopRange.first; K != QTopRange.second; ++K) { DenseMap::iterator C = Tree.find(K->second); if (C == Tree.end()) continue; // This child is in the Tree, now we need to make sure it is the // best of any conflicting children. There could be multiple // conflicting children, so first, determine if we're keeping // this child, then delete conflicting children as necessary. // It is also necessary to guard against pairing-induced // dependencies. Consider instructions a .. x .. y .. b // such that (a,b) are to be fused and (x,y) are to be fused // but a is an input to x and b is an output from y. This // means that y cannot be moved after b but x must be moved // after b for (a,b) to be fused. In other words, after // fusing (a,b) we have y .. a/b .. x where y is an input // to a/b and x is an output to a/b: x and y can no longer // be legally fused. To prevent this condition, we must // make sure that a child pair added to the Tree is not // both an input and output of an already-selected pair. // Pairing-induced dependencies can also form from more complicated // cycles. The pair vs. pair conflicts are easy to check, and so // that is done explicitly for "fast rejection", and because for // child vs. child conflicts, we may prefer to keep the current // pair in preference to the already-selected child. DenseSet CurrentPairs; bool CanAdd = true; for (DenseMap::iterator C2 = BestChildren.begin(), E2 = BestChildren.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { if (C2->second >= C->second) { CanAdd = false; break; } CurrentPairs.insert(C2->first); } } if (!CanAdd) continue; // Even worse, this child could conflict with another node already // selected for the Tree. If that is the case, ignore this child. for (DenseSet::iterator T = PrunedTree.begin(), E2 = PrunedTree.end(); T != E2; ++T) { if (T->first == C->first.first || T->first == C->first.second || T->second == C->first.first || T->second == C->first.second || pairsConflict(*T, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(*T); } if (!CanAdd) continue; // And check the queue too... for (SmallVector::iterator C2 = Q.begin(), E2 = Q.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(C2->first); } if (!CanAdd) continue; // Last but not least, check for a conflict with any of the // already-chosen pairs. for (DenseMap::iterator C2 = ChosenPairs.begin(), E2 = ChosenPairs.end(); C2 != E2; ++C2) { if (pairsConflict(*C2, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(*C2); } if (!CanAdd) continue; // To check for non-trivial cycles formed by the addition of the // current pair we've formed a list of all relevant pairs, now use a // graph walk to check for a cycle. We start from the current pair and // walk the use tree to see if we again reach the current pair. If we // do, then the current pair is rejected. // FIXME: It may be more efficient to use a topological-ordering // algorithm to improve the cycle check. This should be investigated. if (UseCycleCheck && pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs)) continue; // This child can be added, but we may have chosen it in preference // to an already-selected child. Check for this here, and if a // conflict is found, then remove the previously-selected child // before adding this one in its place. for (DenseMap::iterator C2 = BestChildren.begin(); C2 != BestChildren.end();) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers)) BestChildren.erase(C2++); else ++C2; } BestChildren.insert(ValuePairWithDepth(C->first, C->second)); } for (DenseMap::iterator C = BestChildren.begin(), E2 = BestChildren.end(); C != E2; ++C) { size_t DepthF = getDepthFactor(C->first.first); Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF)); } } while (!Q.empty()); } // This function finds the best tree of mututally-compatible connected // pairs, given the choice of root pairs as an iterator range. void BBVectorize::findBestTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseSet &BestTree, size_t &BestMaxDepth, size_t &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck) { for (std::multimap::iterator J = ChoiceRange.first; J != ChoiceRange.second; ++J) { // Before going any further, make sure that this pair does not // conflict with any already-selected pairs (see comment below // near the Tree pruning for more details). DenseSet ChosenPairSet; bool DoesConflict = false; for (DenseMap::iterator C = ChosenPairs.begin(), E = ChosenPairs.end(); C != E; ++C) { if (pairsConflict(*C, *J, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { DoesConflict = true; break; } ChosenPairSet.insert(*C); } if (DoesConflict) continue; if (UseCycleCheck && pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet)) continue; DenseMap Tree; buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, ChosenPairs, Tree, *J); // Because we'll keep the child with the largest depth, the largest // depth is still the same in the unpruned Tree. size_t MaxDepth = Tree.lookup(*J); DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << Tree.size() << "\n"); // At this point the Tree has been constructed, but, may contain // contradictory children (meaning that different children of // some tree node may be attempting to fuse the same instruction). // So now we walk the tree again, in the case of a conflict, // keep only the child with the largest depth. To break a tie, // favor the first child. DenseSet PrunedTree; pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree, PrunedTree, *J, UseCycleCheck); size_t EffSize = 0; for (DenseSet::iterator S = PrunedTree.begin(), E = PrunedTree.end(); S != E; ++S) EffSize += getDepthFactor(S->first); DEBUG(if (DebugPairSelection) dbgs() << "BBV: found pruned Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << PrunedTree.size() << " (effective size: " << EffSize << ")\n"); if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) { BestMaxDepth = MaxDepth; BestEffSize = EffSize; BestTree = PrunedTree; } } } // Given the list of candidate pairs, this function selects those // that will be fused into vector instructions. void BBVectorize::choosePairs( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, DenseMap& ChosenPairs) { bool UseCycleCheck = CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck; std::multimap PairableInstUserMap; for (std::vector::iterator I = PairableInsts.begin(), E = PairableInsts.end(); I != E; ++I) { // The number of possible pairings for this variable: size_t NumChoices = CandidatePairs.count(*I); if (!NumChoices) continue; VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I); // The best pair to choose and its tree: size_t BestMaxDepth = 0, BestEffSize = 0; DenseSet BestTree; findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, PairableInstUserMap, ChosenPairs, BestTree, BestMaxDepth, BestEffSize, ChoiceRange, UseCycleCheck); // A tree has been chosen (or not) at this point. If no tree was // chosen, then this instruction, I, cannot be paired (and is no longer // considered). DEBUG(if (BestTree.size() > 0) dbgs() << "BBV: selected pairs in the best tree for: " << *cast(*I) << "\n"); for (DenseSet::iterator S = BestTree.begin(), SE2 = BestTree.end(); S != SE2; ++S) { // Insert the members of this tree into the list of chosen pairs. ChosenPairs.insert(ValuePair(S->first, S->second)); DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " << *S->second << "\n"); // Remove all candidate pairs that have values in the chosen tree. for (std::multimap::iterator K = CandidatePairs.begin(); K != CandidatePairs.end();) { if (K->first == S->first || K->second == S->first || K->second == S->second || K->first == S->second) { // Don't remove the actual pair chosen so that it can be used // in subsequent tree selections. if (!(K->first == S->first && K->second == S->second)) CandidatePairs.erase(K++); else ++K; } else { ++K; } } } } DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n"); } std::string getReplacementName(Instruction *I, bool IsInput, unsigned o, unsigned n = 0) { if (!I->hasName()) return ""; return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) + (n > 0 ? "." + utostr(n) : "")).str(); } // Returns the value that is to be used as the pointer input to the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool &FlipMemInputs) { Value *IPtr, *JPtr; unsigned IAlignment, JAlignment; int64_t OffsetInElmts; (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, OffsetInElmts); // The pointer value is taken to be the one with the lowest offset. Value *VPtr; if (OffsetInElmts > 0) { VPtr = IPtr; } else { FlipMemInputs = true; VPtr = JPtr; } Type *ArgType = cast(IPtr->getType())->getElementType(); Type *VArgType = getVecTypeForPair(ArgType); Type *VArgPtrType = PointerType::get(VArgType, cast(IPtr->getType())->getAddressSpace()); return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o), /* insert before */ FlipMemInputs ? J : I); } void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned NumElem, unsigned MaskOffset, unsigned NumInElem, unsigned IdxOffset, std::vector &Mask) { for (unsigned v = 0; v < NumElem/2; ++v) { int m = cast(J)->getMaskValue(v); if (m < 0) { Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context)); } else { unsigned mm = m + (int) IdxOffset; if (m >= (int) NumInElem) mm += (int) NumInElem; Mask[v+MaskOffset] = ConstantInt::get(Type::getInt32Ty(Context), mm); } } } // Returns the value that is to be used as the vector-shuffle mask to the // vector instruction that fuses I with J. Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context, Instruction *I, Instruction *J) { // This is the shuffle mask. We need to append the second // mask to the first, and the numbers need to be adjusted. Type *ArgType = I->getType(); Type *VArgType = getVecTypeForPair(ArgType); // Get the total number of elements in the fused vector type. // By definition, this must equal the number of elements in // the final mask. unsigned NumElem = cast(VArgType)->getNumElements(); std::vector Mask(NumElem); Type *OpType = I->getOperand(0)->getType(); unsigned NumInElem = cast(OpType)->getNumElements(); // For the mask from the first pair... fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask); // For the mask from the second pair... fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem, Mask); return ConstantVector::get(Mask); } // Returns the value to be used as the specified operand of the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool FlipMemInputs) { Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1); // Compute the fused vector type for this operand Type *ArgType = I->getOperand(o)->getType(); VectorType *VArgType = getVecTypeForPair(ArgType); Instruction *L = I, *H = J; if (FlipMemInputs) { L = J; H = I; } if (ArgType->isVectorTy()) { unsigned numElem = cast(VArgType)->getNumElements(); std::vector Mask(numElem); for (unsigned v = 0; v < numElem; ++v) Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); Instruction *BV = new ShuffleVectorInst(L->getOperand(o), H->getOperand(o), ConstantVector::get(Mask), getReplacementName(I, true, o)); BV->insertBefore(J); return BV; } // If these two inputs are the output of another vector instruction, // then we should use that output directly. It might be necessary to // permute it first. [When pairings are fused recursively, you can // end up with cases where a large vector is decomposed into scalars // using extractelement instructions, then built into size-2 // vectors using insertelement and the into larger vectors using // shuffles. InstCombine does not simplify all of these cases well, // and so we make sure that shuffles are generated here when possible. ExtractElementInst *LEE = dyn_cast(L->getOperand(o)); ExtractElementInst *HEE = dyn_cast(H->getOperand(o)); if (LEE && HEE && LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) { VectorType *EEType = cast(LEE->getOperand(0)->getType()); unsigned LowIndx = cast(LEE->getOperand(1))->getZExtValue(); unsigned HighIndx = cast(HEE->getOperand(1))->getZExtValue(); if (LEE->getOperand(0) == HEE->getOperand(0)) { if (LowIndx == 0 && HighIndx == 1) return LEE->getOperand(0); std::vector Mask(2); Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx); Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx); Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0), UndefValue::get(EEType), ConstantVector::get(Mask), getReplacementName(I, true, o)); BV->insertBefore(J); return BV; } std::vector Mask(2); HighIndx += EEType->getNumElements(); Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx); Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx); Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0), HEE->getOperand(0), ConstantVector::get(Mask), getReplacementName(I, true, o)); BV->insertBefore(J); return BV; } Instruction *BV1 = InsertElementInst::Create( UndefValue::get(VArgType), L->getOperand(o), CV0, getReplacementName(I, true, o, 1)); BV1->insertBefore(I); Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o), CV1, getReplacementName(I, true, o, 2)); BV2->insertBefore(J); return BV2; } // This function creates an array of values that will be used as the inputs // to the vector instruction that fuses I with J. void BBVectorize::getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector &ReplacedOperands, bool &FlipMemInputs) { FlipMemInputs = false; unsigned NumOperands = I->getNumOperands(); for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) { // Iterate backward so that we look at the store pointer // first and know whether or not we need to flip the inputs. if (isa(I) || (o == 1 && isa(I))) { // This is the pointer for a load/store instruction. ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o, FlipMemInputs); continue; } else if (isa(I)) { Function *F = cast(I)->getCalledFunction(); unsigned IID = F->getIntrinsicID(); if (o == NumOperands-1) { BasicBlock &BB = *I->getParent(); Module *M = BB.getParent()->getParent(); Type *ArgType = I->getType(); Type *VArgType = getVecTypeForPair(ArgType); // FIXME: is it safe to do this here? ReplacedOperands[o] = Intrinsic::getDeclaration(M, (Intrinsic::ID) IID, VArgType); continue; } else if (IID == Intrinsic::powi && o == 1) { // The second argument of powi is a single integer and we've already // checked that both arguments are equal. As a result, we just keep // I's second argument. ReplacedOperands[o] = I->getOperand(o); continue; } } else if (isa(I) && o == NumOperands-1) { ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J); continue; } ReplacedOperands[o] = getReplacementInput(Context, I, J, o, FlipMemInputs); } } // This function creates two values that represent the outputs of the // original I and J instructions. These are generally vector shuffles // or extracts. In many cases, these will end up being unused and, thus, // eliminated by later passes. void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, Instruction *&K1, Instruction *&K2, bool &FlipMemInputs) { Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1); if (isa(I)) { AA->replaceWithNewValue(I, K); AA->replaceWithNewValue(J, K); } else { Type *IType = I->getType(); Type *VType = getVecTypeForPair(IType); if (IType->isVectorTy()) { unsigned numElem = cast(IType)->getNumElements(); std::vector Mask1(numElem), Mask2(numElem); for (unsigned v = 0; v < numElem; ++v) { Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v); } K1 = new ShuffleVectorInst(K, UndefValue::get(VType), ConstantVector::get( FlipMemInputs ? Mask2 : Mask1), getReplacementName(K, false, 1)); K2 = new ShuffleVectorInst(K, UndefValue::get(VType), ConstantVector::get( FlipMemInputs ? Mask1 : Mask2), getReplacementName(K, false, 2)); } else { K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0, getReplacementName(K, false, 1)); K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1, getReplacementName(K, false, 2)); } K1->insertAfter(K); K2->insertAfter(K1); InsertionPt = K2; } } // Move all uses of the function I (including pairing-induced uses) after J. bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *I, Instruction *J) { // Skip to the first instruction past I. BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I)); DenseSet Users; AliasSetTracker WriteSet(*AA); for (; cast(L) != J; ++L) (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet); assert(cast(L) == J && "Tracking has not proceeded far enough to check for dependencies"); // If J is now in the use set of I, then trackUsesOfI will return true // and we have a dependency cycle (and the fusing operation must abort). return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet); } // Move all uses of the function I (including pairing-induced uses) after J. void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *&InsertionPt, Instruction *I, Instruction *J) { // Skip to the first instruction past I. BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I)); DenseSet Users; AliasSetTracker WriteSet(*AA); for (; cast(L) != J;) { if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) { // Move this instruction Instruction *InstToMove = L; ++L; DEBUG(dbgs() << "BBV: moving: " << *InstToMove << " to after " << *InsertionPt << "\n"); InstToMove->removeFromParent(); InstToMove->insertAfter(InsertionPt); InsertionPt = InstToMove; } else { ++L; } } } // Collect all load instruction that are in the move set of a given first // pair member. These loads depend on the first instruction, I, and so need // to be moved after J (the second instruction) when the pair is fused. void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB, DenseMap &ChosenPairs, std::multimap &LoadMoveSet, Instruction *I) { // Skip to the first instruction past I. BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I)); DenseSet Users; AliasSetTracker WriteSet(*AA); // Note: We cannot end the loop when we reach J because J could be moved // farther down the use chain by another instruction pairing. Also, J // could be before I if this is an inverted input. for (BasicBlock::iterator E = BB.end(); cast(L) != E; ++L) { if (trackUsesOfI(Users, WriteSet, I, L)) { if (L->mayReadFromMemory()) LoadMoveSet.insert(ValuePair(L, I)); } } } // In cases where both load/stores and the computation of their pointers // are chosen for vectorization, we can end up in a situation where the // aliasing analysis starts returning different query results as the // process of fusing instruction pairs continues. Because the algorithm // relies on finding the same use trees here as were found earlier, we'll // need to precompute the necessary aliasing information here and then // manually update it during the fusion process. void BBVectorize::collectLoadMoveSet(BasicBlock &BB, std::vector &PairableInsts, DenseMap &ChosenPairs, std::multimap &LoadMoveSet) { for (std::vector::iterator PI = PairableInsts.begin(), PIE = PairableInsts.end(); PI != PIE; ++PI) { DenseMap::iterator P = ChosenPairs.find(*PI); if (P == ChosenPairs.end()) continue; Instruction *I = cast(P->first); collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I); } } // This function fuses the chosen instruction pairs into vector instructions, // taking care preserve any needed scalar outputs and, then, it reorders the // remaining instructions as needed (users of the first member of the pair // need to be moved to after the location of the second member of the pair // because the vector instruction is inserted in the location of the pair's // second member). void BBVectorize::fuseChosenPairs(BasicBlock &BB, std::vector &PairableInsts, DenseMap &ChosenPairs) { LLVMContext& Context = BB.getContext(); // During the vectorization process, the order of the pairs to be fused // could be flipped. So we'll add each pair, flipped, into the ChosenPairs // list. After a pair is fused, the flipped pair is removed from the list. std::vector FlippedPairs; FlippedPairs.reserve(ChosenPairs.size()); for (DenseMap::iterator P = ChosenPairs.begin(), E = ChosenPairs.end(); P != E; ++P) FlippedPairs.push_back(ValuePair(P->second, P->first)); for (std::vector::iterator P = FlippedPairs.begin(), E = FlippedPairs.end(); P != E; ++P) ChosenPairs.insert(*P); std::multimap LoadMoveSet; collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet); DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n"); for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) { DenseMap::iterator P = ChosenPairs.find(PI); if (P == ChosenPairs.end()) { ++PI; continue; } if (getDepthFactor(P->first) == 0) { // These instructions are not really fused, but are tracked as though // they are. Any case in which it would be interesting to fuse them // will be taken care of by InstCombine. --NumFusedOps; ++PI; continue; } Instruction *I = cast(P->first), *J = cast(P->second); DEBUG(dbgs() << "BBV: fusing: " << *I << " <-> " << *J << "\n"); // Remove the pair and flipped pair from the list. DenseMap::iterator FP = ChosenPairs.find(P->second); assert(FP != ChosenPairs.end() && "Flipped pair not found in list"); ChosenPairs.erase(FP); ChosenPairs.erase(P); if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) { DEBUG(dbgs() << "BBV: fusion of: " << *I << " <-> " << *J << " aborted because of non-trivial dependency cycle\n"); --NumFusedOps; ++PI; continue; } bool FlipMemInputs; unsigned NumOperands = I->getNumOperands(); SmallVector ReplacedOperands(NumOperands); getReplacementInputsForPair(Context, I, J, ReplacedOperands, FlipMemInputs); // Make a copy of the original operation, change its type to the vector // type and replace its operands with the vector operands. Instruction *K = I->clone(); if (I->hasName()) K->takeName(I); if (!isa(K)) K->mutateType(getVecTypeForPair(I->getType())); for (unsigned o = 0; o < NumOperands; ++o) K->setOperand(o, ReplacedOperands[o]); // If we've flipped the memory inputs, make sure that we take the correct // alignment. if (FlipMemInputs) { if (isa(K)) cast(K)->setAlignment(cast(J)->getAlignment()); else cast(K)->setAlignment(cast(J)->getAlignment()); } K->insertAfter(J); // Instruction insertion point: Instruction *InsertionPt = K; Instruction *K1 = 0, *K2 = 0; replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2, FlipMemInputs); // The use tree of the first original instruction must be moved to after // the location of the second instruction. The entire use tree of the // first instruction is disjoint from the input tree of the second // (by definition), and so commutes with it. moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J); if (!isa(I)) { I->replaceAllUsesWith(K1); J->replaceAllUsesWith(K2); AA->replaceWithNewValue(I, K1); AA->replaceWithNewValue(J, K2); } // Instructions that may read from memory may be in the load move set. // Once an instruction is fused, we no longer need its move set, and so // the values of the map never need to be updated. However, when a load // is fused, we need to merge the entries from both instructions in the // pair in case those instructions were in the move set of some other // yet-to-be-fused pair. The loads in question are the keys of the map. if (I->mayReadFromMemory()) { std::vector NewSetMembers; VPIteratorPair IPairRange = LoadMoveSet.equal_range(I); VPIteratorPair JPairRange = LoadMoveSet.equal_range(J); for (std::multimap::iterator N = IPairRange.first; N != IPairRange.second; ++N) NewSetMembers.push_back(ValuePair(K, N->second)); for (std::multimap::iterator N = JPairRange.first; N != JPairRange.second; ++N) NewSetMembers.push_back(ValuePair(K, N->second)); for (std::vector::iterator A = NewSetMembers.begin(), AE = NewSetMembers.end(); A != AE; ++A) LoadMoveSet.insert(*A); } // Before removing I, set the iterator to the next instruction. PI = llvm::next(BasicBlock::iterator(I)); if (cast(PI) == J) ++PI; SE->forgetValue(I); SE->forgetValue(J); I->eraseFromParent(); J->eraseFromParent(); } DEBUG(dbgs() << "BBV: final: \n" << BB << "\n"); } } char BBVectorize::ID = 0; static const char bb_vectorize_name[] = "Basic-Block Vectorization"; INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) { return new BBVectorize(C); } bool llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) { BBVectorize BBVectorizer(P, C); return BBVectorizer.vectorizeBB(BB); } //===----------------------------------------------------------------------===// VectorizeConfig::VectorizeConfig() { VectorBits = ::VectorBits; VectorizeInts = !::NoInts; VectorizeFloats = !::NoFloats; VectorizePointers = !::NoPointers; VectorizeCasts = !::NoCasts; VectorizeMath = !::NoMath; VectorizeFMA = !::NoFMA; VectorizeSelect = !::NoSelect; VectorizeGEP = !::NoGEP; VectorizeMemOps = !::NoMemOps; AlignedOnly = ::AlignedOnly; ReqChainDepth= ::ReqChainDepth; SearchLimit = ::SearchLimit; MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck; SplatBreaksChain = ::SplatBreaksChain; MaxInsts = ::MaxInsts; MaxIter = ::MaxIter; NoMemOpBoost = ::NoMemOpBoost; FastDep = ::FastDep; }