///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2012 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SET_HPP #define BOOST_INTRUSIVE_SET_HPP #include <boost/intrusive/detail/config_begin.hpp> #include <boost/intrusive/intrusive_fwd.hpp> #include <boost/intrusive/detail/mpl.hpp> #include <boost/intrusive/rbtree.hpp> #include <iterator> #include <boost/move/move.hpp> namespace boost { namespace intrusive { //! The class template set is an intrusive container, that mimics most of //! the interface of std::set as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif class set_impl { /// @cond typedef rbtree_impl<Config> tree_type; BOOST_MOVABLE_BUT_NOT_COPYABLE(set_impl) typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; static const bool constant_time_size = Config::constant_time_size; //static const bool stateful_value_traits = detail::is_stateful_value_traits<real_value_traits>::value; /// @cond private: tree_type tree_; protected: node &prot_header_node(){ return tree_.prot_header_node(); } node const &prot_header_node() const{ return tree_.prot_header_node(); } void prot_set_size(size_type s){ tree_.prot_set_size(s); } value_compare &prot_comp(){ return tree_.prot_comp(); } /// @endcond public: //! <b>Effects</b>: Constructs an empty set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor of the value_compare object throws. explicit set_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! <b>Effects</b>: Constructs an empty set and inserts elements from //! [b, e). //! //! <b>Complexity</b>: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is std::distance(last, first). //! //! <b>Throws</b>: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template<class Iterator> set_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(true, b, e, cmp, v_traits) {} //! <b>Effects</b>: to-do //! set_impl(BOOST_RV_REF(set_impl) x) : tree_(::boost::move(x.tree_)) {} //! <b>Effects</b>: to-do //! set_impl& operator=(BOOST_RV_REF(set_impl) x) { tree_ = ::boost::move(x.tree_); return *this; } //! <b>Effects</b>: Detaches all elements from this. The objects in the set //! are not deleted (i.e. no destructors are called). //! //! <b>Complexity</b>: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! <b>Throws</b>: Nothing. ~set_impl() {} //! <b>Effects</b>: Returns an iterator pointing to the beginning of the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. iterator begin() { return tree_.begin(); } //! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator begin() const { return tree_.begin(); } //! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //! <b>Effects</b>: Returns an iterator pointing to the end of the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. iterator end() { return tree_.end(); } //! <b>Effects</b>: Returns a const_iterator pointing to the end of the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator end() const { return tree_.end(); } //! <b>Effects</b>: Returns a const_iterator pointing to the end of the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator cend() const { return tree_.cend(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the //! reversed set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. reverse_iterator rend() { return tree_.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //! <b>Precondition</b>: end_iterator must be a valid end iterator //! of set. //! //! <b>Effects</b>: Returns a reference to the set associated to the end iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. static set_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member<set_impl, tree_type> ( &tree_type::container_from_end_iterator(end_iterator) , &set_impl::tree_); } //! <b>Precondition</b>: end_iterator must be a valid end const_iterator //! of set. //! //! <b>Effects</b>: Returns a const reference to the set associated to the end iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. static const set_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member<set_impl, tree_type> ( &tree_type::container_from_end_iterator(end_iterator) , &set_impl::tree_); } //! <b>Precondition</b>: it must be a valid iterator of set. //! //! <b>Effects</b>: Returns a reference to the set associated to the iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Logarithmic. static set_impl &container_from_iterator(iterator it) { return *detail::parent_from_member<set_impl, tree_type> ( &tree_type::container_from_iterator(it) , &set_impl::tree_); } //! <b>Precondition</b>: it must be a valid const_iterator of set. //! //! <b>Effects</b>: Returns a const reference to the set associated to the iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Logarithmic. static const set_impl &container_from_iterator(const_iterator it) { return *detail::parent_from_member<set_impl, tree_type> ( &tree_type::container_from_iterator(it) , &set_impl::tree_); } //! <b>Effects</b>: Returns the key_compare object used by the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //! <b>Effects</b>: Returns the value_compare object used by the set. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //! <b>Effects</b>: Returns true if the container is empty. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. bool empty() const { return tree_.empty(); } //! <b>Effects</b>: Returns the number of elements stored in the set. //! //! <b>Complexity</b>: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //! <b>Throws</b>: Nothing. size_type size() const { return tree_.size(); } //! <b>Effects</b>: Swaps the contents of two sets. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(set_impl& other) { tree_.swap(other.tree_); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! <b>Effects</b>: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! <b>Complexity</b>: Linear to erased plus inserted elements. //! //! <b>Throws</b>: If cloner throws or predicate copy assignment throws. Basic guarantee. template <class Cloner, class Disposer> void clone_from(const set_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //! <b>Requires</b>: value must be an lvalue //! //! <b>Effects</b>: Tries to inserts value into the set. //! //! <b>Returns</b>: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //! <b>Complexity</b>: Average complexity for insert element is at //! most logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee. //! //! <b>Note</b>: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair<iterator, bool> insert(reference value) { return tree_.insert_unique(value); } //! <b>Requires</b>: value must be an lvalue //! //! <b>Effects</b>: Tries to to insert x into the set, using "hint" //! as a hint to where it will be inserted. //! //! <b>Returns</b>: An iterator that points to the position where the //! new element was inserted into the set. //! //! <b>Complexity</b>: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee. //! //! <b>Note</b>: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_unique(hint, value); } //! <b>Requires</b>: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an arbitrary key with the contained values. //! //! <b>Effects</b>: Checks if a value can be inserted in the set, using //! a user provided key instead of the value itself. //! //! <b>Returns</b>: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! <b>Complexity</b>: Average complexity is at most logarithmic. //! //! <b>Throws</b>: If the key_value_comp ordering function throws. Strong guarantee. //! //! <b>Notes</b>: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that //! part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the set. template<class KeyType, class KeyValueCompare> std::pair<iterator, bool> insert_check (const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(key, key_value_comp, commit_data); } //! <b>Requires</b>: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an arbitrary key with the contained values. //! //! <b>Effects</b>: Checks if a value can be inserted in the set, using //! a user provided key instead of the value itself, using "hint" //! as a hint to where it will be inserted. //! //! <b>Returns</b>: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! <b>Complexity</b>: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //! <b>Throws</b>: If the key_value_comp ordering function throws. Strong guarantee. //! //! <b>Notes</b>: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! constructing that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that key //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This can give a total //! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the set. template<class KeyType, class KeyValueCompare> std::pair<iterator, bool> insert_check (const_iterator hint, const KeyType &key ,KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(hint, key, key_value_comp, commit_data); } //! <b>Requires</b>: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //! <b>Effects</b>: Inserts the value in the set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! <b>Returns</b>: An iterator to the newly inserted object. //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Notes</b>: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. iterator insert_commit(reference value, const insert_commit_data &commit_data) { return tree_.insert_unique_commit(value, commit_data); } //! <b>Requires</b>: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! <b>Effects</b>: Inserts a range into the set. //! //! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee. //! //! <b>Note</b>: Does not affect the validity of iterators and references. //! No copy-constructors are called. template<class Iterator> void insert(Iterator b, Iterator e) { tree_.insert_unique(b, e); } //! <b>Requires</b>: value must be an lvalue, "pos" must be //! a valid iterator (or end) and must be the succesor of value //! once inserted according to the predicate. "value" must not be equal to any //! inserted key according to the predicate. //! //! <b>Effects</b>: Inserts x into the tree before "pos". //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function does not check preconditions so if "pos" is not //! the successor of "value" or "value" is not unique tree ordering and uniqueness //! invariants will be broken respectively. //! This is a low-level function to be used only for performance reasons //! by advanced users. iterator insert_before(const_iterator pos, reference value) { return tree_.insert_before(pos, value); } //! <b>Requires</b>: value must be an lvalue, and it must be greater than //! any inserted key according to the predicate. //! //! <b>Effects</b>: Inserts x into the tree in the last position. //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function does not check preconditions so if value is //! less than or equal to the greatest inserted key tree ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_back(reference value) { tree_.push_back(value); } //! <b>Requires</b>: value must be an lvalue, and it must be less //! than any inserted key according to the predicate. //! //! <b>Effects</b>: Inserts x into the tree in the first position. //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function does not check preconditions so if value is //! greater than or equal to the the mimum inserted key tree ordering or uniqueness //! invariants will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_front(reference value) { tree_.push_front(value); } //! <b>Effects</b>: Erases the element pointed to by pos. //! //! <b>Complexity</b>: Average complexity is constant time. //! //! <b>Returns</b>: An iterator to the element after the erased element. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator i) { return tree_.erase(i); } //! <b>Effects</b>: Erases the range pointed to by b end e. //! //! <b>Complexity</b>: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! <b>Returns</b>: An iterator to the element after the erased elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator b, const_iterator e) { return tree_.erase(b, e); } //! <b>Effects</b>: Erases all the elements with the given value. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size()) + this->count(value)). //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //! <b>Effects</b>: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size() + this->count(key, comp)). //! //! <b>Throws</b>: If the comp ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template<class KeyType, class KeyValueCompare> size_type erase(const KeyType& key, KeyValueCompare comp /// @cond , typename detail::enable_if_c<!detail::is_convertible<KeyValueCompare, const_iterator>::value >::type * = 0 /// @endcond ) { return tree_.erase(key, comp); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //! <b>Complexity</b>: Average complexity for erase element is constant time. //! //! <b>Returns</b>: An iterator to the element after the erased element. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators //! to the erased elements. template<class Disposer> iterator erase_and_dispose(const_iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class Disposer> iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Complexity</b>: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! <b>Returns</b>: An iterator to the element after the erased elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators //! to the erased elements. template<class Disposer> iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. //! //! <b>Complexity</b>: O(log(size() + this->count(value)). Basic guarantee. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template<class Disposer> size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size() + this->count(key, comp)). //! //! <b>Throws</b>: If comp ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators //! to the erased elements. template<class KeyType, class KeyValueCompare, class Disposer> size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer /// @cond , typename detail::enable_if_c<!detail::is_convertible<KeyValueCompare, const_iterator>::value >::type * = 0 /// @endcond ) { return tree_.erase_and_dispose(key, comp, disposer); } //! <b>Effects</b>: Erases all the elements of the container. //! //! <b>Complexity</b>: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases all the elements of the container. //! //! <b>Complexity</b>: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template<class Disposer> void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //! <b>Effects</b>: Returns the number of contained elements with the given key //! //! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.find(value) != end(); } //! <b>Effects</b>: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! <b>Throws</b>: If comp ordering function throws. template<class KeyType, class KeyValueCompare> size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp) != end(); } //! <b>Effects</b>: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //! <b>Effects</b>: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //! <b>Effects</b>: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //! <b>Effects</b>: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //! <b>Effects</b>: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //! <b>Effects</b>: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //! <b>Effects</b>: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. std::pair<iterator,iterator> equal_range(const_reference value) { return tree_.equal_range(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> std::pair<iterator,iterator> equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //! <b>Effects</b>: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. std::pair<const_iterator, const_iterator> equal_range(const_reference value) const { return tree_.equal_range(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> std::pair<const_iterator, const_iterator> equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //! <b>Requires</b>: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the predicate throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair<iterator,iterator> bounded_range (const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! <b>Requires</b>: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If "comp" throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template<class KeyType, class KeyValueCompare> std::pair<iterator,iterator> bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! <b>Requires</b>: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the predicate throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair<const_iterator, const_iterator> bounded_range(const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! <b>Requires</b>: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If "comp" throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template<class KeyType, class KeyValueCompare> std::pair<const_iterator, const_iterator> bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid iterator i belonging to the set //! that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This static function is available only if the <i>value traits</i> //! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This static function is available only if the <i>value traits</i> //! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid iterator i belonging to the set //! that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //! <b>Requires</b>: value shall not be in a set/multiset. //! //! <b>Effects</b>: init_node puts the hook of a value in a well-known default //! state. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant time. //! //! <b>Note</b>: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //! <b>Effects</b>: Unlinks the leftmost node from the tree. //! //! <b>Complexity</b>: Average complexity is constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Notes</b>: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //! <b>Requires</b>: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //! <b>Effects</b>: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } /// @cond friend bool operator==(const set_impl &x, const set_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const set_impl &x, const set_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator!= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const set_impl<T, Options...> &x, const set_impl<T, Options...> &y) #else (const set_impl<Config> &x, const set_impl<Config> &y) #endif { return !(x == y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const set_impl<T, Options...> &x, const set_impl<T, Options...> &y) #else (const set_impl<Config> &x, const set_impl<Config> &y) #endif { return y < x; } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator<= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const set_impl<T, Options...> &x, const set_impl<T, Options...> &y) #else (const set_impl<Config> &x, const set_impl<Config> &y) #endif { return !(y < x); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator>= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const set_impl<T, Options...> &x, const set_impl<T, Options...> &y) #else (const set_impl<Config> &x, const set_impl<Config> &y) #endif { return !(x < y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline void swap #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (set_impl<T, Options...> &x, set_impl<T, Options...> &y) #else (set_impl<Config> &x, set_impl<Config> &y) #endif { x.swap(y); } //! Helper metafunction to define a \c set that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template<class T, class ...Options> #else template<class T, class O1 = none, class O2 = none , class O3 = none, class O4 = none> #endif struct make_set { /// @cond typedef set_impl < typename make_rbtree_opt<T, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template<class T, class O1, class O2, class O3, class O4> #else template<class T, class ...Options> #endif class set : public make_set<T, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type { typedef typename make_set <T, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(set) public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same<typename value_traits::value_type, T>::value)); set( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template<class Iterator> set( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} set(BOOST_RV_REF(set) x) : Base(::boost::move(static_cast<Base&>(x))) {} set& operator=(BOOST_RV_REF(set) x) { this->Base::operator=(::boost::move(static_cast<Base&>(x))); return *this; } static set &container_from_end_iterator(iterator end_iterator) { return static_cast<set &>(Base::container_from_end_iterator(end_iterator)); } static const set &container_from_end_iterator(const_iterator end_iterator) { return static_cast<const set &>(Base::container_from_end_iterator(end_iterator)); } static set &container_from_iterator(iterator it) { return static_cast<set &>(Base::container_from_iterator(it)); } static const set &container_from_iterator(const_iterator it) { return static_cast<const set &>(Base::container_from_iterator(it)); } }; #endif //! The class template multiset is an intrusive container, that mimics most of //! the interface of std::multiset as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif class multiset_impl { /// @cond typedef rbtree_impl<Config> tree_type; BOOST_MOVABLE_BUT_NOT_COPYABLE(multiset_impl) typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; static const bool constant_time_size = Config::constant_time_size; //static const bool stateful_value_traits = detail::is_stateful_value_traits<real_value_traits>::value; /// @cond private: tree_type tree_; protected: node &prot_header_node(){ return tree_.prot_header_node(); } node const &prot_header_node() const{ return tree_.prot_header_node(); } void prot_set_size(size_type s){ tree_.prot_set_size(s); } value_compare &prot_comp(){ return tree_.prot_comp(); } /// @endcond public: //! <b>Effects</b>: Constructs an empty multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. explicit multiset_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! <b>Effects</b>: Constructs an empty multiset and inserts elements from //! [b, e). //! //! <b>Complexity</b>: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last //! //! <b>Throws</b>: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template<class Iterator> multiset_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(false, b, e, cmp, v_traits) {} //! <b>Effects</b>: to-do //! multiset_impl(BOOST_RV_REF(multiset_impl) x) : tree_(::boost::move(x.tree_)) {} //! <b>Effects</b>: to-do //! multiset_impl& operator=(BOOST_RV_REF(multiset_impl) x) { tree_ = ::boost::move(x.tree_); return *this; } //! <b>Effects</b>: Detaches all elements from this. The objects in the set //! are not deleted (i.e. no destructors are called). //! //! <b>Complexity</b>: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! <b>Throws</b>: Nothing. ~multiset_impl() {} //! <b>Effects</b>: Returns an iterator pointing to the beginning of the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. iterator begin() { return tree_.begin(); } //! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator begin() const { return tree_.begin(); } //! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //! <b>Effects</b>: Returns an iterator pointing to the end of the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. iterator end() { return tree_.end(); } //! <b>Effects</b>: Returns a const_iterator pointing to the end of the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator end() const { return tree_.end(); } //! <b>Effects</b>: Returns a const_iterator pointing to the end of the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator cend() const { return tree_.cend(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the //! reversed multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. reverse_iterator rend() { return tree_.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //! <b>Precondition</b>: end_iterator must be a valid end iterator //! of multiset. //! //! <b>Effects</b>: Returns a const reference to the multiset associated to the end iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. static multiset_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member<multiset_impl, tree_type> ( &tree_type::container_from_end_iterator(end_iterator) , &multiset_impl::tree_); } //! <b>Precondition</b>: end_iterator must be a valid end const_iterator //! of multiset. //! //! <b>Effects</b>: Returns a const reference to the multiset associated to the end iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. static const multiset_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member<multiset_impl, tree_type> ( &tree_type::container_from_end_iterator(end_iterator) , &multiset_impl::tree_); } //! <b>Precondition</b>: it must be a valid iterator of multiset. //! //! <b>Effects</b>: Returns a const reference to the multiset associated to the iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Logarithmic. static multiset_impl &container_from_iterator(iterator it) { return *detail::parent_from_member<multiset_impl, tree_type> ( &tree_type::container_from_iterator(it) , &multiset_impl::tree_); } //! <b>Precondition</b>: it must be a valid const_iterator of multiset. //! //! <b>Effects</b>: Returns a const reference to the multiset associated to the iterator //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Logarithmic. static const multiset_impl &container_from_iterator(const_iterator it) { return *detail::parent_from_member<multiset_impl, tree_type> ( &tree_type::container_from_iterator(it) , &multiset_impl::tree_); } //! <b>Effects</b>: Returns the key_compare object used by the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //! <b>Effects</b>: Returns the value_compare object used by the multiset. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //! <b>Effects</b>: Returns true if the container is empty. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. bool empty() const { return tree_.empty(); } //! <b>Effects</b>: Returns the number of elements stored in the multiset. //! //! <b>Complexity</b>: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //! <b>Throws</b>: Nothing. size_type size() const { return tree_.size(); } //! <b>Effects</b>: Swaps the contents of two multisets. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(multiset_impl& other) { tree_.swap(other.tree_); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! <b>Effects</b>: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! <b>Complexity</b>: Linear to erased plus inserted elements. //! //! <b>Throws</b>: If cloner throws or predicate copy assignment throws. Basic guarantee. template <class Cloner, class Disposer> void clone_from(const multiset_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //! <b>Requires</b>: value must be an lvalue //! //! <b>Effects</b>: Inserts value into the multiset. //! //! <b>Returns</b>: An iterator that points to the position where the new //! element was inserted. //! //! <b>Complexity</b>: Average complexity for insert element is at //! most logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee. //! //! <b>Note</b>: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(reference value) { return tree_.insert_equal(value); } //! <b>Requires</b>: value must be an lvalue //! //! <b>Effects</b>: Inserts x into the multiset, using pos as a hint to //! where it will be inserted. //! //! <b>Returns</b>: An iterator that points to the position where the new //! element was inserted. //! //! <b>Complexity</b>: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee. //! //! <b>Note</b>: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_equal(hint, value); } //! <b>Requires</b>: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! <b>Effects</b>: Inserts a range into the multiset. //! //! <b>Returns</b>: An iterator that points to the position where the new //! element was inserted. //! //! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee. //! //! <b>Note</b>: Does not affect the validity of iterators and references. //! No copy-constructors are called. template<class Iterator> void insert(Iterator b, Iterator e) { tree_.insert_equal(b, e); } //! <b>Requires</b>: value must be an lvalue, "pos" must be //! a valid iterator (or end) and must be the succesor of value //! once inserted according to the predicate //! //! <b>Effects</b>: Inserts x into the tree before "pos". //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function does not check preconditions so if "pos" is not //! the successor of "value" tree ordering invariant will be broken. //! This is a low-level function to be used only for performance reasons //! by advanced users. iterator insert_before(const_iterator pos, reference value) { return tree_.insert_before(pos, value); } //! <b>Requires</b>: value must be an lvalue, and it must be no less //! than the greatest inserted key //! //! <b>Effects</b>: Inserts x into the tree in the last position. //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function does not check preconditions so if value is //! less than the greatest inserted key tree ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_back(reference value) { tree_.push_back(value); } //! <b>Requires</b>: value must be an lvalue, and it must be no greater //! than the minimum inserted key //! //! <b>Effects</b>: Inserts x into the tree in the first position. //! //! <b>Complexity</b>: Constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function does not check preconditions so if value is //! greater than the minimum inserted key tree ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_front(reference value) { tree_.push_front(value); } //! <b>Effects</b>: Erases the element pointed to by pos. //! //! <b>Complexity</b>: Average complexity is constant time. //! //! <b>Returns</b>: An iterator to the element after the erased element. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator i) { return tree_.erase(i); } //! <b>Effects</b>: Erases the range pointed to by b end e. //! //! <b>Returns</b>: An iterator to the element after the erased elements. //! //! <b>Complexity</b>: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator b, iterator e) { return tree_.erase(b, e); } //! <b>Effects</b>: Erases all the elements with the given value. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size() + this->count(value)). //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //! <b>Effects</b>: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size() + this->count(key, comp)). //! //! <b>Throws</b>: If comp ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template<class KeyType, class KeyValueCompare> size_type erase(const KeyType& key, KeyValueCompare comp /// @cond , typename detail::enable_if_c<!detail::is_convertible<KeyValueCompare, const_iterator>::value >::type * = 0 /// @endcond ) { return tree_.erase(key, comp); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Returns</b>: An iterator to the element after the erased element. //! //! <b>Effects</b>: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //! <b>Complexity</b>: Average complexity for erase element is constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators //! to the erased elements. template<class Disposer> iterator erase_and_dispose(const_iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class Disposer> iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Returns</b>: An iterator to the element after the erased elements. //! //! <b>Effects</b>: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Complexity</b>: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators //! to the erased elements. template<class Disposer> iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size() + this->count(value)). //! //! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template<class Disposer> size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Returns</b>: The number of erased elements. //! //! <b>Complexity</b>: O(log(size() + this->count(key, comp)). //! //! <b>Throws</b>: If comp ordering function throws. Basic guarantee. //! //! <b>Note</b>: Invalidates the iterators //! to the erased elements. template<class KeyType, class KeyValueCompare, class Disposer> size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer /// @cond , typename detail::enable_if_c<!detail::is_convertible<KeyValueCompare, const_iterator>::value >::type * = 0 /// @endcond ) { return tree_.erase_and_dispose(key, comp, disposer); } //! <b>Effects</b>: Erases all the elements of the container. //! //! <b>Complexity</b>: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. //! //! <b>Effects</b>: Erases all the elements of the container. //! //! <b>Complexity</b>: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template<class Disposer> void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //! <b>Effects</b>: Returns the number of contained elements with the given key //! //! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.count(value); } //! <b>Effects</b>: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! <b>Throws</b>: If comp ordering function throws. template<class KeyType, class KeyValueCompare> size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.count(key, comp); } //! <b>Effects</b>: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //! <b>Effects</b>: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //! <b>Effects</b>: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //! <b>Effects</b>: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //! <b>Effects</b>: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //! <b>Effects</b>: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //! <b>Effects</b>: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. std::pair<iterator,iterator> equal_range(const_reference value) { return tree_.equal_range(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> std::pair<iterator,iterator> equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //! <b>Effects</b>: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the internal value_compare ordering function throws. std::pair<const_iterator, const_iterator> equal_range(const_reference value) const { return tree_.equal_range(value); } //! <b>Requires</b>: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! <b>Effects</b>: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If comp ordering function throws. //! //! <b>Note</b>: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template<class KeyType, class KeyValueCompare> std::pair<const_iterator, const_iterator> equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //! <b>Requires</b>: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the predicate throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair<iterator,iterator> bounded_range (const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! <b>Requires</b>: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If "comp" throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template<class KeyType, class KeyValueCompare> std::pair<iterator,iterator> bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! <b>Requires</b>: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If the predicate throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair<const_iterator, const_iterator> bounded_range(const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! <b>Requires</b>: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! <b>Effects</b>: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! <b>Complexity</b>: Logarithmic. //! //! <b>Throws</b>: If "comp" throws. //! //! <b>Note</b>: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template<class KeyType, class KeyValueCompare> std::pair<const_iterator, const_iterator> bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid iterator i belonging to the set //! that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This static function is available only if the <i>value traits</i> //! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This static function is available only if the <i>value traits</i> //! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid iterator i belonging to the set //! that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //! <b>Requires</b>: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! <b>Effects</b>: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //! <b>Requires</b>: value shall not be in a set/multiset. //! //! <b>Effects</b>: init_node puts the hook of a value in a well-known default //! state. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant time. //! //! <b>Note</b>: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //! <b>Effects</b>: Unlinks the leftmost node from the tree. //! //! <b>Complexity</b>: Average complexity is constant time. //! //! <b>Throws</b>: Nothing. //! //! <b>Notes</b>: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //! <b>Requires</b>: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //! <b>Effects</b>: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //! <b>Complexity</b>: Constant. //! //! <b>Throws</b>: Nothing. //! //! <b>Note</b>: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //! <b>Effects</b>: removes "value" from the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Logarithmic time. //! //! <b>Note</b>: This static function is only usable with non-constant //! time size containers that have stateless comparison functors. //! //! If the user calls //! this function with a constant time size container or stateful comparison //! functor a compilation error will be issued. static void remove_node(reference value) { tree_type::remove_node(value); } /// @cond friend bool operator==(const multiset_impl &x, const multiset_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const multiset_impl &x, const multiset_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator!= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y) #else (const multiset_impl<Config> &x, const multiset_impl<Config> &y) #endif { return !(x == y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y) #else (const multiset_impl<Config> &x, const multiset_impl<Config> &y) #endif { return y < x; } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator<= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y) #else (const multiset_impl<Config> &x, const multiset_impl<Config> &y) #endif { return !(y < x); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline bool operator>= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y) #else (const multiset_impl<Config> &x, const multiset_impl<Config> &y) #endif { return !(x < y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template<class T, class ...Options> #else template<class Config> #endif inline void swap #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (multiset_impl<T, Options...> &x, multiset_impl<T, Options...> &y) #else (multiset_impl<Config> &x, multiset_impl<Config> &y) #endif { x.swap(y); } //! Helper metafunction to define a \c multiset that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template<class T, class ...Options> #else template<class T, class O1 = none, class O2 = none , class O3 = none, class O4 = none> #endif struct make_multiset { /// @cond typedef multiset_impl < typename make_rbtree_opt<T, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template<class T, class O1, class O2, class O3, class O4> #else template<class T, class ...Options> #endif class multiset : public make_multiset<T, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type { typedef typename make_multiset<T, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(multiset) public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same<typename value_traits::value_type, T>::value)); multiset( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template<class Iterator> multiset( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} multiset(BOOST_RV_REF(multiset) x) : Base(::boost::move(static_cast<Base&>(x))) {} multiset& operator=(BOOST_RV_REF(multiset) x) { this->Base::operator=(::boost::move(static_cast<Base&>(x))); return *this; } static multiset &container_from_end_iterator(iterator end_iterator) { return static_cast<multiset &>(Base::container_from_end_iterator(end_iterator)); } static const multiset &container_from_end_iterator(const_iterator end_iterator) { return static_cast<const multiset &>(Base::container_from_end_iterator(end_iterator)); } static multiset &container_from_iterator(iterator it) { return static_cast<multiset &>(Base::container_from_iterator(it)); } static const multiset &container_from_iterator(const_iterator it) { return static_cast<const multiset &>(Base::container_from_iterator(it)); } }; #endif } //namespace intrusive } //namespace boost #include <boost/intrusive/detail/config_end.hpp> #endif //BOOST_INTRUSIVE_SET_HPP