// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org/libs/unordered for documentation #ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED #define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #include <boost/unordered/unordered_map_fwd.hpp> #include <boost/unordered/detail/equivalent.hpp> #include <boost/unordered/detail/unique.hpp> #include <boost/unordered/detail/util.hpp> #include <boost/functional/hash.hpp> #include <boost/move/move.hpp> #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) #include <initializer_list> #endif #if defined(BOOST_MSVC) #pragma warning(push) #if BOOST_MSVC >= 1400 #pragma warning(disable:4396) //the inline specifier cannot be used when a // friend declaration refers to a specialization // of a function template #endif #endif namespace boost { namespace unordered { template <class K, class T, class H, class P, class A> class unordered_map { #if defined(BOOST_UNORDERED_USE_MOVE) BOOST_COPYABLE_AND_MOVABLE(unordered_map) #endif public: typedef K key_type; typedef std::pair<const K, T> value_type; typedef T mapped_type; typedef H hasher; typedef P key_equal; typedef A allocator_type; private: typedef boost::unordered::detail::map<A, K, T, H, P> types; typedef typename types::traits allocator_traits; typedef typename types::table table; public: typedef typename allocator_traits::pointer pointer; typedef typename allocator_traits::const_pointer const_pointer; typedef value_type& reference; typedef value_type const& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename table::cl_iterator const_local_iterator; typedef typename table::l_iterator local_iterator; typedef typename table::c_iterator const_iterator; typedef typename table::iterator iterator; private: table table_; public: // constructors explicit unordered_map( size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); explicit unordered_map(allocator_type const&); template <class InputIt> unordered_map(InputIt, InputIt); template <class InputIt> unordered_map( InputIt, InputIt, size_type, const hasher& = hasher(), const key_equal& = key_equal()); template <class InputIt> unordered_map( InputIt, InputIt, size_type, const hasher&, const key_equal&, const allocator_type&); // copy/move constructors unordered_map(unordered_map const&); unordered_map(unordered_map const&, allocator_type const&); #if defined(BOOST_UNORDERED_USE_MOVE) unordered_map(BOOST_RV_REF(unordered_map) other) : table_(other.table_, boost::unordered::detail::move_tag()) { } #elif !defined(BOOST_NO_RVALUE_REFERENCES) unordered_map(unordered_map&& other) : table_(other.table_, boost::unordered::detail::move_tag()) { } #endif #if !defined(BOOST_NO_RVALUE_REFERENCES) unordered_map(unordered_map&&, allocator_type const&); #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_map( std::initializer_list<value_type>, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal&l = key_equal(), const allocator_type& = allocator_type()); #endif // Destructor ~unordered_map(); // Assign #if defined(BOOST_UNORDERED_USE_MOVE) unordered_map& operator=(BOOST_COPY_ASSIGN_REF(unordered_map) x) { table_.assign(x.table_); return *this; } unordered_map& operator=(BOOST_RV_REF(unordered_map) x) { table_.move_assign(x.table_); return *this; } #else unordered_map& operator=(unordered_map const& x) { table_.assign(x.table_); return *this; } #if !defined(BOOST_NO_RVALUE_REFERENCES) unordered_map& operator=(unordered_map&& x) { table_.move_assign(x.table_); return *this; } #endif #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_map& operator=(std::initializer_list<value_type>); #endif allocator_type get_allocator() const { return table_.node_alloc(); } // size and capacity bool empty() const { return table_.size_ == 0; } size_type size() const { return table_.size_; } size_type max_size() const; // iterators iterator begin() { return table_.begin(); } const_iterator begin() const { return table_.begin(); } iterator end() { return iterator(); } const_iterator end() const { return const_iterator(); } const_iterator cbegin() const { return table_.begin(); } const_iterator cend() const { return const_iterator(); } // emplace #if !defined(BOOST_NO_VARIADIC_TEMPLATES) template <class... Args> std::pair<iterator, bool> emplace(BOOST_FWD_REF(Args)... args) { return table_.emplace(boost::forward<Args>(args)...); } template <class... Args> iterator emplace_hint(const_iterator, BOOST_FWD_REF(Args)... args) { return table_.emplace(boost::forward<Args>(args)...).first; } #else #if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100)) // 0 argument emplace requires special treatment in case // the container is instantiated with a value type that // doesn't have a default constructor. std::pair<iterator, bool> emplace( boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type()) { return this->emplace(boost::move(v)); } iterator emplace_hint(const_iterator hint, boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type() ) { return this->emplace_hint(hint, boost::move(v)); } #endif template <typename A0> std::pair<iterator, bool> emplace(BOOST_FWD_REF(A0) a0) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0)) ); } template <typename A0> iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0)) ).first; } template <typename A0, typename A1> std::pair<iterator, bool> emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1)) ); } template <typename A0, typename A1> iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1)) ).first; } template <typename A0, typename A1, typename A2> std::pair<iterator, bool> emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2)) ); } template <typename A0, typename A1, typename A2> iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2)) ).first; } #define BOOST_UNORDERED_EMPLACE(z, n, _) \ template < \ BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \ > \ std::pair<iterator, bool> emplace( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \ ) \ { \ return table_.emplace( \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \ a) \ )); \ } \ \ template < \ BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \ > \ iterator emplace_hint( \ const_iterator, \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \ ) \ { \ return table_.emplace( \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \ a) \ )).first; \ } BOOST_PP_REPEAT_FROM_TO(4, BOOST_UNORDERED_EMPLACE_LIMIT, BOOST_UNORDERED_EMPLACE, _) #undef BOOST_UNORDERED_EMPLACE #endif std::pair<iterator, bool> insert(value_type const& x) { return this->emplace(x); } std::pair<iterator, bool> insert(BOOST_RV_REF(value_type) x) { return this->emplace(boost::move(x)); } iterator insert(const_iterator hint, value_type const& x) { return this->emplace_hint(hint, x); } iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x) { return this->emplace_hint(hint, boost::move(x)); } template <class InputIt> void insert(InputIt, InputIt); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) void insert(std::initializer_list<value_type>); #endif iterator erase(const_iterator); size_type erase(const key_type&); iterator erase(const_iterator, const_iterator); void quick_erase(const_iterator it) { erase(it); } void erase_return_void(const_iterator it) { erase(it); } void clear(); void swap(unordered_map&); // observers hasher hash_function() const; key_equal key_eq() const; mapped_type& operator[](const key_type&); mapped_type& at(const key_type&); mapped_type const& at(const key_type&) const; // lookup iterator find(const key_type&); const_iterator find(const key_type&) const; template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> iterator find( CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&); template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> const_iterator find( CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&) const; size_type count(const key_type&) const; std::pair<iterator, iterator> equal_range(const key_type&); std::pair<const_iterator, const_iterator> equal_range(const key_type&) const; // bucket interface size_type bucket_count() const { return table_.bucket_count_; } size_type max_bucket_count() const { return table_.max_bucket_count(); } size_type bucket_size(size_type) const; size_type bucket(const key_type& k) const { return table::to_bucket(table_.bucket_count_, table_.hash(k)); } local_iterator begin(size_type n) { return local_iterator( table_.begin(n), n, table_.bucket_count_); } const_local_iterator begin(size_type n) const { return const_local_iterator( table_.begin(n), n, table_.bucket_count_); } local_iterator end(size_type) { return local_iterator(); } const_local_iterator end(size_type) const { return const_local_iterator(); } const_local_iterator cbegin(size_type n) const { return const_local_iterator( table_.begin(n), n, table_.bucket_count_); } const_local_iterator cend(size_type) const { return const_local_iterator(); } // hash policy float max_load_factor() const { return table_.mlf_; } float load_factor() const; void max_load_factor(float); void rehash(size_type); void reserve(size_type); #if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582) friend bool operator==<K,T,H,P,A>( unordered_map const&, unordered_map const&); friend bool operator!=<K,T,H,P,A>( unordered_map const&, unordered_map const&); #endif }; // class template unordered_map template <class K, class T, class H, class P, class A> class unordered_multimap { #if defined(BOOST_UNORDERED_USE_MOVE) BOOST_COPYABLE_AND_MOVABLE(unordered_multimap) #endif public: typedef K key_type; typedef std::pair<const K, T> value_type; typedef T mapped_type; typedef H hasher; typedef P key_equal; typedef A allocator_type; private: typedef boost::unordered::detail::multimap<A, K, T, H, P> types; typedef typename types::traits allocator_traits; typedef typename types::table table; public: typedef typename allocator_traits::pointer pointer; typedef typename allocator_traits::const_pointer const_pointer; typedef value_type& reference; typedef value_type const& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename table::cl_iterator const_local_iterator; typedef typename table::l_iterator local_iterator; typedef typename table::c_iterator const_iterator; typedef typename table::iterator iterator; private: table table_; public: // constructors explicit unordered_multimap( size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); explicit unordered_multimap(allocator_type const&); template <class InputIt> unordered_multimap(InputIt, InputIt); template <class InputIt> unordered_multimap( InputIt, InputIt, size_type, const hasher& = hasher(), const key_equal& = key_equal()); template <class InputIt> unordered_multimap( InputIt, InputIt, size_type, const hasher&, const key_equal&, const allocator_type&); // copy/move constructors unordered_multimap(unordered_multimap const&); unordered_multimap(unordered_multimap const&, allocator_type const&); #if defined(BOOST_UNORDERED_USE_MOVE) unordered_multimap(BOOST_RV_REF(unordered_multimap) other) : table_(other.table_, boost::unordered::detail::move_tag()) { } #elif !defined(BOOST_NO_RVALUE_REFERENCES) unordered_multimap(unordered_multimap&& other) : table_(other.table_, boost::unordered::detail::move_tag()) { } #endif #if !defined(BOOST_NO_RVALUE_REFERENCES) unordered_multimap(unordered_multimap&&, allocator_type const&); #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_multimap( std::initializer_list<value_type>, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal&l = key_equal(), const allocator_type& = allocator_type()); #endif // Destructor ~unordered_multimap(); // Assign #if defined(BOOST_UNORDERED_USE_MOVE) unordered_multimap& operator=( BOOST_COPY_ASSIGN_REF(unordered_multimap) x) { table_.assign(x.table_); return *this; } unordered_multimap& operator=(BOOST_RV_REF(unordered_multimap) x) { table_.move_assign(x.table_); return *this; } #else unordered_multimap& operator=(unordered_multimap const& x) { table_.assign(x.table_); return *this; } #if !defined(BOOST_NO_RVALUE_REFERENCES) unordered_multimap& operator=(unordered_multimap&& x) { table_.move_assign(x.table_); return *this; } #endif #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_multimap& operator=(std::initializer_list<value_type>); #endif allocator_type get_allocator() const { return table_.node_alloc(); } // size and capacity bool empty() const { return table_.size_ == 0; } size_type size() const { return table_.size_; } size_type max_size() const; // iterators iterator begin() { return table_.begin(); } const_iterator begin() const { return table_.begin(); } iterator end() { return iterator(); } const_iterator end() const { return const_iterator(); } const_iterator cbegin() const { return table_.begin(); } const_iterator cend() const { return const_iterator(); } // emplace #if !defined(BOOST_NO_VARIADIC_TEMPLATES) template <class... Args> iterator emplace(BOOST_FWD_REF(Args)... args) { return table_.emplace(boost::forward<Args>(args)...); } template <class... Args> iterator emplace_hint(const_iterator, BOOST_FWD_REF(Args)... args) { return table_.emplace(boost::forward<Args>(args)...); } #else #if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100)) // 0 argument emplace requires special treatment in case // the container is instantiated with a value type that // doesn't have a default constructor. iterator emplace( boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type()) { return this->emplace(boost::move(v)); } iterator emplace_hint(const_iterator hint, boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type() ) { return this->emplace_hint(hint, boost::move(v)); } #endif template <typename A0> iterator emplace(BOOST_FWD_REF(A0) a0) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0)) ); } template <typename A0> iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0)) ); } template <typename A0, typename A1> iterator emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1)) ); } template <typename A0, typename A1> iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1)) ); } template <typename A0, typename A1, typename A2> iterator emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2)) ); } template <typename A0, typename A1, typename A2> iterator emplace_hint(const_iterator, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.emplace( boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2)) ); } #define BOOST_UNORDERED_EMPLACE(z, n, _) \ template < \ BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \ > \ iterator emplace( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \ ) \ { \ return table_.emplace( \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \ a) \ )); \ } \ \ template < \ BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \ > \ iterator emplace_hint( \ const_iterator, \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a) \ ) \ { \ return table_.emplace( \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, \ a) \ )); \ } BOOST_PP_REPEAT_FROM_TO(4, BOOST_UNORDERED_EMPLACE_LIMIT, BOOST_UNORDERED_EMPLACE, _) #undef BOOST_UNORDERED_EMPLACE #endif iterator insert(value_type const& x) { return this->emplace(x); } iterator insert(BOOST_RV_REF(value_type) x) { return this->emplace(boost::move(x)); } iterator insert(const_iterator hint, value_type const& x) { return this->emplace_hint(hint, x); } iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x) { return this->emplace_hint(hint, boost::move(x)); } template <class InputIt> void insert(InputIt, InputIt); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) void insert(std::initializer_list<value_type>); #endif iterator erase(const_iterator); size_type erase(const key_type&); iterator erase(const_iterator, const_iterator); void quick_erase(const_iterator it) { erase(it); } void erase_return_void(const_iterator it) { erase(it); } void clear(); void swap(unordered_multimap&); // observers hasher hash_function() const; key_equal key_eq() const; // lookup iterator find(const key_type&); const_iterator find(const key_type&) const; template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> iterator find( CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&); template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> const_iterator find( CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&) const; size_type count(const key_type&) const; std::pair<iterator, iterator> equal_range(const key_type&); std::pair<const_iterator, const_iterator> equal_range(const key_type&) const; // bucket interface size_type bucket_count() const { return table_.bucket_count_; } size_type max_bucket_count() const { return table_.max_bucket_count(); } size_type bucket_size(size_type) const; size_type bucket(const key_type& k) const { return table::to_bucket(table_.bucket_count_, table_.hash(k)); } local_iterator begin(size_type n) { return local_iterator( table_.begin(n), n, table_.bucket_count_); } const_local_iterator begin(size_type n) const { return const_local_iterator( table_.begin(n), n, table_.bucket_count_); } local_iterator end(size_type) { return local_iterator(); } const_local_iterator end(size_type) const { return const_local_iterator(); } const_local_iterator cbegin(size_type n) const { return const_local_iterator( table_.begin(n), n, table_.bucket_count_); } const_local_iterator cend(size_type) const { return const_local_iterator(); } // hash policy float max_load_factor() const { return table_.mlf_; } float load_factor() const; void max_load_factor(float); void rehash(size_type); void reserve(size_type); #if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582) friend bool operator==<K,T,H,P,A>( unordered_multimap const&, unordered_multimap const&); friend bool operator!=<K,T,H,P,A>( unordered_multimap const&, unordered_multimap const&); #endif }; // class template unordered_multimap //////////////////////////////////////////////////////////////////////////////// template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::unordered_map( size_type n, const hasher &hf, const key_equal &eql, const allocator_type &a) : table_(n, hf, eql, a) { } template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::unordered_map(allocator_type const& a) : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::unordered_map( unordered_map const& other, allocator_type const& a) : table_(other.table_, a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K,T,H,P,A>::unordered_map(InputIt f, InputIt l) : table_(boost::unordered::detail::initial_size(f, l), hasher(), key_equal(), allocator_type()) { table_.insert_range(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K,T,H,P,A>::unordered_map( InputIt f, InputIt l, size_type n, const hasher &hf, const key_equal &eql) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, allocator_type()) { table_.insert_range(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K,T,H,P,A>::unordered_map( InputIt f, InputIt l, size_type n, const hasher &hf, const key_equal &eql, const allocator_type &a) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a) { table_.insert_range(f, l); } template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::~unordered_map() {} template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::unordered_map( unordered_map const& other) : table_(other.table_) { } #if !defined(BOOST_NO_RVALUE_REFERENCES) template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::unordered_map( unordered_map&& other, allocator_type const& a) : table_(other.table_, a, boost::unordered::detail::move_tag()) { } #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>::unordered_map( std::initializer_list<value_type> list, size_type n, const hasher &hf, const key_equal &eql, const allocator_type &a) : table_( boost::unordered::detail::initial_size( list.begin(), list.end(), n), hf, eql, a) { table_.insert_range(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_map<K,T,H,P,A>& unordered_map<K,T,H,P,A>::operator=( std::initializer_list<value_type> list) { table_.clear(); table_.insert_range(list.begin(), list.end()); return *this; } #endif // size and capacity template <class K, class T, class H, class P, class A> std::size_t unordered_map<K,T,H,P,A>::max_size() const { return table_.max_size(); } // modifiers template <class K, class T, class H, class P, class A> template <class InputIt> void unordered_map<K,T,H,P,A>::insert(InputIt first, InputIt last) { table_.insert_range(first, last); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> void unordered_map<K,T,H,P,A>::insert( std::initializer_list<value_type> list) { table_.insert_range(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::iterator unordered_map<K,T,H,P,A>::erase(const_iterator position) { return table_.erase(position); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::size_type unordered_map<K,T,H,P,A>::erase(const key_type& k) { return table_.erase_key(k); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::iterator unordered_map<K,T,H,P,A>::erase( const_iterator first, const_iterator last) { return table_.erase_range(first, last); } template <class K, class T, class H, class P, class A> void unordered_map<K,T,H,P,A>::clear() { table_.clear(); } template <class K, class T, class H, class P, class A> void unordered_map<K,T,H,P,A>::swap(unordered_map& other) { table_.swap(other.table_); } // observers template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::hasher unordered_map<K,T,H,P,A>::hash_function() const { return table_.hash_function(); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::key_equal unordered_map<K,T,H,P,A>::key_eq() const { return table_.key_eq(); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::mapped_type& unordered_map<K,T,H,P,A>::operator[](const key_type &k) { return table_[k].second; } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::mapped_type& unordered_map<K,T,H,P,A>::at(const key_type& k) { return table_.at(k).second; } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::mapped_type const& unordered_map<K,T,H,P,A>::at(const key_type& k) const { return table_.at(k).second; } // lookup template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::iterator unordered_map<K,T,H,P,A>::find(const key_type& k) { return table_.find_node(k); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::const_iterator unordered_map<K,T,H,P,A>::find(const key_type& k) const { return table_.find_node(k); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_map<K,T,H,P,A>::iterator unordered_map<K,T,H,P,A>::find( CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) { return table_.generic_find_node(k, hash, eq); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_map<K,T,H,P,A>::const_iterator unordered_map<K,T,H,P,A>::find( CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) const { return table_.generic_find_node(k, hash, eq); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::size_type unordered_map<K,T,H,P,A>::count(const key_type& k) const { return table_.count(k); } template <class K, class T, class H, class P, class A> std::pair< typename unordered_map<K,T,H,P,A>::iterator, typename unordered_map<K,T,H,P,A>::iterator> unordered_map<K,T,H,P,A>::equal_range(const key_type& k) { return table_.equal_range(k); } template <class K, class T, class H, class P, class A> std::pair< typename unordered_map<K,T,H,P,A>::const_iterator, typename unordered_map<K,T,H,P,A>::const_iterator> unordered_map<K,T,H,P,A>::equal_range(const key_type& k) const { return table_.equal_range(k); } template <class K, class T, class H, class P, class A> typename unordered_map<K,T,H,P,A>::size_type unordered_map<K,T,H,P,A>::bucket_size(size_type n) const { return table_.bucket_size(n); } // hash policy template <class K, class T, class H, class P, class A> float unordered_map<K,T,H,P,A>::load_factor() const { return table_.load_factor(); } template <class K, class T, class H, class P, class A> void unordered_map<K,T,H,P,A>::max_load_factor(float m) { table_.max_load_factor(m); } template <class K, class T, class H, class P, class A> void unordered_map<K,T,H,P,A>::rehash(size_type n) { table_.rehash(n); } template <class K, class T, class H, class P, class A> void unordered_map<K,T,H,P,A>::reserve(size_type n) { table_.reserve(n); } template <class K, class T, class H, class P, class A> inline bool operator==( unordered_map<K,T,H,P,A> const& m1, unordered_map<K,T,H,P,A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K,T,H,P,A> x; }; #endif return m1.table_.equals(m2.table_); } template <class K, class T, class H, class P, class A> inline bool operator!=( unordered_map<K,T,H,P,A> const& m1, unordered_map<K,T,H,P,A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K,T,H,P,A> x; }; #endif return !m1.table_.equals(m2.table_); } template <class K, class T, class H, class P, class A> inline void swap( unordered_map<K,T,H,P,A> &m1, unordered_map<K,T,H,P,A> &m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K,T,H,P,A> x; }; #endif m1.swap(m2); } //////////////////////////////////////////////////////////////////////////////// template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::unordered_multimap( size_type n, const hasher &hf, const key_equal &eql, const allocator_type &a) : table_(n, hf, eql, a) { } template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::unordered_multimap(allocator_type const& a) : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::unordered_multimap( unordered_multimap const& other, allocator_type const& a) : table_(other.table_, a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K,T,H,P,A>::unordered_multimap(InputIt f, InputIt l) : table_(boost::unordered::detail::initial_size(f, l), hasher(), key_equal(), allocator_type()) { table_.insert_range(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K,T,H,P,A>::unordered_multimap( InputIt f, InputIt l, size_type n, const hasher &hf, const key_equal &eql) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, allocator_type()) { table_.insert_range(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K,T,H,P,A>::unordered_multimap( InputIt f, InputIt l, size_type n, const hasher &hf, const key_equal &eql, const allocator_type &a) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a) { table_.insert_range(f, l); } template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::~unordered_multimap() {} template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::unordered_multimap( unordered_multimap const& other) : table_(other.table_) { } #if !defined(BOOST_NO_RVALUE_REFERENCES) template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::unordered_multimap( unordered_multimap&& other, allocator_type const& a) : table_(other.table_, a, boost::unordered::detail::move_tag()) { } #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const hasher &hf, const key_equal &eql, const allocator_type &a) : table_( boost::unordered::detail::initial_size( list.begin(), list.end(), n), hf, eql, a) { table_.insert_range(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_multimap<K,T,H,P,A>& unordered_multimap<K,T,H,P,A>::operator=( std::initializer_list<value_type> list) { table_.clear(); table_.insert_range(list.begin(), list.end()); return *this; } #endif // size and capacity template <class K, class T, class H, class P, class A> std::size_t unordered_multimap<K,T,H,P,A>::max_size() const { return table_.max_size(); } // modifiers template <class K, class T, class H, class P, class A> template <class InputIt> void unordered_multimap<K,T,H,P,A>::insert(InputIt first, InputIt last) { table_.insert_range(first, last); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> void unordered_multimap<K,T,H,P,A>::insert( std::initializer_list<value_type> list) { table_.insert_range(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::iterator unordered_multimap<K,T,H,P,A>::erase(const_iterator position) { return table_.erase(position); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::size_type unordered_multimap<K,T,H,P,A>::erase(const key_type& k) { return table_.erase_key(k); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::iterator unordered_multimap<K,T,H,P,A>::erase( const_iterator first, const_iterator last) { return table_.erase_range(first, last); } template <class K, class T, class H, class P, class A> void unordered_multimap<K,T,H,P,A>::clear() { table_.clear(); } template <class K, class T, class H, class P, class A> void unordered_multimap<K,T,H,P,A>::swap(unordered_multimap& other) { table_.swap(other.table_); } // observers template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::hasher unordered_multimap<K,T,H,P,A>::hash_function() const { return table_.hash_function(); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::key_equal unordered_multimap<K,T,H,P,A>::key_eq() const { return table_.key_eq(); } // lookup template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::iterator unordered_multimap<K,T,H,P,A>::find(const key_type& k) { return table_.find_node(k); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::const_iterator unordered_multimap<K,T,H,P,A>::find(const key_type& k) const { return table_.find_node(k); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_multimap<K,T,H,P,A>::iterator unordered_multimap<K,T,H,P,A>::find( CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) { return table_.generic_find_node(k, hash, eq); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_multimap<K,T,H,P,A>::const_iterator unordered_multimap<K,T,H,P,A>::find( CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) const { return table_.generic_find_node(k, hash, eq); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::size_type unordered_multimap<K,T,H,P,A>::count(const key_type& k) const { return table_.count(k); } template <class K, class T, class H, class P, class A> std::pair< typename unordered_multimap<K,T,H,P,A>::iterator, typename unordered_multimap<K,T,H,P,A>::iterator> unordered_multimap<K,T,H,P,A>::equal_range(const key_type& k) { return table_.equal_range(k); } template <class K, class T, class H, class P, class A> std::pair< typename unordered_multimap<K,T,H,P,A>::const_iterator, typename unordered_multimap<K,T,H,P,A>::const_iterator> unordered_multimap<K,T,H,P,A>::equal_range(const key_type& k) const { return table_.equal_range(k); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K,T,H,P,A>::size_type unordered_multimap<K,T,H,P,A>::bucket_size(size_type n) const { return table_.bucket_size(n); } // hash policy template <class K, class T, class H, class P, class A> float unordered_multimap<K,T,H,P,A>::load_factor() const { return table_.load_factor(); } template <class K, class T, class H, class P, class A> void unordered_multimap<K,T,H,P,A>::max_load_factor(float m) { table_.max_load_factor(m); } template <class K, class T, class H, class P, class A> void unordered_multimap<K,T,H,P,A>::rehash(size_type n) { table_.rehash(n); } template <class K, class T, class H, class P, class A> void unordered_multimap<K,T,H,P,A>::reserve(size_type n) { table_.reserve(n); } template <class K, class T, class H, class P, class A> inline bool operator==( unordered_multimap<K,T,H,P,A> const& m1, unordered_multimap<K,T,H,P,A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K,T,H,P,A> x; }; #endif return m1.table_.equals(m2.table_); } template <class K, class T, class H, class P, class A> inline bool operator!=( unordered_multimap<K,T,H,P,A> const& m1, unordered_multimap<K,T,H,P,A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K,T,H,P,A> x; }; #endif return !m1.table_.equals(m2.table_); } template <class K, class T, class H, class P, class A> inline void swap( unordered_multimap<K,T,H,P,A> &m1, unordered_multimap<K,T,H,P,A> &m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K,T,H,P,A> x; }; #endif m1.swap(m2); } } // namespace unordered } // namespace boost #if defined(BOOST_MSVC) #pragma warning(pop) #endif #endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED