// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED #define BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #include #include #include #include namespace boost { namespace unordered { namespace detail { template struct unique_node; template struct ptr_node; template struct table_impl; template struct unique_node : boost::unordered::detail::value_base { typedef typename ::boost::unordered::detail::rebind_wrap< A, unique_node >::type::pointer node_pointer; typedef node_pointer link_pointer; link_pointer next_; std::size_t hash_; unique_node() : next_(), hash_(0) {} void init(node_pointer) { } private: unique_node& operator=(unique_node const&); }; template struct ptr_node : boost::unordered::detail::value_base, boost::unordered::detail::ptr_bucket { typedef boost::unordered::detail::ptr_bucket bucket_base; typedef ptr_node* node_pointer; typedef ptr_bucket* link_pointer; std::size_t hash_; ptr_node() : bucket_base(), hash_(0) {} void init(node_pointer) { } private: ptr_node& operator=(ptr_node const&); }; // If the allocator uses raw pointers use ptr_node // Otherwise use node. template struct pick_node2 { typedef boost::unordered::detail::unique_node node; typedef typename boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type >::pointer node_pointer; typedef boost::unordered::detail::bucket bucket; typedef node_pointer link_pointer; }; template struct pick_node2*, boost::unordered::detail::ptr_bucket*> { typedef boost::unordered::detail::ptr_node node; typedef boost::unordered::detail::ptr_bucket bucket; typedef bucket* link_pointer; }; template struct pick_node { typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap >::type > tentative_node_traits; typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type > tentative_bucket_traits; typedef pick_node2 pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; }; template struct set { typedef boost::unordered::detail::set types; typedef A allocator; typedef T value_type; typedef H hasher; typedef P key_equal; typedef T key_type; typedef boost::unordered::detail::allocator_traits traits; typedef boost::unordered::detail::pick_node pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; typedef boost::unordered::detail::table_impl table; typedef boost::unordered::detail::set_extractor extractor; typedef boost::unordered::detail::pick_policy::type policy; }; template struct map { typedef boost::unordered::detail::map types; typedef A allocator; typedef std::pair value_type; typedef H hasher; typedef P key_equal; typedef K key_type; typedef boost::unordered::detail::allocator_traits traits; typedef boost::unordered::detail::pick_node pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; typedef boost::unordered::detail::table_impl table; typedef boost::unordered::detail::map_extractor extractor; typedef boost::unordered::detail::pick_policy::type policy; }; template struct table_impl : boost::unordered::detail::table { typedef boost::unordered::detail::table table; typedef typename table::value_type value_type; typedef typename table::bucket bucket; typedef typename table::policy policy; typedef typename table::node_pointer node_pointer; typedef typename table::node_allocator node_allocator; typedef typename table::node_allocator_traits node_allocator_traits; typedef typename table::bucket_pointer bucket_pointer; typedef typename table::link_pointer link_pointer; typedef typename table::hasher hasher; typedef typename table::key_equal key_equal; typedef typename table::key_type key_type; typedef typename table::node_constructor node_constructor; typedef typename table::extractor extractor; typedef typename table::iterator iterator; typedef typename table::c_iterator c_iterator; typedef std::pair emplace_return; // Constructors table_impl(std::size_t n, hasher const& hf, key_equal const& eq, node_allocator const& a) : table(n, hf, eq, a) {} table_impl(table_impl const& x) : table(x, node_allocator_traits:: select_on_container_copy_construction(x.node_alloc())) { this->init(x); } table_impl(table_impl const& x, node_allocator const& a) : table(x, a) { this->init(x); } table_impl(table_impl& x, boost::unordered::detail::move_tag m) : table(x, m) {} table_impl(table_impl& x, node_allocator const& a, boost::unordered::detail::move_tag m) : table(x, a, m) { this->move_init(x); } // Accessors template iterator find_node_impl( std::size_t key_hash, Key const& k, Pred const& eq) const { std::size_t bucket_index = this->hash_to_bucket(key_hash); iterator n = this->begin(bucket_index); for (;;) { if (!n.node_) return n; std::size_t node_hash = n.node_->hash_; if (key_hash == node_hash) { if (eq(k, this->get_key(*n))) return n; } else { if (this->hash_to_bucket(node_hash) != bucket_index) return iterator(); } ++n; } } std::size_t count(key_type const& k) const { return this->find_node(k).node_ ? 1 : 0; } value_type& at(key_type const& k) const { if (this->size_) { iterator it = this->find_node(k); if (it.node_) return *it; } boost::throw_exception( std::out_of_range("Unable to find key in unordered_map.")); } std::pair equal_range(key_type const& k) const { iterator n = this->find_node(k); iterator n2 = n; if (n2.node_) ++n2; return std::make_pair(n, n2); } // equals bool equals(table_impl const& other) const { if(this->size_ != other.size_) return false; for(iterator n1 = this->begin(); n1.node_; ++n1) { iterator n2 = other.find_matching_node(n1); if (!n2.node_ || *n1 != *n2) return false; } return true; } // Emplace/Insert inline iterator add_node( node_constructor& a, std::size_t key_hash) { node_pointer n = a.release(); n->hash_ = key_hash; bucket_pointer b = this->get_bucket(this->hash_to_bucket(key_hash)); if (!b->next_) { link_pointer start_node = this->get_previous_start(); if (start_node->next_) { this->get_bucket(this->hash_to_bucket( static_cast(start_node->next_)->hash_) )->next_ = n; } b->next_ = start_node; n->next_ = start_node->next_; start_node->next_ = n; } else { n->next_ = b->next_->next_; b->next_->next_ = n; } ++this->size_; return iterator(n); } value_type& operator[](key_type const& k) { typedef typename value_type::second_type mapped_type; std::size_t key_hash = this->hash(k); iterator pos = this->find_node(key_hash, k); if (pos.node_) return *pos; // Create the node before rehashing in case it throws an // exception (need strong safety in such a case). node_constructor a(this->node_alloc()); a.construct_with_value(BOOST_UNORDERED_EMPLACE_ARGS3( boost::unordered::piecewise_construct, boost::make_tuple(k), boost::make_tuple())); this->reserve_for_insert(this->size_ + 1); return *add_node(a, key_hash); } #if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) # if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) emplace_return emplace(boost::unordered::detail::emplace_args1< boost::unordered::detail::please_ignore_this_overload> const&) { BOOST_ASSERT(false); return emplace_return(this->begin(), false); } # else emplace_return emplace( boost::unordered::detail::please_ignore_this_overload const&) { BOOST_ASSERT(false); return emplace_return(this->begin(), false); } # endif #endif template emplace_return emplace(BOOST_UNORDERED_EMPLACE_ARGS) { #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) return emplace_impl( extractor::extract(BOOST_UNORDERED_EMPLACE_FORWARD), BOOST_UNORDERED_EMPLACE_FORWARD); #else return emplace_impl( extractor::extract(args.a0, args.a1), BOOST_UNORDERED_EMPLACE_FORWARD); #endif } #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template emplace_return emplace( boost::unordered::detail::emplace_args1 const& args) { return emplace_impl(extractor::extract(args.a0), args); } #endif template emplace_return emplace_impl(key_type const& k, BOOST_UNORDERED_EMPLACE_ARGS) { std::size_t key_hash = this->hash(k); iterator pos = this->find_node(key_hash, k); if (pos.node_) return emplace_return(pos, false); // Create the node before rehashing in case it throws an // exception (need strong safety in such a case). node_constructor a(this->node_alloc()); a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD); // reserve has basic exception safety if the hash function // throws, strong otherwise. this->reserve_for_insert(this->size_ + 1); return emplace_return(this->add_node(a, key_hash), true); } emplace_return emplace_impl_with_node(node_constructor& a) { key_type const& k = this->get_key(a.value()); std::size_t key_hash = this->hash(k); iterator pos = this->find_node(key_hash, k); if (pos.node_) return emplace_return(pos, false); // reserve has basic exception safety if the hash function // throws, strong otherwise. this->reserve_for_insert(this->size_ + 1); return emplace_return(this->add_node(a, key_hash), true); } template emplace_return emplace_impl(no_key, BOOST_UNORDERED_EMPLACE_ARGS) { // Don't have a key, so construct the node first in order // to be able to lookup the position. node_constructor a(this->node_alloc()); a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD); return emplace_impl_with_node(a); } //////////////////////////////////////////////////////////////////////// // Insert range methods // // if hash function throws, or inserting > 1 element, basic exception // safety strong otherwise template void insert_range(InputIt i, InputIt j) { if(i != j) return insert_range_impl(extractor::extract(*i), i, j); } template void insert_range_impl(key_type const& k, InputIt i, InputIt j) { node_constructor a(this->node_alloc()); insert_range_impl2(a, k, i, j); while(++i != j) { // Note: can't use get_key as '*i' might not be value_type - it // could be a pair with first_types as key_type without const or // a different second_type. // // TODO: Might be worth storing the value_type instead of the // key here. Could be more efficient if '*i' is expensive. Could // be less efficient if copying the full value_type is // expensive. insert_range_impl2(a, extractor::extract(*i), i, j); } } template void insert_range_impl2(node_constructor& a, key_type const& k, InputIt i, InputIt j) { // No side effects in this initial code std::size_t key_hash = this->hash(k); iterator pos = this->find_node(key_hash, k); if (!pos.node_) { a.construct_with_value2(*i); if(this->size_ + 1 > this->max_load_) this->reserve_for_insert(this->size_ + boost::unordered::detail::insert_size(i, j)); // Nothing after this point can throw. this->add_node(a, key_hash); } } template void insert_range_impl(no_key, InputIt i, InputIt j) { node_constructor a(this->node_alloc()); do { a.construct_with_value2(*i); emplace_impl_with_node(a); } while(++i != j); } //////////////////////////////////////////////////////////////////////// // Erase // // no throw std::size_t erase_key(key_type const& k) { if(!this->size_) return 0; std::size_t key_hash = this->hash(k); std::size_t bucket_index = this->hash_to_bucket(key_hash); link_pointer prev = this->get_previous_start(bucket_index); if (!prev) return 0; for (;;) { if (!prev->next_) return 0; std::size_t node_hash = static_cast(prev->next_)->hash_; if (this->hash_to_bucket(node_hash) != bucket_index) return 0; if (node_hash == key_hash && this->key_eq()(k, this->get_key( static_cast(prev->next_)->value()))) break; prev = prev->next_; } link_pointer end = static_cast(prev->next_)->next_; std::size_t count = this->delete_nodes(prev, end); this->fix_bucket(bucket_index, prev); return count; } iterator erase(c_iterator r) { BOOST_ASSERT(r.node_); iterator next(r.node_); ++next; erase_nodes(r.node_, next.node_); return next; } iterator erase_range(c_iterator r1, c_iterator r2) { if (r1 == r2) return iterator(r2.node_); erase_nodes(r1.node_, r2.node_); return iterator(r2.node_); } void erase_nodes(node_pointer begin, node_pointer end) { std::size_t bucket_index = this->hash_to_bucket(begin->hash_); // Find the node before begin. link_pointer prev = this->get_previous_start(bucket_index); while(prev->next_ != begin) prev = prev->next_; // Delete the nodes. do { this->delete_node(prev); bucket_index = this->fix_bucket(bucket_index, prev); } while (prev->next_ != end); } //////////////////////////////////////////////////////////////////////// // fill_buckets template static void fill_buckets(iterator n, table& dst, NodeCreator& creator) { link_pointer prev = dst.get_previous_start(); while (n.node_) { node_pointer node = creator.create(*n); node->hash_ = n.node_->hash_; prev->next_ = node; ++dst.size_; ++n; prev = place_in_bucket(dst, prev); } } // strong otherwise exception safety void rehash_impl(std::size_t num_buckets) { BOOST_ASSERT(this->buckets_); this->create_buckets(num_buckets); link_pointer prev = this->get_previous_start(); while (prev->next_) prev = place_in_bucket(*this, prev); } // Iterate through the nodes placing them in the correct buckets. // pre: prev->next_ is not null. static link_pointer place_in_bucket(table& dst, link_pointer prev) { node_pointer n = static_cast(prev->next_); bucket_pointer b = dst.get_bucket(dst.hash_to_bucket(n->hash_)); if (!b->next_) { b->next_ = prev; return n; } else { prev->next_ = n->next_; n->next_ = b->next_->next_; b->next_->next_ = n; return prev; } } }; }}} #endif