// // Boost.Pointer Container // // Copyright Thorsten Ottosen 2008. Use, modification and // distribution is subject to the Boost Software License, Version // 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // For more information, see http://www.boost.org/libs/ptr_container/ // #ifndef BOOST_PTR_CONTAINER_PTR_UNORDERED_MAP_HPP #define BOOST_PTR_CONTAINER_PTR_UNORDERED_MAP_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include <boost/unordered_map.hpp> #include <boost/ptr_container/ptr_map_adapter.hpp> namespace boost { template < class Key, class T, class Hash = boost::hash<Key>, class Pred = std::equal_to<Key>, class CloneAllocator = heap_clone_allocator, class Allocator = std::allocator< std::pair<const Key,void*> > > class ptr_unordered_map : public ptr_map_adapter<T,boost::unordered_map<Key,void*,Hash,Pred,Allocator>, CloneAllocator,false> { typedef ptr_map_adapter<T,boost::unordered_map<Key,void*,Hash,Pred,Allocator>, CloneAllocator,false> base_type; typedef ptr_unordered_map<Key,T,Hash,Pred,CloneAllocator,Allocator> this_type; public: typedef typename base_type::size_type size_type; private: using base_type::lower_bound; using base_type::upper_bound; using base_type::rbegin; using base_type::rend; using base_type::crbegin; using base_type::crend; using base_type::key_comp; using base_type::value_comp; using base_type::front; using base_type::back; public: using base_type::begin; using base_type::end; using base_type::cbegin; using base_type::cend; using base_type::bucket_count; using base_type::max_bucket_count; using base_type::bucket_size; using base_type::bucket; using base_type::load_factor; using base_type::max_load_factor; using base_type::rehash; using base_type::key_eq; using base_type::hash_function; public: ptr_unordered_map() { } explicit ptr_unordered_map( size_type n ) : base_type( n, ptr_container_detail::unordered_associative_container_tag() ) { } ptr_unordered_map( size_type n, const Hash& comp, const Pred& pred = Pred(), const Allocator& a = Allocator() ) : base_type( n, comp, pred, a ) { } template< typename InputIterator > ptr_unordered_map( InputIterator first, InputIterator last ) : base_type( first, last ) { } template< typename InputIterator > ptr_unordered_map( InputIterator first, InputIterator last, const Hash& comp, const Pred& pred = Pred(), const Allocator& a = Allocator() ) : base_type( first, last, comp, pred, a ) { } BOOST_PTR_CONTAINER_DEFINE_RELEASE_AND_CLONE( ptr_unordered_map, base_type, this_type ) template< class U > ptr_unordered_map( const ptr_unordered_map<Key,U>& r ) : base_type( r ) { } ptr_unordered_map& operator=( ptr_unordered_map r ) { this->swap( r ); return *this; } }; template < class Key, class T, class Hash = boost::hash<Key>, class Pred = std::equal_to<Key>, class CloneAllocator = heap_clone_allocator, class Allocator = std::allocator< std::pair<const Key,void*> > > class ptr_unordered_multimap : public ptr_multimap_adapter<T,boost::unordered_multimap<Key,void*,Hash,Pred,Allocator>, CloneAllocator,false> { typedef ptr_multimap_adapter<T,boost::unordered_multimap<Key,void*,Hash,Pred,Allocator>, CloneAllocator,false> base_type; typedef ptr_unordered_multimap<Key,T,Hash,Pred,CloneAllocator,Allocator> this_type; public: typedef typename base_type::size_type size_type; private: using base_type::lower_bound; using base_type::upper_bound; using base_type::rbegin; using base_type::rend; using base_type::crbegin; using base_type::crend; using base_type::key_comp; using base_type::value_comp; using base_type::front; using base_type::back; public: using base_type::begin; using base_type::end; using base_type::cbegin; using base_type::cend; using base_type::bucket_count; using base_type::max_bucket_count; using base_type::bucket_size; using base_type::bucket; using base_type::load_factor; using base_type::max_load_factor; using base_type::rehash; using base_type::key_eq; using base_type::hash_function; public: ptr_unordered_multimap() { } explicit ptr_unordered_multimap( size_type n ) : base_type( n, ptr_container_detail::unordered_associative_container_tag() ) { } ptr_unordered_multimap( size_type n, const Hash& comp, const Pred& pred = Pred(), const Allocator& a = Allocator() ) : base_type( n, comp, pred, a ) { } template< typename InputIterator > ptr_unordered_multimap( InputIterator first, InputIterator last ) : base_type( first, last ) { } template< typename InputIterator > ptr_unordered_multimap( InputIterator first, InputIterator last, const Hash& comp, const Pred& pred = Pred(), const Allocator& a = Allocator() ) : base_type( first, last, comp, pred, a ) { } BOOST_PTR_CONTAINER_DEFINE_RELEASE_AND_CLONE( ptr_unordered_multimap, base_type, this_type ) template< class U > ptr_unordered_multimap( const ptr_unordered_multimap<Key,U>& r ) : base_type( r ) { } ptr_unordered_multimap& operator=( ptr_unordered_multimap r ) { this->swap( r ); return *this; } }; ////////////////////////////////////////////////////////////////////////////// // clonability template< class K, class T, class H, class P, class CA, class A > inline ptr_unordered_map<K,T,H,P,CA,A>* new_clone( const ptr_unordered_map<K,T,H,P,CA,A>& r ) { return r.clone().release(); } template< class K, class T, class H, class P, class CA, class A > inline ptr_unordered_multimap<K,T,H,P,CA,A>* new_clone( const ptr_unordered_multimap<K,T,H,P,CA,A>& r ) { return r.clone().release(); } ///////////////////////////////////////////////////////////////////////// // swap template< class K, class T, class H, class P, class CA, class A > inline void swap( ptr_unordered_map<K,T,H,P,CA,A>& l, ptr_unordered_map<K,T,H,P,CA,A>& r ) { l.swap(r); } template< class K, class T, class H, class P, class CA, class A > inline void swap( ptr_unordered_multimap<K,T,H,P,CA,A>& l, ptr_unordered_multimap<K,T,H,P,CA,A>& r ) { l.swap(r); } } #endif