1344 lines
52 KiB
C++
1344 lines
52 KiB
C++
|
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This contains code to emit Aggregate Expr nodes as LLVM code.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "CodeGenFunction.h"
|
||
|
#include "CodeGenModule.h"
|
||
|
#include "CGObjCRuntime.h"
|
||
|
#include "clang/AST/ASTContext.h"
|
||
|
#include "clang/AST/DeclCXX.h"
|
||
|
#include "clang/AST/DeclTemplate.h"
|
||
|
#include "clang/AST/StmtVisitor.h"
|
||
|
#include "llvm/Constants.h"
|
||
|
#include "llvm/Function.h"
|
||
|
#include "llvm/GlobalVariable.h"
|
||
|
#include "llvm/Intrinsics.h"
|
||
|
using namespace clang;
|
||
|
using namespace CodeGen;
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Aggregate Expression Emitter
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
namespace {
|
||
|
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
|
||
|
CodeGenFunction &CGF;
|
||
|
CGBuilderTy &Builder;
|
||
|
AggValueSlot Dest;
|
||
|
bool IgnoreResult;
|
||
|
|
||
|
/// We want to use 'dest' as the return slot except under two
|
||
|
/// conditions:
|
||
|
/// - The destination slot requires garbage collection, so we
|
||
|
/// need to use the GC API.
|
||
|
/// - The destination slot is potentially aliased.
|
||
|
bool shouldUseDestForReturnSlot() const {
|
||
|
return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
|
||
|
}
|
||
|
|
||
|
ReturnValueSlot getReturnValueSlot() const {
|
||
|
if (!shouldUseDestForReturnSlot())
|
||
|
return ReturnValueSlot();
|
||
|
|
||
|
return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
|
||
|
}
|
||
|
|
||
|
AggValueSlot EnsureSlot(QualType T) {
|
||
|
if (!Dest.isIgnored()) return Dest;
|
||
|
return CGF.CreateAggTemp(T, "agg.tmp.ensured");
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
|
||
|
bool ignore)
|
||
|
: CGF(cgf), Builder(CGF.Builder), Dest(Dest),
|
||
|
IgnoreResult(ignore) {
|
||
|
}
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
// Utilities
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
|
||
|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
|
||
|
/// represents a value lvalue, this method emits the address of the lvalue,
|
||
|
/// then loads the result into DestPtr.
|
||
|
void EmitAggLoadOfLValue(const Expr *E);
|
||
|
|
||
|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
|
||
|
void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
|
||
|
void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
|
||
|
unsigned Alignment = 0);
|
||
|
|
||
|
void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
|
||
|
|
||
|
void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
|
||
|
void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
|
||
|
QualType elementType, InitListExpr *E);
|
||
|
|
||
|
AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
|
||
|
if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
|
||
|
return AggValueSlot::NeedsGCBarriers;
|
||
|
return AggValueSlot::DoesNotNeedGCBarriers;
|
||
|
}
|
||
|
|
||
|
bool TypeRequiresGCollection(QualType T);
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
// Visitor Methods
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
|
||
|
void VisitStmt(Stmt *S) {
|
||
|
CGF.ErrorUnsupported(S, "aggregate expression");
|
||
|
}
|
||
|
void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
|
||
|
void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
|
||
|
Visit(GE->getResultExpr());
|
||
|
}
|
||
|
void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
|
||
|
void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
|
||
|
return Visit(E->getReplacement());
|
||
|
}
|
||
|
|
||
|
// l-values.
|
||
|
void VisitDeclRefExpr(DeclRefExpr *E) {
|
||
|
// For aggregates, we should always be able to emit the variable
|
||
|
// as an l-value unless it's a reference. This is due to the fact
|
||
|
// that we can't actually ever see a normal l2r conversion on an
|
||
|
// aggregate in C++, and in C there's no language standard
|
||
|
// actively preventing us from listing variables in the captures
|
||
|
// list of a block.
|
||
|
if (E->getDecl()->getType()->isReferenceType()) {
|
||
|
if (CodeGenFunction::ConstantEmission result
|
||
|
= CGF.tryEmitAsConstant(E)) {
|
||
|
EmitFinalDestCopy(E, result.getReferenceLValue(CGF, E));
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EmitAggLoadOfLValue(E);
|
||
|
}
|
||
|
|
||
|
void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
|
||
|
void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
|
||
|
void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
|
||
|
void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
|
||
|
void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
||
|
EmitAggLoadOfLValue(E);
|
||
|
}
|
||
|
void VisitPredefinedExpr(const PredefinedExpr *E) {
|
||
|
EmitAggLoadOfLValue(E);
|
||
|
}
|
||
|
|
||
|
// Operators.
|
||
|
void VisitCastExpr(CastExpr *E);
|
||
|
void VisitCallExpr(const CallExpr *E);
|
||
|
void VisitStmtExpr(const StmtExpr *E);
|
||
|
void VisitBinaryOperator(const BinaryOperator *BO);
|
||
|
void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
|
||
|
void VisitBinAssign(const BinaryOperator *E);
|
||
|
void VisitBinComma(const BinaryOperator *E);
|
||
|
|
||
|
void VisitObjCMessageExpr(ObjCMessageExpr *E);
|
||
|
void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
||
|
EmitAggLoadOfLValue(E);
|
||
|
}
|
||
|
|
||
|
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
|
||
|
void VisitChooseExpr(const ChooseExpr *CE);
|
||
|
void VisitInitListExpr(InitListExpr *E);
|
||
|
void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
|
||
|
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
||
|
Visit(DAE->getExpr());
|
||
|
}
|
||
|
void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
|
||
|
void VisitCXXConstructExpr(const CXXConstructExpr *E);
|
||
|
void VisitLambdaExpr(LambdaExpr *E);
|
||
|
void VisitExprWithCleanups(ExprWithCleanups *E);
|
||
|
void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
|
||
|
void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
|
||
|
void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
|
||
|
void VisitOpaqueValueExpr(OpaqueValueExpr *E);
|
||
|
|
||
|
void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
|
||
|
if (E->isGLValue()) {
|
||
|
LValue LV = CGF.EmitPseudoObjectLValue(E);
|
||
|
return EmitFinalDestCopy(E, LV);
|
||
|
}
|
||
|
|
||
|
CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
|
||
|
}
|
||
|
|
||
|
void VisitVAArgExpr(VAArgExpr *E);
|
||
|
|
||
|
void EmitInitializationToLValue(Expr *E, LValue Address);
|
||
|
void EmitNullInitializationToLValue(LValue Address);
|
||
|
// case Expr::ChooseExprClass:
|
||
|
void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
|
||
|
void VisitAtomicExpr(AtomicExpr *E) {
|
||
|
CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace.
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Utilities
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
|
||
|
/// represents a value lvalue, this method emits the address of the lvalue,
|
||
|
/// then loads the result into DestPtr.
|
||
|
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
|
||
|
LValue LV = CGF.EmitLValue(E);
|
||
|
EmitFinalDestCopy(E, LV);
|
||
|
}
|
||
|
|
||
|
/// \brief True if the given aggregate type requires special GC API calls.
|
||
|
bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
|
||
|
// Only record types have members that might require garbage collection.
|
||
|
const RecordType *RecordTy = T->getAs<RecordType>();
|
||
|
if (!RecordTy) return false;
|
||
|
|
||
|
// Don't mess with non-trivial C++ types.
|
||
|
RecordDecl *Record = RecordTy->getDecl();
|
||
|
if (isa<CXXRecordDecl>(Record) &&
|
||
|
(!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
|
||
|
!cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
|
||
|
return false;
|
||
|
|
||
|
// Check whether the type has an object member.
|
||
|
return Record->hasObjectMember();
|
||
|
}
|
||
|
|
||
|
/// \brief Perform the final move to DestPtr if for some reason
|
||
|
/// getReturnValueSlot() didn't use it directly.
|
||
|
///
|
||
|
/// The idea is that you do something like this:
|
||
|
/// RValue Result = EmitSomething(..., getReturnValueSlot());
|
||
|
/// EmitMoveFromReturnSlot(E, Result);
|
||
|
///
|
||
|
/// If nothing interferes, this will cause the result to be emitted
|
||
|
/// directly into the return value slot. Otherwise, a final move
|
||
|
/// will be performed.
|
||
|
void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
|
||
|
if (shouldUseDestForReturnSlot()) {
|
||
|
// Logically, Dest.getAddr() should equal Src.getAggregateAddr().
|
||
|
// The possibility of undef rvalues complicates that a lot,
|
||
|
// though, so we can't really assert.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Otherwise, do a final copy,
|
||
|
assert(Dest.getAddr() != Src.getAggregateAddr());
|
||
|
std::pair<CharUnits, CharUnits> TypeInfo =
|
||
|
CGF.getContext().getTypeInfoInChars(E->getType());
|
||
|
CharUnits Alignment = std::min(TypeInfo.second, Dest.getAlignment());
|
||
|
EmitFinalDestCopy(E, Src, /*Ignore*/ true, Alignment.getQuantity());
|
||
|
}
|
||
|
|
||
|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
|
||
|
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
|
||
|
unsigned Alignment) {
|
||
|
assert(Src.isAggregate() && "value must be aggregate value!");
|
||
|
|
||
|
// If Dest is ignored, then we're evaluating an aggregate expression
|
||
|
// in a context (like an expression statement) that doesn't care
|
||
|
// about the result. C says that an lvalue-to-rvalue conversion is
|
||
|
// performed in these cases; C++ says that it is not. In either
|
||
|
// case, we don't actually need to do anything unless the value is
|
||
|
// volatile.
|
||
|
if (Dest.isIgnored()) {
|
||
|
if (!Src.isVolatileQualified() ||
|
||
|
CGF.CGM.getLangOpts().CPlusPlus ||
|
||
|
(IgnoreResult && Ignore))
|
||
|
return;
|
||
|
|
||
|
// If the source is volatile, we must read from it; to do that, we need
|
||
|
// some place to put it.
|
||
|
Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
|
||
|
}
|
||
|
|
||
|
if (Dest.requiresGCollection()) {
|
||
|
CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
|
||
|
llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
|
||
|
llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
|
||
|
CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
|
||
|
Dest.getAddr(),
|
||
|
Src.getAggregateAddr(),
|
||
|
SizeVal);
|
||
|
return;
|
||
|
}
|
||
|
// If the result of the assignment is used, copy the LHS there also.
|
||
|
// FIXME: Pass VolatileDest as well. I think we also need to merge volatile
|
||
|
// from the source as well, as we can't eliminate it if either operand
|
||
|
// is volatile, unless copy has volatile for both source and destination..
|
||
|
CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
|
||
|
Dest.isVolatile()|Src.isVolatileQualified(),
|
||
|
Alignment);
|
||
|
}
|
||
|
|
||
|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
|
||
|
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
|
||
|
assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
|
||
|
|
||
|
CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
|
||
|
EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
|
||
|
}
|
||
|
|
||
|
static QualType GetStdInitializerListElementType(QualType T) {
|
||
|
// Just assume that this is really std::initializer_list.
|
||
|
ClassTemplateSpecializationDecl *specialization =
|
||
|
cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
|
||
|
return specialization->getTemplateArgs()[0].getAsType();
|
||
|
}
|
||
|
|
||
|
/// \brief Prepare cleanup for the temporary array.
|
||
|
static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
|
||
|
QualType arrayType,
|
||
|
llvm::Value *addr,
|
||
|
const InitListExpr *initList) {
|
||
|
QualType::DestructionKind dtorKind = arrayType.isDestructedType();
|
||
|
if (!dtorKind)
|
||
|
return; // Type doesn't need destroying.
|
||
|
if (dtorKind != QualType::DK_cxx_destructor) {
|
||
|
CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
|
||
|
CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
|
||
|
/*EHCleanup=*/true);
|
||
|
}
|
||
|
|
||
|
/// \brief Emit the initializer for a std::initializer_list initialized with a
|
||
|
/// real initializer list.
|
||
|
void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
|
||
|
InitListExpr *initList) {
|
||
|
// We emit an array containing the elements, then have the init list point
|
||
|
// at the array.
|
||
|
ASTContext &ctx = CGF.getContext();
|
||
|
unsigned numInits = initList->getNumInits();
|
||
|
QualType element = GetStdInitializerListElementType(initList->getType());
|
||
|
llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
|
||
|
QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
|
||
|
llvm::Type *LTy = CGF.ConvertTypeForMem(array);
|
||
|
llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
|
||
|
alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
|
||
|
alloc->setName(".initlist.");
|
||
|
|
||
|
EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
|
||
|
|
||
|
// FIXME: The diagnostics are somewhat out of place here.
|
||
|
RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
|
||
|
RecordDecl::field_iterator field = record->field_begin();
|
||
|
if (field == record->field_end()) {
|
||
|
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
QualType elementPtr = ctx.getPointerType(element.withConst());
|
||
|
|
||
|
// Start pointer.
|
||
|
if (!ctx.hasSameType(field->getType(), elementPtr)) {
|
||
|
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
|
||
|
return;
|
||
|
}
|
||
|
LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
|
||
|
LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
|
||
|
llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
|
||
|
CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
|
||
|
++field;
|
||
|
|
||
|
if (field == record->field_end()) {
|
||
|
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
|
||
|
return;
|
||
|
}
|
||
|
LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
|
||
|
if (ctx.hasSameType(field->getType(), elementPtr)) {
|
||
|
// End pointer.
|
||
|
llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
|
||
|
CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
|
||
|
} else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
|
||
|
// Length.
|
||
|
CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
|
||
|
} else {
|
||
|
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!Dest.isExternallyDestructed())
|
||
|
EmitStdInitializerListCleanup(CGF, array, alloc, initList);
|
||
|
}
|
||
|
|
||
|
/// \brief Emit initialization of an array from an initializer list.
|
||
|
void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
|
||
|
QualType elementType, InitListExpr *E) {
|
||
|
uint64_t NumInitElements = E->getNumInits();
|
||
|
|
||
|
uint64_t NumArrayElements = AType->getNumElements();
|
||
|
assert(NumInitElements <= NumArrayElements);
|
||
|
|
||
|
// DestPtr is an array*. Construct an elementType* by drilling
|
||
|
// down a level.
|
||
|
llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
|
||
|
llvm::Value *indices[] = { zero, zero };
|
||
|
llvm::Value *begin =
|
||
|
Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
|
||
|
|
||
|
// Exception safety requires us to destroy all the
|
||
|
// already-constructed members if an initializer throws.
|
||
|
// For that, we'll need an EH cleanup.
|
||
|
QualType::DestructionKind dtorKind = elementType.isDestructedType();
|
||
|
llvm::AllocaInst *endOfInit = 0;
|
||
|
EHScopeStack::stable_iterator cleanup;
|
||
|
llvm::Instruction *cleanupDominator = 0;
|
||
|
if (CGF.needsEHCleanup(dtorKind)) {
|
||
|
// In principle we could tell the cleanup where we are more
|
||
|
// directly, but the control flow can get so varied here that it
|
||
|
// would actually be quite complex. Therefore we go through an
|
||
|
// alloca.
|
||
|
endOfInit = CGF.CreateTempAlloca(begin->getType(),
|
||
|
"arrayinit.endOfInit");
|
||
|
cleanupDominator = Builder.CreateStore(begin, endOfInit);
|
||
|
CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
|
||
|
CGF.getDestroyer(dtorKind));
|
||
|
cleanup = CGF.EHStack.stable_begin();
|
||
|
|
||
|
// Otherwise, remember that we didn't need a cleanup.
|
||
|
} else {
|
||
|
dtorKind = QualType::DK_none;
|
||
|
}
|
||
|
|
||
|
llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
|
||
|
|
||
|
// The 'current element to initialize'. The invariants on this
|
||
|
// variable are complicated. Essentially, after each iteration of
|
||
|
// the loop, it points to the last initialized element, except
|
||
|
// that it points to the beginning of the array before any
|
||
|
// elements have been initialized.
|
||
|
llvm::Value *element = begin;
|
||
|
|
||
|
// Emit the explicit initializers.
|
||
|
for (uint64_t i = 0; i != NumInitElements; ++i) {
|
||
|
// Advance to the next element.
|
||
|
if (i > 0) {
|
||
|
element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
|
||
|
|
||
|
// Tell the cleanup that it needs to destroy up to this
|
||
|
// element. TODO: some of these stores can be trivially
|
||
|
// observed to be unnecessary.
|
||
|
if (endOfInit) Builder.CreateStore(element, endOfInit);
|
||
|
}
|
||
|
|
||
|
// If these are nested std::initializer_list inits, do them directly,
|
||
|
// because they are conceptually the same "location".
|
||
|
InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
|
||
|
if (initList && initList->initializesStdInitializerList()) {
|
||
|
EmitStdInitializerList(element, initList);
|
||
|
} else {
|
||
|
LValue elementLV = CGF.MakeAddrLValue(element, elementType);
|
||
|
EmitInitializationToLValue(E->getInit(i), elementLV);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check whether there's a non-trivial array-fill expression.
|
||
|
// Note that this will be a CXXConstructExpr even if the element
|
||
|
// type is an array (or array of array, etc.) of class type.
|
||
|
Expr *filler = E->getArrayFiller();
|
||
|
bool hasTrivialFiller = true;
|
||
|
if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
|
||
|
assert(cons->getConstructor()->isDefaultConstructor());
|
||
|
hasTrivialFiller = cons->getConstructor()->isTrivial();
|
||
|
}
|
||
|
|
||
|
// Any remaining elements need to be zero-initialized, possibly
|
||
|
// using the filler expression. We can skip this if the we're
|
||
|
// emitting to zeroed memory.
|
||
|
if (NumInitElements != NumArrayElements &&
|
||
|
!(Dest.isZeroed() && hasTrivialFiller &&
|
||
|
CGF.getTypes().isZeroInitializable(elementType))) {
|
||
|
|
||
|
// Use an actual loop. This is basically
|
||
|
// do { *array++ = filler; } while (array != end);
|
||
|
|
||
|
// Advance to the start of the rest of the array.
|
||
|
if (NumInitElements) {
|
||
|
element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
|
||
|
if (endOfInit) Builder.CreateStore(element, endOfInit);
|
||
|
}
|
||
|
|
||
|
// Compute the end of the array.
|
||
|
llvm::Value *end = Builder.CreateInBoundsGEP(begin,
|
||
|
llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
|
||
|
"arrayinit.end");
|
||
|
|
||
|
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
|
||
|
llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
|
||
|
|
||
|
// Jump into the body.
|
||
|
CGF.EmitBlock(bodyBB);
|
||
|
llvm::PHINode *currentElement =
|
||
|
Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
|
||
|
currentElement->addIncoming(element, entryBB);
|
||
|
|
||
|
// Emit the actual filler expression.
|
||
|
LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
|
||
|
if (filler)
|
||
|
EmitInitializationToLValue(filler, elementLV);
|
||
|
else
|
||
|
EmitNullInitializationToLValue(elementLV);
|
||
|
|
||
|
// Move on to the next element.
|
||
|
llvm::Value *nextElement =
|
||
|
Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
|
||
|
|
||
|
// Tell the EH cleanup that we finished with the last element.
|
||
|
if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
|
||
|
|
||
|
// Leave the loop if we're done.
|
||
|
llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
|
||
|
"arrayinit.done");
|
||
|
llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
|
||
|
Builder.CreateCondBr(done, endBB, bodyBB);
|
||
|
currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
|
||
|
|
||
|
CGF.EmitBlock(endBB);
|
||
|
}
|
||
|
|
||
|
// Leave the partial-array cleanup if we entered one.
|
||
|
if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Visitor Methods
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
|
||
|
Visit(E->GetTemporaryExpr());
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
|
||
|
EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
||
|
if (E->getType().isPODType(CGF.getContext())) {
|
||
|
// For a POD type, just emit a load of the lvalue + a copy, because our
|
||
|
// compound literal might alias the destination.
|
||
|
// FIXME: This is a band-aid; the real problem appears to be in our handling
|
||
|
// of assignments, where we store directly into the LHS without checking
|
||
|
// whether anything in the RHS aliases.
|
||
|
EmitAggLoadOfLValue(E);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
AggValueSlot Slot = EnsureSlot(E->getType());
|
||
|
CGF.EmitAggExpr(E->getInitializer(), Slot);
|
||
|
}
|
||
|
|
||
|
|
||
|
void AggExprEmitter::VisitCastExpr(CastExpr *E) {
|
||
|
switch (E->getCastKind()) {
|
||
|
case CK_Dynamic: {
|
||
|
assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
|
||
|
LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
|
||
|
// FIXME: Do we also need to handle property references here?
|
||
|
if (LV.isSimple())
|
||
|
CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
|
||
|
else
|
||
|
CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
|
||
|
|
||
|
if (!Dest.isIgnored())
|
||
|
CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case CK_ToUnion: {
|
||
|
if (Dest.isIgnored()) break;
|
||
|
|
||
|
// GCC union extension
|
||
|
QualType Ty = E->getSubExpr()->getType();
|
||
|
QualType PtrTy = CGF.getContext().getPointerType(Ty);
|
||
|
llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
|
||
|
CGF.ConvertType(PtrTy));
|
||
|
EmitInitializationToLValue(E->getSubExpr(),
|
||
|
CGF.MakeAddrLValue(CastPtr, Ty));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case CK_DerivedToBase:
|
||
|
case CK_BaseToDerived:
|
||
|
case CK_UncheckedDerivedToBase: {
|
||
|
llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
|
||
|
"should have been unpacked before we got here");
|
||
|
}
|
||
|
|
||
|
case CK_LValueToRValue: // hope for downstream optimization
|
||
|
case CK_NoOp:
|
||
|
case CK_AtomicToNonAtomic:
|
||
|
case CK_NonAtomicToAtomic:
|
||
|
case CK_UserDefinedConversion:
|
||
|
case CK_ConstructorConversion:
|
||
|
assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
|
||
|
E->getType()) &&
|
||
|
"Implicit cast types must be compatible");
|
||
|
Visit(E->getSubExpr());
|
||
|
break;
|
||
|
|
||
|
case CK_LValueBitCast:
|
||
|
llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
|
||
|
|
||
|
case CK_Dependent:
|
||
|
case CK_BitCast:
|
||
|
case CK_ArrayToPointerDecay:
|
||
|
case CK_FunctionToPointerDecay:
|
||
|
case CK_NullToPointer:
|
||
|
case CK_NullToMemberPointer:
|
||
|
case CK_BaseToDerivedMemberPointer:
|
||
|
case CK_DerivedToBaseMemberPointer:
|
||
|
case CK_MemberPointerToBoolean:
|
||
|
case CK_ReinterpretMemberPointer:
|
||
|
case CK_IntegralToPointer:
|
||
|
case CK_PointerToIntegral:
|
||
|
case CK_PointerToBoolean:
|
||
|
case CK_ToVoid:
|
||
|
case CK_VectorSplat:
|
||
|
case CK_IntegralCast:
|
||
|
case CK_IntegralToBoolean:
|
||
|
case CK_IntegralToFloating:
|
||
|
case CK_FloatingToIntegral:
|
||
|
case CK_FloatingToBoolean:
|
||
|
case CK_FloatingCast:
|
||
|
case CK_CPointerToObjCPointerCast:
|
||
|
case CK_BlockPointerToObjCPointerCast:
|
||
|
case CK_AnyPointerToBlockPointerCast:
|
||
|
case CK_ObjCObjectLValueCast:
|
||
|
case CK_FloatingRealToComplex:
|
||
|
case CK_FloatingComplexToReal:
|
||
|
case CK_FloatingComplexToBoolean:
|
||
|
case CK_FloatingComplexCast:
|
||
|
case CK_FloatingComplexToIntegralComplex:
|
||
|
case CK_IntegralRealToComplex:
|
||
|
case CK_IntegralComplexToReal:
|
||
|
case CK_IntegralComplexToBoolean:
|
||
|
case CK_IntegralComplexCast:
|
||
|
case CK_IntegralComplexToFloatingComplex:
|
||
|
case CK_ARCProduceObject:
|
||
|
case CK_ARCConsumeObject:
|
||
|
case CK_ARCReclaimReturnedObject:
|
||
|
case CK_ARCExtendBlockObject:
|
||
|
case CK_CopyAndAutoreleaseBlockObject:
|
||
|
llvm_unreachable("cast kind invalid for aggregate types");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
|
||
|
if (E->getCallReturnType()->isReferenceType()) {
|
||
|
EmitAggLoadOfLValue(E);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
|
||
|
EmitMoveFromReturnSlot(E, RV);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
||
|
RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
|
||
|
EmitMoveFromReturnSlot(E, RV);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
||
|
CGF.EmitIgnoredExpr(E->getLHS());
|
||
|
Visit(E->getRHS());
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
||
|
CodeGenFunction::StmtExprEvaluation eval(CGF);
|
||
|
CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
|
||
|
if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
|
||
|
VisitPointerToDataMemberBinaryOperator(E);
|
||
|
else
|
||
|
CGF.ErrorUnsupported(E, "aggregate binary expression");
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
|
||
|
const BinaryOperator *E) {
|
||
|
LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
|
||
|
EmitFinalDestCopy(E, LV);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
||
|
// For an assignment to work, the value on the right has
|
||
|
// to be compatible with the value on the left.
|
||
|
assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
|
||
|
E->getRHS()->getType())
|
||
|
&& "Invalid assignment");
|
||
|
|
||
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
|
||
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
||
|
if (VD->hasAttr<BlocksAttr>() &&
|
||
|
E->getRHS()->HasSideEffects(CGF.getContext())) {
|
||
|
// When __block variable on LHS, the RHS must be evaluated first
|
||
|
// as it may change the 'forwarding' field via call to Block_copy.
|
||
|
LValue RHS = CGF.EmitLValue(E->getRHS());
|
||
|
LValue LHS = CGF.EmitLValue(E->getLHS());
|
||
|
Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
|
||
|
needsGC(E->getLHS()->getType()),
|
||
|
AggValueSlot::IsAliased);
|
||
|
EmitFinalDestCopy(E, RHS, true);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
LValue LHS = CGF.EmitLValue(E->getLHS());
|
||
|
|
||
|
// Codegen the RHS so that it stores directly into the LHS.
|
||
|
AggValueSlot LHSSlot =
|
||
|
AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
|
||
|
needsGC(E->getLHS()->getType()),
|
||
|
AggValueSlot::IsAliased);
|
||
|
CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
|
||
|
EmitFinalDestCopy(E, LHS, true);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::
|
||
|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
|
||
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
||
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
||
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
||
|
|
||
|
// Bind the common expression if necessary.
|
||
|
CodeGenFunction::OpaqueValueMapping binding(CGF, E);
|
||
|
|
||
|
CodeGenFunction::ConditionalEvaluation eval(CGF);
|
||
|
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
|
||
|
|
||
|
// Save whether the destination's lifetime is externally managed.
|
||
|
bool isExternallyDestructed = Dest.isExternallyDestructed();
|
||
|
|
||
|
eval.begin(CGF);
|
||
|
CGF.EmitBlock(LHSBlock);
|
||
|
Visit(E->getTrueExpr());
|
||
|
eval.end(CGF);
|
||
|
|
||
|
assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
|
||
|
CGF.Builder.CreateBr(ContBlock);
|
||
|
|
||
|
// If the result of an agg expression is unused, then the emission
|
||
|
// of the LHS might need to create a destination slot. That's fine
|
||
|
// with us, and we can safely emit the RHS into the same slot, but
|
||
|
// we shouldn't claim that it's already being destructed.
|
||
|
Dest.setExternallyDestructed(isExternallyDestructed);
|
||
|
|
||
|
eval.begin(CGF);
|
||
|
CGF.EmitBlock(RHSBlock);
|
||
|
Visit(E->getFalseExpr());
|
||
|
eval.end(CGF);
|
||
|
|
||
|
CGF.EmitBlock(ContBlock);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
|
||
|
Visit(CE->getChosenSubExpr(CGF.getContext()));
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
|
||
|
llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
|
||
|
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
|
||
|
|
||
|
if (!ArgPtr) {
|
||
|
CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
|
||
|
// Ensure that we have a slot, but if we already do, remember
|
||
|
// whether it was externally destructed.
|
||
|
bool wasExternallyDestructed = Dest.isExternallyDestructed();
|
||
|
Dest = EnsureSlot(E->getType());
|
||
|
|
||
|
// We're going to push a destructor if there isn't already one.
|
||
|
Dest.setExternallyDestructed();
|
||
|
|
||
|
Visit(E->getSubExpr());
|
||
|
|
||
|
// Push that destructor we promised.
|
||
|
if (!wasExternallyDestructed)
|
||
|
CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
|
||
|
}
|
||
|
|
||
|
void
|
||
|
AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
|
||
|
AggValueSlot Slot = EnsureSlot(E->getType());
|
||
|
CGF.EmitCXXConstructExpr(E, Slot);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
|
||
|
AggValueSlot Slot = EnsureSlot(E->getType());
|
||
|
CGF.EmitLambdaExpr(E, Slot);
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
|
||
|
CGF.enterFullExpression(E);
|
||
|
CodeGenFunction::RunCleanupsScope cleanups(CGF);
|
||
|
Visit(E->getSubExpr());
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
|
||
|
QualType T = E->getType();
|
||
|
AggValueSlot Slot = EnsureSlot(T);
|
||
|
EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
|
||
|
QualType T = E->getType();
|
||
|
AggValueSlot Slot = EnsureSlot(T);
|
||
|
EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
|
||
|
}
|
||
|
|
||
|
/// isSimpleZero - If emitting this value will obviously just cause a store of
|
||
|
/// zero to memory, return true. This can return false if uncertain, so it just
|
||
|
/// handles simple cases.
|
||
|
static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
|
||
|
E = E->IgnoreParens();
|
||
|
|
||
|
// 0
|
||
|
if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
|
||
|
return IL->getValue() == 0;
|
||
|
// +0.0
|
||
|
if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
|
||
|
return FL->getValue().isPosZero();
|
||
|
// int()
|
||
|
if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
|
||
|
CGF.getTypes().isZeroInitializable(E->getType()))
|
||
|
return true;
|
||
|
// (int*)0 - Null pointer expressions.
|
||
|
if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
|
||
|
return ICE->getCastKind() == CK_NullToPointer;
|
||
|
// '\0'
|
||
|
if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
|
||
|
return CL->getValue() == 0;
|
||
|
|
||
|
// Otherwise, hard case: conservatively return false.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
|
||
|
QualType type = LV.getType();
|
||
|
// FIXME: Ignore result?
|
||
|
// FIXME: Are initializers affected by volatile?
|
||
|
if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
|
||
|
// Storing "i32 0" to a zero'd memory location is a noop.
|
||
|
} else if (isa<ImplicitValueInitExpr>(E)) {
|
||
|
EmitNullInitializationToLValue(LV);
|
||
|
} else if (type->isReferenceType()) {
|
||
|
RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
|
||
|
CGF.EmitStoreThroughLValue(RV, LV);
|
||
|
} else if (type->isAnyComplexType()) {
|
||
|
CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
|
||
|
} else if (CGF.hasAggregateLLVMType(type)) {
|
||
|
CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
|
||
|
AggValueSlot::IsDestructed,
|
||
|
AggValueSlot::DoesNotNeedGCBarriers,
|
||
|
AggValueSlot::IsNotAliased,
|
||
|
Dest.isZeroed()));
|
||
|
} else if (LV.isSimple()) {
|
||
|
CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
|
||
|
} else {
|
||
|
CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
|
||
|
QualType type = lv.getType();
|
||
|
|
||
|
// If the destination slot is already zeroed out before the aggregate is
|
||
|
// copied into it, we don't have to emit any zeros here.
|
||
|
if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
|
||
|
return;
|
||
|
|
||
|
if (!CGF.hasAggregateLLVMType(type)) {
|
||
|
// For non-aggregates, we can store zero.
|
||
|
llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
|
||
|
// Note that the following is not equivalent to
|
||
|
// EmitStoreThroughBitfieldLValue for ARC types.
|
||
|
if (lv.isBitField()) {
|
||
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
|
||
|
} else {
|
||
|
assert(lv.isSimple());
|
||
|
CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
|
||
|
}
|
||
|
} else {
|
||
|
// There's a potential optimization opportunity in combining
|
||
|
// memsets; that would be easy for arrays, but relatively
|
||
|
// difficult for structures with the current code.
|
||
|
CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
|
||
|
#if 0
|
||
|
// FIXME: Assess perf here? Figure out what cases are worth optimizing here
|
||
|
// (Length of globals? Chunks of zeroed-out space?).
|
||
|
//
|
||
|
// If we can, prefer a copy from a global; this is a lot less code for long
|
||
|
// globals, and it's easier for the current optimizers to analyze.
|
||
|
if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
|
||
|
llvm::GlobalVariable* GV =
|
||
|
new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
|
||
|
llvm::GlobalValue::InternalLinkage, C, "");
|
||
|
EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
|
||
|
return;
|
||
|
}
|
||
|
#endif
|
||
|
if (E->hadArrayRangeDesignator())
|
||
|
CGF.ErrorUnsupported(E, "GNU array range designator extension");
|
||
|
|
||
|
if (E->initializesStdInitializerList()) {
|
||
|
EmitStdInitializerList(Dest.getAddr(), E);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
AggValueSlot Dest = EnsureSlot(E->getType());
|
||
|
LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
|
||
|
Dest.getAlignment());
|
||
|
|
||
|
// Handle initialization of an array.
|
||
|
if (E->getType()->isArrayType()) {
|
||
|
if (E->isStringLiteralInit())
|
||
|
return Visit(E->getInit(0));
|
||
|
|
||
|
QualType elementType =
|
||
|
CGF.getContext().getAsArrayType(E->getType())->getElementType();
|
||
|
|
||
|
llvm::PointerType *APType =
|
||
|
cast<llvm::PointerType>(Dest.getAddr()->getType());
|
||
|
llvm::ArrayType *AType =
|
||
|
cast<llvm::ArrayType>(APType->getElementType());
|
||
|
|
||
|
EmitArrayInit(Dest.getAddr(), AType, elementType, E);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(E->getType()->isRecordType() && "Only support structs/unions here!");
|
||
|
|
||
|
// Do struct initialization; this code just sets each individual member
|
||
|
// to the approprate value. This makes bitfield support automatic;
|
||
|
// the disadvantage is that the generated code is more difficult for
|
||
|
// the optimizer, especially with bitfields.
|
||
|
unsigned NumInitElements = E->getNumInits();
|
||
|
RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
|
||
|
|
||
|
if (record->isUnion()) {
|
||
|
// Only initialize one field of a union. The field itself is
|
||
|
// specified by the initializer list.
|
||
|
if (!E->getInitializedFieldInUnion()) {
|
||
|
// Empty union; we have nothing to do.
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
// Make sure that it's really an empty and not a failure of
|
||
|
// semantic analysis.
|
||
|
for (RecordDecl::field_iterator Field = record->field_begin(),
|
||
|
FieldEnd = record->field_end();
|
||
|
Field != FieldEnd; ++Field)
|
||
|
assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// FIXME: volatility
|
||
|
FieldDecl *Field = E->getInitializedFieldInUnion();
|
||
|
|
||
|
LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
|
||
|
if (NumInitElements) {
|
||
|
// Store the initializer into the field
|
||
|
EmitInitializationToLValue(E->getInit(0), FieldLoc);
|
||
|
} else {
|
||
|
// Default-initialize to null.
|
||
|
EmitNullInitializationToLValue(FieldLoc);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// We'll need to enter cleanup scopes in case any of the member
|
||
|
// initializers throw an exception.
|
||
|
SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
|
||
|
llvm::Instruction *cleanupDominator = 0;
|
||
|
|
||
|
// Here we iterate over the fields; this makes it simpler to both
|
||
|
// default-initialize fields and skip over unnamed fields.
|
||
|
unsigned curInitIndex = 0;
|
||
|
for (RecordDecl::field_iterator field = record->field_begin(),
|
||
|
fieldEnd = record->field_end();
|
||
|
field != fieldEnd; ++field) {
|
||
|
// We're done once we hit the flexible array member.
|
||
|
if (field->getType()->isIncompleteArrayType())
|
||
|
break;
|
||
|
|
||
|
// Always skip anonymous bitfields.
|
||
|
if (field->isUnnamedBitfield())
|
||
|
continue;
|
||
|
|
||
|
// We're done if we reach the end of the explicit initializers, we
|
||
|
// have a zeroed object, and the rest of the fields are
|
||
|
// zero-initializable.
|
||
|
if (curInitIndex == NumInitElements && Dest.isZeroed() &&
|
||
|
CGF.getTypes().isZeroInitializable(E->getType()))
|
||
|
break;
|
||
|
|
||
|
|
||
|
LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
|
||
|
// We never generate write-barries for initialized fields.
|
||
|
LV.setNonGC(true);
|
||
|
|
||
|
if (curInitIndex < NumInitElements) {
|
||
|
// Store the initializer into the field.
|
||
|
EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
|
||
|
} else {
|
||
|
// We're out of initalizers; default-initialize to null
|
||
|
EmitNullInitializationToLValue(LV);
|
||
|
}
|
||
|
|
||
|
// Push a destructor if necessary.
|
||
|
// FIXME: if we have an array of structures, all explicitly
|
||
|
// initialized, we can end up pushing a linear number of cleanups.
|
||
|
bool pushedCleanup = false;
|
||
|
if (QualType::DestructionKind dtorKind
|
||
|
= field->getType().isDestructedType()) {
|
||
|
assert(LV.isSimple());
|
||
|
if (CGF.needsEHCleanup(dtorKind)) {
|
||
|
if (!cleanupDominator)
|
||
|
cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
|
||
|
|
||
|
CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
|
||
|
CGF.getDestroyer(dtorKind), false);
|
||
|
cleanups.push_back(CGF.EHStack.stable_begin());
|
||
|
pushedCleanup = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If the GEP didn't get used because of a dead zero init or something
|
||
|
// else, clean it up for -O0 builds and general tidiness.
|
||
|
if (!pushedCleanup && LV.isSimple())
|
||
|
if (llvm::GetElementPtrInst *GEP =
|
||
|
dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
|
||
|
if (GEP->use_empty())
|
||
|
GEP->eraseFromParent();
|
||
|
}
|
||
|
|
||
|
// Deactivate all the partial cleanups in reverse order, which
|
||
|
// generally means popping them.
|
||
|
for (unsigned i = cleanups.size(); i != 0; --i)
|
||
|
CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
|
||
|
|
||
|
// Destroy the placeholder if we made one.
|
||
|
if (cleanupDominator)
|
||
|
cleanupDominator->eraseFromParent();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Entry Points into this File
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
|
||
|
/// non-zero bytes that will be stored when outputting the initializer for the
|
||
|
/// specified initializer expression.
|
||
|
static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
|
||
|
E = E->IgnoreParens();
|
||
|
|
||
|
// 0 and 0.0 won't require any non-zero stores!
|
||
|
if (isSimpleZero(E, CGF)) return CharUnits::Zero();
|
||
|
|
||
|
// If this is an initlist expr, sum up the size of sizes of the (present)
|
||
|
// elements. If this is something weird, assume the whole thing is non-zero.
|
||
|
const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
|
||
|
if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
|
||
|
return CGF.getContext().getTypeSizeInChars(E->getType());
|
||
|
|
||
|
// InitListExprs for structs have to be handled carefully. If there are
|
||
|
// reference members, we need to consider the size of the reference, not the
|
||
|
// referencee. InitListExprs for unions and arrays can't have references.
|
||
|
if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
|
||
|
if (!RT->isUnionType()) {
|
||
|
RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
|
||
|
CharUnits NumNonZeroBytes = CharUnits::Zero();
|
||
|
|
||
|
unsigned ILEElement = 0;
|
||
|
for (RecordDecl::field_iterator Field = SD->field_begin(),
|
||
|
FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
|
||
|
// We're done once we hit the flexible array member or run out of
|
||
|
// InitListExpr elements.
|
||
|
if (Field->getType()->isIncompleteArrayType() ||
|
||
|
ILEElement == ILE->getNumInits())
|
||
|
break;
|
||
|
if (Field->isUnnamedBitfield())
|
||
|
continue;
|
||
|
|
||
|
const Expr *E = ILE->getInit(ILEElement++);
|
||
|
|
||
|
// Reference values are always non-null and have the width of a pointer.
|
||
|
if (Field->getType()->isReferenceType())
|
||
|
NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
|
||
|
CGF.getContext().getTargetInfo().getPointerWidth(0));
|
||
|
else
|
||
|
NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
|
||
|
}
|
||
|
|
||
|
return NumNonZeroBytes;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
CharUnits NumNonZeroBytes = CharUnits::Zero();
|
||
|
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
|
||
|
NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
|
||
|
return NumNonZeroBytes;
|
||
|
}
|
||
|
|
||
|
/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
|
||
|
/// zeros in it, emit a memset and avoid storing the individual zeros.
|
||
|
///
|
||
|
static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
|
||
|
CodeGenFunction &CGF) {
|
||
|
// If the slot is already known to be zeroed, nothing to do. Don't mess with
|
||
|
// volatile stores.
|
||
|
if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
|
||
|
|
||
|
// C++ objects with a user-declared constructor don't need zero'ing.
|
||
|
if (CGF.getContext().getLangOpts().CPlusPlus)
|
||
|
if (const RecordType *RT = CGF.getContext()
|
||
|
.getBaseElementType(E->getType())->getAs<RecordType>()) {
|
||
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
|
if (RD->hasUserDeclaredConstructor())
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If the type is 16-bytes or smaller, prefer individual stores over memset.
|
||
|
std::pair<CharUnits, CharUnits> TypeInfo =
|
||
|
CGF.getContext().getTypeInfoInChars(E->getType());
|
||
|
if (TypeInfo.first <= CharUnits::fromQuantity(16))
|
||
|
return;
|
||
|
|
||
|
// Check to see if over 3/4 of the initializer are known to be zero. If so,
|
||
|
// we prefer to emit memset + individual stores for the rest.
|
||
|
CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
|
||
|
if (NumNonZeroBytes*4 > TypeInfo.first)
|
||
|
return;
|
||
|
|
||
|
// Okay, it seems like a good idea to use an initial memset, emit the call.
|
||
|
llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
|
||
|
CharUnits Align = TypeInfo.second;
|
||
|
|
||
|
llvm::Value *Loc = Slot.getAddr();
|
||
|
|
||
|
Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
|
||
|
CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
|
||
|
Align.getQuantity(), false);
|
||
|
|
||
|
// Tell the AggExprEmitter that the slot is known zero.
|
||
|
Slot.setZeroed();
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/// EmitAggExpr - Emit the computation of the specified expression of aggregate
|
||
|
/// type. The result is computed into DestPtr. Note that if DestPtr is null,
|
||
|
/// the value of the aggregate expression is not needed. If VolatileDest is
|
||
|
/// true, DestPtr cannot be 0.
|
||
|
///
|
||
|
/// \param IsInitializer - true if this evaluation is initializing an
|
||
|
/// object whose lifetime is already being managed.
|
||
|
void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
|
||
|
bool IgnoreResult) {
|
||
|
assert(E && hasAggregateLLVMType(E->getType()) &&
|
||
|
"Invalid aggregate expression to emit");
|
||
|
assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
|
||
|
"slot has bits but no address");
|
||
|
|
||
|
// Optimize the slot if possible.
|
||
|
CheckAggExprForMemSetUse(Slot, E, *this);
|
||
|
|
||
|
AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
|
||
|
}
|
||
|
|
||
|
LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
|
||
|
assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
|
||
|
llvm::Value *Temp = CreateMemTemp(E->getType());
|
||
|
LValue LV = MakeAddrLValue(Temp, E->getType());
|
||
|
EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
|
||
|
AggValueSlot::DoesNotNeedGCBarriers,
|
||
|
AggValueSlot::IsNotAliased));
|
||
|
return LV;
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
|
||
|
llvm::Value *SrcPtr, QualType Ty,
|
||
|
bool isVolatile, unsigned Alignment) {
|
||
|
assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
|
||
|
|
||
|
if (getContext().getLangOpts().CPlusPlus) {
|
||
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
|
||
|
assert((Record->hasTrivialCopyConstructor() ||
|
||
|
Record->hasTrivialCopyAssignment() ||
|
||
|
Record->hasTrivialMoveConstructor() ||
|
||
|
Record->hasTrivialMoveAssignment()) &&
|
||
|
"Trying to aggregate-copy a type without a trivial copy "
|
||
|
"constructor or assignment operator");
|
||
|
// Ignore empty classes in C++.
|
||
|
if (Record->isEmpty())
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Aggregate assignment turns into llvm.memcpy. This is almost valid per
|
||
|
// C99 6.5.16.1p3, which states "If the value being stored in an object is
|
||
|
// read from another object that overlaps in anyway the storage of the first
|
||
|
// object, then the overlap shall be exact and the two objects shall have
|
||
|
// qualified or unqualified versions of a compatible type."
|
||
|
//
|
||
|
// memcpy is not defined if the source and destination pointers are exactly
|
||
|
// equal, but other compilers do this optimization, and almost every memcpy
|
||
|
// implementation handles this case safely. If there is a libc that does not
|
||
|
// safely handle this, we can add a target hook.
|
||
|
|
||
|
// Get size and alignment info for this aggregate.
|
||
|
std::pair<CharUnits, CharUnits> TypeInfo =
|
||
|
getContext().getTypeInfoInChars(Ty);
|
||
|
|
||
|
if (!Alignment)
|
||
|
Alignment = TypeInfo.second.getQuantity();
|
||
|
|
||
|
// FIXME: Handle variable sized types.
|
||
|
|
||
|
// FIXME: If we have a volatile struct, the optimizer can remove what might
|
||
|
// appear to be `extra' memory ops:
|
||
|
//
|
||
|
// volatile struct { int i; } a, b;
|
||
|
//
|
||
|
// int main() {
|
||
|
// a = b;
|
||
|
// a = b;
|
||
|
// }
|
||
|
//
|
||
|
// we need to use a different call here. We use isVolatile to indicate when
|
||
|
// either the source or the destination is volatile.
|
||
|
|
||
|
llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
|
||
|
llvm::Type *DBP =
|
||
|
llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
|
||
|
DestPtr = Builder.CreateBitCast(DestPtr, DBP);
|
||
|
|
||
|
llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
|
||
|
llvm::Type *SBP =
|
||
|
llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
|
||
|
SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
|
||
|
|
||
|
// Don't do any of the memmove_collectable tests if GC isn't set.
|
||
|
if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
|
||
|
// fall through
|
||
|
} else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
|
||
|
RecordDecl *Record = RecordTy->getDecl();
|
||
|
if (Record->hasObjectMember()) {
|
||
|
CharUnits size = TypeInfo.first;
|
||
|
llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
|
||
|
llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
|
||
|
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
|
||
|
SizeVal);
|
||
|
return;
|
||
|
}
|
||
|
} else if (Ty->isArrayType()) {
|
||
|
QualType BaseType = getContext().getBaseElementType(Ty);
|
||
|
if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
|
||
|
if (RecordTy->getDecl()->hasObjectMember()) {
|
||
|
CharUnits size = TypeInfo.first;
|
||
|
llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
|
||
|
llvm::Value *SizeVal =
|
||
|
llvm::ConstantInt::get(SizeTy, size.getQuantity());
|
||
|
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
|
||
|
SizeVal);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Builder.CreateMemCpy(DestPtr, SrcPtr,
|
||
|
llvm::ConstantInt::get(IntPtrTy,
|
||
|
TypeInfo.first.getQuantity()),
|
||
|
Alignment, isVolatile);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
|
||
|
const Expr *init) {
|
||
|
const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
|
||
|
if (cleanups)
|
||
|
init = cleanups->getSubExpr();
|
||
|
|
||
|
if (isa<InitListExpr>(init) &&
|
||
|
cast<InitListExpr>(init)->initializesStdInitializerList()) {
|
||
|
// We initialized this std::initializer_list with an initializer list.
|
||
|
// A backing array was created. Push a cleanup for it.
|
||
|
EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
|
||
|
llvm::Value *arrayStart,
|
||
|
const InitListExpr *init) {
|
||
|
// Check if there are any recursive cleanups to do, i.e. if we have
|
||
|
// std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
|
||
|
// then we need to destroy the inner array as well.
|
||
|
for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
|
||
|
const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
|
||
|
if (!subInit || !subInit->initializesStdInitializerList())
|
||
|
continue;
|
||
|
|
||
|
// This one needs to be destroyed. Get the address of the std::init_list.
|
||
|
llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
|
||
|
llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
|
||
|
"std.initlist");
|
||
|
CGF.EmitStdInitializerListCleanup(loc, subInit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
|
||
|
const InitListExpr *init) {
|
||
|
ASTContext &ctx = getContext();
|
||
|
QualType element = GetStdInitializerListElementType(init->getType());
|
||
|
unsigned numInits = init->getNumInits();
|
||
|
llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
|
||
|
QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
|
||
|
QualType arrayPtr = ctx.getPointerType(array);
|
||
|
llvm::Type *arrayPtrType = ConvertType(arrayPtr);
|
||
|
|
||
|
// lvalue is the location of a std::initializer_list, which as its first
|
||
|
// element has a pointer to the array we want to destroy.
|
||
|
llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
|
||
|
llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
|
||
|
|
||
|
::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
|
||
|
|
||
|
llvm::Value *arrayAddress =
|
||
|
Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
|
||
|
::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
|
||
|
}
|