//===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "MipsInstrInfo.h" #include "MipsTargetMachine.h" #include "MipsMachineFunction.h" #include "InstPrinter/MipsInstPrinter.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/ADT/STLExtras.h" #define GET_INSTRINFO_CTOR #include "MipsGenInstrInfo.inc" using namespace llvm; MipsInstrInfo::MipsInstrInfo(MipsTargetMachine &tm) : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), TM(tm), IsN64(TM.getSubtarget<MipsSubtarget>().isABI_N64()), RI(*TM.getSubtargetImpl(), *this), UncondBrOpc(TM.getRelocationModel() == Reloc::PIC_ ? Mips::B : Mips::J) {} const MipsRegisterInfo &MipsInstrInfo::getRegisterInfo() const { return RI; } static bool isZeroImm(const MachineOperand &op) { return op.isImm() && op.getImm() == 0; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned MipsInstrInfo:: isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { unsigned Opc = MI->getOpcode(); if ((Opc == Mips::LW) || (Opc == Mips::LW_P8) || (Opc == Mips::LD) || (Opc == Mips::LD_P8) || (Opc == Mips::LWC1) || (Opc == Mips::LWC1_P8) || (Opc == Mips::LDC1) || (Opc == Mips::LDC164) || (Opc == Mips::LDC164_P8)) { if ((MI->getOperand(1).isFI()) && // is a stack slot (MI->getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(2)))) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned MipsInstrInfo:: isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { unsigned Opc = MI->getOpcode(); if ((Opc == Mips::SW) || (Opc == Mips::SW_P8) || (Opc == Mips::SD) || (Opc == Mips::SD_P8) || (Opc == Mips::SWC1) || (Opc == Mips::SWC1_P8) || (Opc == Mips::SDC1) || (Opc == Mips::SDC164) || (Opc == Mips::SDC164_P8)) { if ((MI->getOperand(1).isFI()) && // is a stack slot (MI->getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(2)))) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// insertNoop - If data hazard condition is found insert the target nop /// instruction. void MipsInstrInfo:: insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL; BuildMI(MBB, MI, DL, get(Mips::NOP)); } void MipsInstrInfo:: copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { unsigned Opc = 0, ZeroReg = 0; if (Mips::CPURegsRegClass.contains(DestReg)) { // Copy to CPU Reg. if (Mips::CPURegsRegClass.contains(SrcReg)) Opc = Mips::ADDu, ZeroReg = Mips::ZERO; else if (Mips::CCRRegClass.contains(SrcReg)) Opc = Mips::CFC1; else if (Mips::FGR32RegClass.contains(SrcReg)) Opc = Mips::MFC1; else if (SrcReg == Mips::HI) Opc = Mips::MFHI, SrcReg = 0; else if (SrcReg == Mips::LO) Opc = Mips::MFLO, SrcReg = 0; } else if (Mips::CPURegsRegClass.contains(SrcReg)) { // Copy from CPU Reg. if (Mips::CCRRegClass.contains(DestReg)) Opc = Mips::CTC1; else if (Mips::FGR32RegClass.contains(DestReg)) Opc = Mips::MTC1; else if (DestReg == Mips::HI) Opc = Mips::MTHI, DestReg = 0; else if (DestReg == Mips::LO) Opc = Mips::MTLO, DestReg = 0; } else if (Mips::FGR32RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_S; else if (Mips::AFGR64RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_D32; else if (Mips::FGR64RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_D64; else if (Mips::CCRRegClass.contains(DestReg, SrcReg)) Opc = Mips::MOVCCRToCCR; else if (Mips::CPU64RegsRegClass.contains(DestReg)) { // Copy to CPU64 Reg. if (Mips::CPU64RegsRegClass.contains(SrcReg)) Opc = Mips::DADDu, ZeroReg = Mips::ZERO_64; else if (SrcReg == Mips::HI64) Opc = Mips::MFHI64, SrcReg = 0; else if (SrcReg == Mips::LO64) Opc = Mips::MFLO64, SrcReg = 0; else if (Mips::FGR64RegClass.contains(SrcReg)) Opc = Mips::DMFC1; } else if (Mips::CPU64RegsRegClass.contains(SrcReg)) { // Copy from CPU64 Reg. if (DestReg == Mips::HI64) Opc = Mips::MTHI64, DestReg = 0; else if (DestReg == Mips::LO64) Opc = Mips::MTLO64, DestReg = 0; else if (Mips::FGR64RegClass.contains(DestReg)) Opc = Mips::DMTC1; } assert(Opc && "Cannot copy registers"); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc)); if (DestReg) MIB.addReg(DestReg, RegState::Define); if (ZeroReg) MIB.addReg(ZeroReg); if (SrcReg) MIB.addReg(SrcReg, getKillRegState(KillSrc)); } static MachineMemOperand* GetMemOperand(MachineBasicBlock &MBB, int FI, unsigned Flag) { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), Flag, MFI.getObjectSize(FI), Align); } void MipsInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore); unsigned Opc = 0; if (RC == Mips::CPURegsRegisterClass) Opc = IsN64 ? Mips::SW_P8 : Mips::SW; else if (RC == Mips::CPU64RegsRegisterClass) Opc = IsN64 ? Mips::SD_P8 : Mips::SD; else if (RC == Mips::FGR32RegisterClass) Opc = IsN64 ? Mips::SWC1_P8 : Mips::SWC1; else if (RC == Mips::AFGR64RegisterClass) Opc = Mips::SDC1; else if (RC == Mips::FGR64RegisterClass) Opc = IsN64 ? Mips::SDC164_P8 : Mips::SDC164; assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } void MipsInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad); unsigned Opc = 0; if (RC == Mips::CPURegsRegisterClass) Opc = IsN64 ? Mips::LW_P8 : Mips::LW; else if (RC == Mips::CPU64RegsRegisterClass) Opc = IsN64 ? Mips::LD_P8 : Mips::LD; else if (RC == Mips::FGR32RegisterClass) Opc = IsN64 ? Mips::LWC1_P8 : Mips::LWC1; else if (RC == Mips::AFGR64RegisterClass) Opc = Mips::LDC1; else if (RC == Mips::FGR64RegisterClass) Opc = IsN64 ? Mips::LDC164_P8 : Mips::LDC164; assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); } MachineInstr* MipsInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { MachineInstrBuilder MIB = BuildMI(MF, DL, get(Mips::DBG_VALUE)) .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr); return &*MIB; } //===----------------------------------------------------------------------===// // Branch Analysis //===----------------------------------------------------------------------===// static unsigned GetAnalyzableBrOpc(unsigned Opc) { return (Opc == Mips::BEQ || Opc == Mips::BNE || Opc == Mips::BGTZ || Opc == Mips::BGEZ || Opc == Mips::BLTZ || Opc == Mips::BLEZ || Opc == Mips::BEQ64 || Opc == Mips::BNE64 || Opc == Mips::BGTZ64 || Opc == Mips::BGEZ64 || Opc == Mips::BLTZ64 || Opc == Mips::BLEZ64 || Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::B || Opc == Mips::J) ? Opc : 0; } /// GetOppositeBranchOpc - Return the inverse of the specified /// opcode, e.g. turning BEQ to BNE. unsigned Mips::GetOppositeBranchOpc(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Illegal opcode!"); case Mips::BEQ: return Mips::BNE; case Mips::BNE: return Mips::BEQ; case Mips::BGTZ: return Mips::BLEZ; case Mips::BGEZ: return Mips::BLTZ; case Mips::BLTZ: return Mips::BGEZ; case Mips::BLEZ: return Mips::BGTZ; case Mips::BEQ64: return Mips::BNE64; case Mips::BNE64: return Mips::BEQ64; case Mips::BGTZ64: return Mips::BLEZ64; case Mips::BGEZ64: return Mips::BLTZ64; case Mips::BLTZ64: return Mips::BGEZ64; case Mips::BLEZ64: return Mips::BGTZ64; case Mips::BC1T: return Mips::BC1F; case Mips::BC1F: return Mips::BC1T; } } static void AnalyzeCondBr(const MachineInstr* Inst, unsigned Opc, MachineBasicBlock *&BB, SmallVectorImpl<MachineOperand>& Cond) { assert(GetAnalyzableBrOpc(Opc) && "Not an analyzable branch"); int NumOp = Inst->getNumExplicitOperands(); // for both int and fp branches, the last explicit operand is the // MBB. BB = Inst->getOperand(NumOp-1).getMBB(); Cond.push_back(MachineOperand::CreateImm(Opc)); for (int i=0; i<NumOp-1; i++) Cond.push_back(Inst->getOperand(i)); } bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); // Skip all the debug instructions. while (I != REnd && I->isDebugValue()) ++I; if (I == REnd || !isUnpredicatedTerminator(&*I)) { // If this block ends with no branches (it just falls through to its succ) // just return false, leaving TBB/FBB null. TBB = FBB = NULL; return false; } MachineInstr *LastInst = &*I; unsigned LastOpc = LastInst->getOpcode(); // Not an analyzable branch (must be an indirect jump). if (!GetAnalyzableBrOpc(LastOpc)) return true; // Get the second to last instruction in the block. unsigned SecondLastOpc = 0; MachineInstr *SecondLastInst = NULL; if (++I != REnd) { SecondLastInst = &*I; SecondLastOpc = GetAnalyzableBrOpc(SecondLastInst->getOpcode()); // Not an analyzable branch (must be an indirect jump). if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc) return true; } // If there is only one terminator instruction, process it. if (!SecondLastOpc) { // Unconditional branch if (LastOpc == UncondBrOpc) { TBB = LastInst->getOperand(0).getMBB(); return false; } // Conditional branch AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); return false; } // If we reached here, there are two branches. // If there are three terminators, we don't know what sort of block this is. if (++I != REnd && isUnpredicatedTerminator(&*I)) return true; // If second to last instruction is an unconditional branch, // analyze it and remove the last instruction. if (SecondLastOpc == UncondBrOpc) { // Return if the last instruction cannot be removed. if (!AllowModify) return true; TBB = SecondLastInst->getOperand(0).getMBB(); LastInst->eraseFromParent(); return false; } // Conditional branch followed by an unconditional branch. // The last one must be unconditional. if (LastOpc != UncondBrOpc) return true; AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return false; } void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, DebugLoc DL, const SmallVectorImpl<MachineOperand>& Cond) const { unsigned Opc = Cond[0].getImm(); const MCInstrDesc &MCID = get(Opc); MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); for (unsigned i = 1; i < Cond.size(); ++i) MIB.addReg(Cond[i].getReg()); MIB.addMBB(TBB); } unsigned MipsInstrInfo:: InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); // # of condition operands: // Unconditional branches: 0 // Floating point branches: 1 (opc) // Int BranchZero: 2 (opc, reg) // Int Branch: 3 (opc, reg0, reg1) assert((Cond.size() <= 3) && "# of Mips branch conditions must be <= 3!"); // Two-way Conditional branch. if (FBB) { BuildCondBr(MBB, TBB, DL, Cond); BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); return 2; } // One way branch. // Unconditional branch. if (Cond.empty()) BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); else // Conditional branch. BuildCondBr(MBB, TBB, DL, Cond); return 1; } unsigned MipsInstrInfo:: RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); MachineBasicBlock::reverse_iterator FirstBr; unsigned removed; // Skip all the debug instructions. while (I != REnd && I->isDebugValue()) ++I; FirstBr = I; // Up to 2 branches are removed. // Note that indirect branches are not removed. for(removed = 0; I != REnd && removed < 2; ++I, ++removed) if (!GetAnalyzableBrOpc(I->getOpcode())) break; MBB.erase(I.base(), FirstBr.base()); return removed; } /// ReverseBranchCondition - Return the inverse opcode of the /// specified Branch instruction. bool MipsInstrInfo:: ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { assert( (Cond.size() && Cond.size() <= 3) && "Invalid Mips branch condition!"); Cond[0].setImm(Mips::GetOppositeBranchOpc(Cond[0].getImm())); return false; }