///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2012. // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// // The internal implementation of red-black trees is based on that of SGI STL // stl_tree.h file: // // Copyright (c) 1996,1997 // Silicon Graphics Computer Systems, Inc. // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Silicon Graphics makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. // // // Copyright (c) 1994 // Hewlett-Packard Company // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Hewlett-Packard Company makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. // // The tree destruction algorithm is based on Julienne Walker and The EC Team code: // // This code is in the public domain. Anyone may use it or change it in any way that // they see fit. The author assumes no responsibility for damages incurred through // use of the original code or any variations thereof. // // It is requested, but not required, that due credit is given to the original author // and anyone who has modified the code through a header comment, such as this one. #ifndef BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP #define BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP #include #include #include #include #include #include #include namespace boost { namespace intrusive { //! rbtree_algorithms provides basic algorithms to manipulate //! nodes forming a red-black tree. The insertion and deletion algorithms are //! based on those in Cormen, Leiserson, and Rivest, Introduction to Algorithms //! (MIT Press, 1990), except that //! //! (1) the header node is maintained with links not only to the root //! but also to the leftmost node of the tree, to enable constant time //! begin(), and to the rightmost node of the tree, to enable linear time //! performance when used with the generic set algorithms (set_union, //! etc.); //! //! (2) when a node being deleted has two children its successor node is //! relinked into its place, rather than copied, so that the only //! pointers invalidated are those referring to the deleted node. //! //! rbtree_algorithms is configured with a NodeTraits class, which encapsulates the //! information about the node to be manipulated. NodeTraits must support the //! following interface: //! //! Typedefs: //! //! node: The type of the node that forms the circular list //! //! node_ptr: A pointer to a node //! //! const_node_ptr: A pointer to a const node //! //! color: The type that can store the color of a node //! //! Static functions: //! //! static node_ptr get_parent(const_node_ptr n); //! //! static void set_parent(node_ptr n, node_ptr parent); //! //! static node_ptr get_left(const_node_ptr n); //! //! static void set_left(node_ptr n, node_ptr left); //! //! static node_ptr get_right(const_node_ptr n); //! //! static void set_right(node_ptr n, node_ptr right); //! //! static color get_color(const_node_ptr n); //! //! static void set_color(node_ptr n, color c); //! //! static color black(); //! //! static color red(); template class rbtree_algorithms { public: typedef NodeTraits node_traits; typedef typename NodeTraits::node node; typedef typename NodeTraits::node_ptr node_ptr; typedef typename NodeTraits::const_node_ptr const_node_ptr; typedef typename NodeTraits::color color; /// @cond private: typedef detail::tree_algorithms tree_algorithms; template struct rbtree_node_cloner : private detail::ebo_functor_holder { typedef detail::ebo_functor_holder base_t; rbtree_node_cloner(F f) : base_t(f) {} node_ptr operator()(const node_ptr & p) { node_ptr n = base_t::get()(p); NodeTraits::set_color(n, NodeTraits::get_color(p)); return n; } }; struct rbtree_erase_fixup { void operator()(const node_ptr & to_erase, const node_ptr & successor) { //Swap color of y and z color tmp(NodeTraits::get_color(successor)); NodeTraits::set_color(successor, NodeTraits::get_color(to_erase)); NodeTraits::set_color(to_erase, tmp); } }; static node_ptr uncast(const const_node_ptr & ptr) { return pointer_traits::const_cast_from(ptr); } /// @endcond public: static node_ptr begin_node(const const_node_ptr & header) { return tree_algorithms::begin_node(header); } static node_ptr end_node(const const_node_ptr & header) { return tree_algorithms::end_node(header); } //! This type is the information that will be //! filled by insert_unique_check typedef typename tree_algorithms::insert_commit_data insert_commit_data; //! Requires: header1 and header2 must be the header nodes //! of two trees. //! //! Effects: Swaps two trees. After the function header1 will contain //! links to the second tree and header2 will have links to the first tree. //! //! Complexity: Constant. //! //! Throws: Nothing. static void swap_tree(const node_ptr & header1, const node_ptr & header2) { return tree_algorithms::swap_tree(header1, header2); } //! Requires: node1 and node2 can't be header nodes //! of two trees. //! //! Effects: Swaps two nodes. After the function node1 will be inserted //! in the position node2 before the function. node2 will be inserted in the //! position node1 had before the function. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! node1 and node2 are not equivalent according to the ordering rules. //! //!Experimental function static void swap_nodes(const node_ptr & node1, const node_ptr & node2) { if(node1 == node2) return; node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2)); swap_nodes(node1, header1, node2, header2); } //! Requires: node1 and node2 can't be header nodes //! of two trees with header header1 and header2. //! //! Effects: Swaps two nodes. After the function node1 will be inserted //! in the position node2 before the function. node2 will be inserted in the //! position node1 had before the function. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! node1 and node2 are not equivalent according to the ordering rules. //! //!Experimental function static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2) { if(node1 == node2) return; tree_algorithms::swap_nodes(node1, header1, node2, header2); //Swap color color c = NodeTraits::get_color(node1); NodeTraits::set_color(node1, NodeTraits::get_color(node2)); NodeTraits::set_color(node2, c); } //! Requires: node_to_be_replaced must be inserted in a tree //! and new_node must not be inserted in a tree. //! //! Effects: Replaces node_to_be_replaced in its position in the //! tree with new_node. The tree does not need to be rebalanced //! //! Complexity: Logarithmic. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! new_node is not equivalent to node_to_be_replaced according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing and comparison is needed. //! //!Experimental function static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node) { if(node_to_be_replaced == new_node) return; replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node); } //! Requires: node_to_be_replaced must be inserted in a tree //! with header "header" and new_node must not be inserted in a tree. //! //! Effects: Replaces node_to_be_replaced in its position in the //! tree with new_node. The tree does not need to be rebalanced //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! new_node is not equivalent to node_to_be_replaced according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. //! //!Experimental function static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node) { tree_algorithms::replace_node(node_to_be_replaced, header, new_node); NodeTraits::set_color(new_node, NodeTraits::get_color(node_to_be_replaced)); } //! Requires: node is a tree node but not the header. //! //! Effects: Unlinks the node and rebalances the tree. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. static void unlink(const node_ptr & node) { node_ptr x = NodeTraits::get_parent(node); if(x){ while(!is_header(x)) x = NodeTraits::get_parent(x); erase(x, node); } } //! Requires: header is the header of a tree. //! //! Effects: Unlinks the leftmost node from the tree, and //! updates the header link to the new leftmost node. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. //! //! Notes: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header) { return tree_algorithms::unlink_leftmost_without_rebalance(header); } //! Requires: node is a node of the tree or an node initialized //! by init(...). //! //! Effects: Returns true if the node is initialized by init(). //! //! Complexity: Constant time. //! //! Throws: Nothing. static bool unique(const const_node_ptr & node) { return tree_algorithms::unique(node); } //! Requires: node is a node of the tree but it's not the header. //! //! Effects: Returns the number of nodes of the subtree. //! //! Complexity: Linear time. //! //! Throws: Nothing. static std::size_t count(const const_node_ptr & node) { return tree_algorithms::count(node); } //! Requires: header is the header node of the tree. //! //! Effects: Returns the number of nodes above the header. //! //! Complexity: Linear time. //! //! Throws: Nothing. static std::size_t size(const const_node_ptr & header) { return tree_algorithms::size(header); } //! Requires: p is a node from the tree except the header. //! //! Effects: Returns the next node of the tree. //! //! Complexity: Average constant time. //! //! Throws: Nothing. static node_ptr next_node(const node_ptr & p) { return tree_algorithms::next_node(p); } //! Requires: p is a node from the tree except the leftmost node. //! //! Effects: Returns the previous node of the tree. //! //! Complexity: Average constant time. //! //! Throws: Nothing. static node_ptr prev_node(const node_ptr & p) { return tree_algorithms::prev_node(p); } //! Requires: node must not be part of any tree. //! //! Effects: After the function unique(node) == true. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Nodes: If node is inserted in a tree, this function corrupts the tree. static void init(const node_ptr & node) { tree_algorithms::init(node); } //! Requires: node must not be part of any tree. //! //! Effects: Initializes the header to represent an empty tree. //! unique(header) == true. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Nodes: If node is inserted in a tree, this function corrupts the tree. static void init_header(const node_ptr & header) { tree_algorithms::init_header(header); NodeTraits::set_color(header, NodeTraits::red()); } //! Requires: header must be the header of a tree, z a node //! of that tree and z != header. //! //! Effects: Erases node "z" from the tree with header "header". //! //! Complexity: Amortized constant time. //! //! Throws: Nothing. static node_ptr erase(const node_ptr & header, const node_ptr & z) { typename tree_algorithms::data_for_rebalance info; tree_algorithms::erase(header, z, rbtree_erase_fixup(), info); node_ptr x = info.x; node_ptr x_parent = info.x_parent; //Rebalance rbtree if(NodeTraits::get_color(z) != NodeTraits::red()){ rebalance_after_erasure(header, x, x_parent); } return z; } //! Requires: "cloner" must be a function //! object taking a node_ptr and returning a new cloned node of it. "disposer" must //! take a node_ptr and shouldn't throw. //! //! Effects: First empties target tree calling //! void disposer::operator()(const node_ptr &) for every node of the tree //! except the header. //! //! Then, duplicates the entire tree pointed by "source_header" cloning each //! source node with node_ptr Cloner::operator()(const node_ptr &) to obtain //! the nodes of the target tree. If "cloner" throws, the cloned target nodes //! are disposed using void disposer(const node_ptr &). //! //! Complexity: Linear to the number of element of the source tree plus the. //! number of elements of tree target tree when calling this function. //! //! Throws: If cloner functor throws. If this happens target nodes are disposed. template static void clone (const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer) { rbtree_node_cloner new_cloner(cloner); tree_algorithms::clone(source_header, target_header, new_cloner, disposer); } //! Requires: "disposer" must be an object function //! taking a node_ptr parameter and shouldn't throw. //! //! Effects: Empties the target tree calling //! void disposer::operator()(const node_ptr &) for every node of the tree //! except the header. //! //! Complexity: Linear to the number of element of the source tree plus the. //! number of elements of tree target tree when calling this function. //! //! Throws: If cloner functor throws. If this happens target nodes are disposed. template static void clear_and_dispose(const node_ptr & header, Disposer disposer) { tree_algorithms::clear_and_dispose(header, disposer); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an node_ptr to the first element that is //! not less than "key" according to "comp" or "header" if that element does //! not exist. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static node_ptr lower_bound (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::lower_bound(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an node_ptr to the first element that is greater //! than "key" according to "comp" or "header" if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static node_ptr upper_bound (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::upper_bound(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an node_ptr to the element that is equivalent to //! "key" according to "comp" or "header" if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static node_ptr find (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::find(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an a pair of node_ptr delimiting a range containing //! all elements that are equivalent to "key" according to "comp" or an //! empty range that indicates the position where those elements would be //! if they there are no equivalent elements. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static std::pair equal_range (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::equal_range(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template static std::pair bounded_range (const const_node_ptr & header, const KeyType &lower_key, const KeyType &upper_key, KeyNodePtrCompare comp , bool left_closed, bool right_closed) { return tree_algorithms::bounded_range(header, lower_key, upper_key, comp, left_closed, right_closed); } //! Requires: "h" must be the header node of a tree. //! NodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares two node_ptrs. //! //! Effects: Inserts new_node into the tree before the upper bound //! according to "comp". //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If "comp" throws. template static node_ptr insert_equal_upper_bound (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp) { tree_algorithms::insert_equal_upper_bound(h, new_node, comp); rebalance_after_insertion(h, new_node); return new_node; } //! Requires: "h" must be the header node of a tree. //! NodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares two node_ptrs. //! //! Effects: Inserts new_node into the tree before the lower bound //! according to "comp". //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If "comp" throws. template static node_ptr insert_equal_lower_bound (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp) { tree_algorithms::insert_equal_lower_bound(h, new_node, comp); rebalance_after_insertion(h, new_node); return new_node; } //! Requires: "header" must be the header node of a tree. //! NodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from //! the "header"'s tree. //! //! Effects: Inserts new_node into the tree, using "hint" as a hint to //! where it will be inserted. If "hint" is the upper_bound //! the insertion takes constant time (two comparisons in the worst case). //! //! Complexity: Logarithmic in general, but it is amortized //! constant time if new_node is inserted immediately before "hint". //! //! Throws: If "comp" throws. template static node_ptr insert_equal (const node_ptr & header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp) { tree_algorithms::insert_equal(header, hint, new_node, comp); rebalance_after_insertion(header, new_node); return new_node; } //! Requires: "header" must be the header node of a tree. //! "pos" must be a valid iterator or header (end) node. //! "pos" must be an iterator pointing to the successor to "new_node" //! once inserted according to the order of already inserted nodes. This function does not //! check "pos" and this precondition must be guaranteed by the caller. //! //! Effects: Inserts new_node into the tree before "pos". //! //! Complexity: Constant-time. //! //! Throws: Nothing. //! //! Note: If "pos" is not the successor of the newly inserted "new_node" //! tree invariants might be broken. static node_ptr insert_before (const node_ptr & header, const node_ptr & pos, const node_ptr & new_node) { tree_algorithms::insert_before(header, pos, new_node); rebalance_after_insertion(header, new_node); return new_node; } //! Requires: "header" must be the header node of a tree. //! "new_node" must be, according to the used ordering no less than the //! greatest inserted key. //! //! Effects: Inserts new_node into the tree before "pos". //! //! Complexity: Constant-time. //! //! Throws: Nothing. //! //! Note: If "new_node" is less than the greatest inserted key //! tree invariants are broken. This function is slightly faster than //! using "insert_before". static void push_back(const node_ptr & header, const node_ptr & new_node) { tree_algorithms::push_back(header, new_node); rebalance_after_insertion(header, new_node); } //! Requires: "header" must be the header node of a tree. //! "new_node" must be, according to the used ordering, no greater than the //! lowest inserted key. //! //! Effects: Inserts new_node into the tree before "pos". //! //! Complexity: Constant-time. //! //! Throws: Nothing. //! //! Note: If "new_node" is greater than the lowest inserted key //! tree invariants are broken. This function is slightly faster than //! using "insert_before". static void push_front(const node_ptr & header, const node_ptr & new_node) { tree_algorithms::push_front(header, new_node); rebalance_after_insertion(header, new_node); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares KeyType with a node_ptr. //! //! Effects: Checks if there is an equivalent node to "key" in the //! tree according to "comp" and obtains the needed information to realize //! a constant-time node insertion if there is no equivalent node. //! //! Returns: If there is an equivalent value //! returns a pair containing a node_ptr to the already present node //! and false. If there is not equivalent key can be inserted returns true //! in the returned pair's boolean and fills "commit_data" that is meant to //! be used with the "insert_commit" function to achieve a constant-time //! insertion function. //! //! Complexity: Average complexity is at most logarithmic. //! //! Throws: If "comp" throws. //! //! Notes: This function is used to improve performance when constructing //! a node is expensive and the user does not want to have two equivalent nodes //! in the tree: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the node and this function offers the possibility to use that part //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the node and use //! "insert_commit" to insert the node in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_unique_commit" only //! if no more objects are inserted or erased from the set. template static std::pair insert_unique_check (const const_node_ptr & header, const KeyType &key ,KeyNodePtrCompare comp, insert_commit_data &commit_data) { return tree_algorithms::insert_unique_check(header, key, comp, commit_data); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares KeyType with a node_ptr. //! "hint" is node from the "header"'s tree. //! //! Effects: Checks if there is an equivalent node to "key" in the //! tree according to "comp" using "hint" as a hint to where it should be //! inserted and obtains the needed information to realize //! a constant-time node insertion if there is no equivalent node. //! If "hint" is the upper_bound the function has constant time //! complexity (two comparisons in the worst case). //! //! Returns: If there is an equivalent value //! returns a pair containing a node_ptr to the already present node //! and false. If there is not equivalent key can be inserted returns true //! in the returned pair's boolean and fills "commit_data" that is meant to //! be used with the "insert_commit" function to achieve a constant-time //! insertion function. //! //! Complexity: Average complexity is at most logarithmic, but it is //! amortized constant time if new_node should be inserted immediately before "hint". //! //! Throws: If "comp" throws. //! //! Notes: This function is used to improve performance when constructing //! a node is expensive and the user does not want to have two equivalent nodes //! in the tree: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the node and this function offers the possibility to use that part //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the node and use //! "insert_commit" to insert the node in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_unique_commit" only //! if no more objects are inserted or erased from the set. template static std::pair insert_unique_check (const const_node_ptr & header, const node_ptr &hint, const KeyType &key ,KeyNodePtrCompare comp, insert_commit_data &commit_data) { return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data); } //! Requires: "header" must be the header node of a tree. //! "commit_data" must have been obtained from a previous call to //! "insert_unique_check". No objects should have been inserted or erased //! from the set between the "insert_unique_check" that filled "commit_data" //! and the call to "insert_commit". //! //! //! Effects: Inserts new_node in the set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Notes: This function has only sense if a "insert_unique_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. static void insert_unique_commit (const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data) { tree_algorithms::insert_unique_commit(header, new_value, commit_data); rebalance_after_insertion(header, new_value); } //! Requires: "n" must be a node inserted in a tree. //! //! Effects: Returns a pointer to the header node of the tree. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. static node_ptr get_header(const node_ptr & n) { return tree_algorithms::get_header(n); } /// @cond private: //! Requires: p is a node of a tree. //! //! Effects: Returns true if p is the header of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. static bool is_header(const const_node_ptr & p) { return NodeTraits::get_color(p) == NodeTraits::red() && tree_algorithms::is_header(p); //return NodeTraits::get_color(p) == NodeTraits::red() && // NodeTraits::get_parent(NodeTraits::get_parent(p)) == p; } static void rebalance_after_erasure(const node_ptr & header, node_ptr x, node_ptr x_parent) { while(x != NodeTraits::get_parent(header) && (!x || NodeTraits::get_color(x) == NodeTraits::black())){ if(x == NodeTraits::get_left(x_parent)){ node_ptr w = NodeTraits::get_right(x_parent); BOOST_ASSERT(w); if(NodeTraits::get_color(w) == NodeTraits::red()){ NodeTraits::set_color(w, NodeTraits::black()); NodeTraits::set_color(x_parent, NodeTraits::red()); tree_algorithms::rotate_left(x_parent, header); w = NodeTraits::get_right(x_parent); } if((!NodeTraits::get_left(w) || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black()) && (!NodeTraits::get_right(w) || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black())){ NodeTraits::set_color(w, NodeTraits::red()); x = x_parent; x_parent = NodeTraits::get_parent(x_parent); } else { if(!NodeTraits::get_right(w) || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black()){ NodeTraits::set_color(NodeTraits::get_left(w), NodeTraits::black()); NodeTraits::set_color(w, NodeTraits::red()); tree_algorithms::rotate_right(w, header); w = NodeTraits::get_right(x_parent); } NodeTraits::set_color(w, NodeTraits::get_color(x_parent)); NodeTraits::set_color(x_parent, NodeTraits::black()); if(NodeTraits::get_right(w)) NodeTraits::set_color(NodeTraits::get_right(w), NodeTraits::black()); tree_algorithms::rotate_left(x_parent, header); break; } } else { // same as above, with right_ <-> left_. node_ptr w = NodeTraits::get_left(x_parent); if(NodeTraits::get_color(w) == NodeTraits::red()){ NodeTraits::set_color(w, NodeTraits::black()); NodeTraits::set_color(x_parent, NodeTraits::red()); tree_algorithms::rotate_right(x_parent, header); w = NodeTraits::get_left(x_parent); } if((!NodeTraits::get_right(w) || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black()) && (!NodeTraits::get_left(w) || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black())){ NodeTraits::set_color(w, NodeTraits::red()); x = x_parent; x_parent = NodeTraits::get_parent(x_parent); } else { if(!NodeTraits::get_left(w) || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black()){ NodeTraits::set_color(NodeTraits::get_right(w), NodeTraits::black()); NodeTraits::set_color(w, NodeTraits::red()); tree_algorithms::rotate_left(w, header); w = NodeTraits::get_left(x_parent); } NodeTraits::set_color(w, NodeTraits::get_color(x_parent)); NodeTraits::set_color(x_parent, NodeTraits::black()); if(NodeTraits::get_left(w)) NodeTraits::set_color(NodeTraits::get_left(w), NodeTraits::black()); tree_algorithms::rotate_right(x_parent, header); break; } } } if(x) NodeTraits::set_color(x, NodeTraits::black()); } static void rebalance_after_insertion(const node_ptr & header, node_ptr p) { NodeTraits::set_color(p, NodeTraits::red()); while(p != NodeTraits::get_parent(header) && NodeTraits::get_color(NodeTraits::get_parent(p)) == NodeTraits::red()){ node_ptr p_parent(NodeTraits::get_parent(p)); node_ptr p_parent_parent(NodeTraits::get_parent(p_parent)); if(tree_algorithms::is_left_child(p_parent)){ node_ptr x = NodeTraits::get_right(p_parent_parent); if(x && NodeTraits::get_color(x) == NodeTraits::red()){ NodeTraits::set_color(p_parent, NodeTraits::black()); NodeTraits::set_color(p_parent_parent, NodeTraits::red()); NodeTraits::set_color(x, NodeTraits::black()); p = p_parent_parent; } else { if(!tree_algorithms::is_left_child(p)){ p = p_parent; tree_algorithms::rotate_left(p, header); } node_ptr new_p_parent(NodeTraits::get_parent(p)); node_ptr new_p_parent_parent(NodeTraits::get_parent(new_p_parent)); NodeTraits::set_color(new_p_parent, NodeTraits::black()); NodeTraits::set_color(new_p_parent_parent, NodeTraits::red()); tree_algorithms::rotate_right(new_p_parent_parent, header); } } else{ node_ptr x = NodeTraits::get_left(p_parent_parent); if(x && NodeTraits::get_color(x) == NodeTraits::red()){ NodeTraits::set_color(p_parent, NodeTraits::black()); NodeTraits::set_color(p_parent_parent, NodeTraits::red()); NodeTraits::set_color(x, NodeTraits::black()); p = p_parent_parent; } else{ if(tree_algorithms::is_left_child(p)){ p = p_parent; tree_algorithms::rotate_right(p, header); } node_ptr new_p_parent(NodeTraits::get_parent(p)); node_ptr new_p_parent_parent(NodeTraits::get_parent(new_p_parent)); NodeTraits::set_color(new_p_parent, NodeTraits::black()); NodeTraits::set_color(new_p_parent_parent, NodeTraits::red()); tree_algorithms::rotate_left(new_p_parent_parent, header); } } } NodeTraits::set_color(NodeTraits::get_parent(header), NodeTraits::black()); } /// @endcond }; } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP