1533 lines
60 KiB
C++
Raw Normal View History

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_MAP_HPP
#define BOOST_CONTAINER_MAP_HPP
2014-03-01 11:00:20 -08:00
#if defined(_MSC_VER)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <boost/container/detail/tree.hpp>
#include <boost/container/detail/value_init.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/pair.hpp>
#include <boost/container/detail/type_traits.hpp>
2013-08-25 14:35:47 -07:00
#include <boost/container/throw_exception.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <boost/static_assert.hpp>
#include <boost/container/detail/value_init.hpp>
2013-08-25 14:35:47 -07:00
#include <boost/detail/no_exceptions_support.hpp>
namespace boost {
namespace container {
/// @cond
// Forward declarations of operators == and <, needed for friend declarations.
template <class Key, class T, class Compare, class Allocator>
inline bool operator==(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
inline bool operator<(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);
/// @endcond
//! A map is a kind of associative container that supports unique keys (contains at
//! most one of each key value) and provides for fast retrieval of values of another
//! type T based on the keys. The map class supports bidirectional iterators.
//!
//! A map satisfies all of the requirements of a container and of a reversible
//! container and of an associative container. For a
//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>.
//!
//! Compare is the ordering function for Keys (e.g. <i>std::less<Key></i>).
//!
//! Allocator is the allocator to allocate the value_types
//! (e.g. <i>allocator< std::pair<const Key, T> > </i>).
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class T, class Compare = std::less<Key>, class Allocator = std::allocator< std::pair< const Key, T> > >
#else
template <class Key, class T, class Compare, class Allocator>
#endif
class map
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(map)
typedef std::pair<const Key, T> value_type_impl;
typedef container_detail::rbtree
<Key, value_type_impl, container_detail::select1st<value_type_impl>, Compare, Allocator> tree_t;
typedef container_detail::pair <Key, T> movable_value_type_impl;
typedef container_detail::tree_value_compare
< Key, value_type_impl, Compare, container_detail::select1st<value_type_impl>
> value_compare_impl;
tree_t m_tree; // red-black tree representing map
/// @endcond
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef Key key_type;
typedef T mapped_type;
typedef std::pair<const Key, T> value_type;
typedef typename boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename boost::container::allocator_traits<Allocator>::reference reference;
typedef typename boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type;
typedef BOOST_CONTAINER_IMPDEF(value_compare_impl) value_compare;
typedef Compare key_compare;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator;
typedef std::pair<key_type, mapped_type> nonconst_value_type;
typedef BOOST_CONTAINER_IMPDEF(movable_value_type_impl) movable_value_type;
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Default constructs an empty map.
//!
//! <b>Complexity</b>: Constant.
map()
: m_tree()
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Constructs an empty map using the specified comparison object
//! and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit map(const Compare& comp,
const allocator_type& a = allocator_type())
: m_tree(comp, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
2014-03-01 11:00:20 -08:00
//! <b>Effects</b>: Constructs an empty map using the specified allocator.
//!
//! <b>Complexity</b>: Constant.
explicit map(const allocator_type& a)
: m_tree(a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
map(InputIterator first, InputIterator last, const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_tree(true, first, last, comp, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and
//! allocator, and inserts elements from the ordered unique range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
//! unique values.
//!
//! <b>Complexity</b>: Linear in N.
2014-03-01 11:00:20 -08:00
//!
//! <b>Note</b>: Non-standard extension.
template <class InputIterator>
map( ordered_unique_range_t, InputIterator first, InputIterator last
, const Compare& comp = Compare(), const allocator_type& a = allocator_type())
: m_tree(ordered_range, first, last, comp, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Copy constructs a map.
//!
//! <b>Complexity</b>: Linear in x.size().
map(const map& x)
: m_tree(x.m_tree)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Postcondition</b>: x is emptied.
map(BOOST_RV_REF(map) x)
: m_tree(boost::move(x.m_tree))
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Copy constructs a map using the specified allocator.
//!
//! <b>Complexity</b>: Linear in x.size().
map(const map& x, const allocator_type &a)
: m_tree(x.m_tree, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Move constructs a map using the specified allocator.
//! Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant if x == x.get_allocator(), linear otherwise.
//!
//! <b>Postcondition</b>: x is emptied.
map(BOOST_RV_REF(map) x, const allocator_type &a)
: m_tree(boost::move(x.m_tree), a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
map& operator=(BOOST_COPY_ASSIGN_REF(map) x)
{ m_tree = x.m_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
map& operator=(BOOST_RV_REF(map) x)
{ m_tree = boost::move(x.m_tree); return *this; }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.get_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.get_stored_allocator(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return this->cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rend(); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.max_size(); }
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! Effects: If there is no key equivalent to x in the map, inserts
//! value_type(x, T()) into the map.
//!
//! Returns: Allocator reference to the mapped_type corresponding to x in *this.
//!
//! Complexity: Logarithmic.
mapped_type& operator[](const key_type &k);
//! Effects: If there is no key equivalent to x in the map, inserts
//! value_type(boost::move(x), T()) into the map (the key is move-constructed)
//!
//! Returns: Allocator reference to the mapped_type corresponding to x in *this.
//!
//! Complexity: Logarithmic.
mapped_type& operator[](key_type &&k);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH( operator[] , key_type, mapped_type&, this->priv_subscript)
#endif
//! Returns: Allocator reference to the element whose key is equivalent to x.
//! Throws: An exception object of type out_of_range if no such element is present.
//! Complexity: logarithmic.
T& at(const key_type& k)
{
iterator i = this->find(k);
if(i == this->end()){
2013-08-25 14:35:47 -07:00
throw_out_of_range("map::at key not found");
}
return i->second;
}
//! Returns: Allocator reference to the element whose key is equivalent to x.
//! Throws: An exception object of type out_of_range if no such element is present.
//! Complexity: logarithmic.
const T& at(const key_type& k) const
{
const_iterator i = this->find(k);
if(i == this->end()){
2013-08-25 14:35:47 -07:00
throw_out_of_range("map::at key not found");
}
return i->second;
}
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(const value_type& x)
{ return m_tree.insert_unique(x); }
//! <b>Effects</b>: Inserts a new value_type created from the pair if and only if
//! there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(const nonconst_value_type& x)
{ return m_tree.insert_unique(x); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(BOOST_RV_REF(nonconst_value_type) x)
{ return m_tree.insert_unique(boost::move(x)); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(BOOST_RV_REF(movable_value_type) x)
{ return m_tree.insert_unique(boost::move(x)); }
//! <b>Effects</b>: Move constructs a new value from x if and only if there is
//! no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
{ return m_tree.insert_unique(boost::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, const value_type& x)
{ return m_tree.insert_unique(position, x); }
//! <b>Effects</b>: Move constructs a new value from x if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, BOOST_RV_REF(nonconst_value_type) x)
{ return m_tree.insert_unique(position, boost::move(x)); }
//! <b>Effects</b>: Move constructs a new value from x if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, BOOST_RV_REF(movable_value_type) x)
{ return m_tree.insert_unique(position, boost::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const_iterator position, const nonconst_value_type& x)
{ return m_tree.insert_unique(position, x); }
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
{ return m_tree.insert_unique(position, boost::move(x)); }
//! <b>Requires</b>: first, last are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_tree.insert_unique(first, last); }
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object x of type T constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with an equivalent key.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
std::pair<iterator,bool> emplace(Args&&... args)
{ return m_tree.emplace_unique(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with an equivalent key.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_hint_unique(hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Amortized constant time
iterator erase(const_iterator position) BOOST_CONTAINER_NOEXCEPT
{ return m_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: log(size()) + count(k)
size_type erase(const key_type& x) BOOST_CONTAINER_NOEXCEPT
{ return m_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{ return m_tree.erase(first, last); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(map& x)
{ m_tree.swap(x.m_tree); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear() BOOST_CONTAINER_NOEXCEPT
{ m_tree.clear(); }
//////////////////////////////////////////////
//
// observers
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return value_compare(m_tree.key_comp()); }
//////////////////////////////////////////////
//
// map operations
//
//////////////////////////////////////////////
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_tree.find(x); }
//! <b>Returns</b>: Allocator const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return m_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
2014-03-01 11:00:20 -08:00
{ return static_cast<size_type>(m_tree.find(x) != m_tree.end()); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_tree.upper_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return m_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
{ return m_tree.equal_range(x); }
/// @cond
template <class K1, class T1, class C1, class A1>
friend bool operator== (const map<K1, T1, C1, A1>&,
const map<K1, T1, C1, A1>&);
template <class K1, class T1, class C1, class A1>
friend bool operator< (const map<K1, T1, C1, A1>&,
const map<K1, T1, C1, A1>&);
private:
mapped_type& priv_subscript(const key_type &k)
{
//we can optimize this
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first)){
container_detail::value_init<mapped_type> m;
movable_value_type val(k, boost::move(m.m_t));
i = insert(i, boost::move(val));
}
return (*i).second;
}
mapped_type& priv_subscript(BOOST_RV_REF(key_type) mk)
{
key_type &k = mk;
//we can optimize this
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first)){
container_detail::value_init<mapped_type> m;
movable_value_type val(boost::move(k), boost::move(m.m_t));
i = insert(i, boost::move(val));
}
return (*i).second;
}
/// @endcond
};
template <class Key, class T, class Compare, class Allocator>
inline bool operator==(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y)
{ return x.m_tree == y.m_tree; }
template <class Key, class T, class Compare, class Allocator>
inline bool operator<(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y)
{ return x.m_tree < y.m_tree; }
template <class Key, class T, class Compare, class Allocator>
inline bool operator!=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y)
{ return !(x == y); }
template <class Key, class T, class Compare, class Allocator>
inline bool operator>(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y)
{ return y < x; }
template <class Key, class T, class Compare, class Allocator>
inline bool operator<=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y)
{ return !(y < x); }
template <class Key, class T, class Compare, class Allocator>
inline bool operator>=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y)
{ return !(x < y); }
template <class Key, class T, class Compare, class Allocator>
inline void swap(map<Key,T,Compare,Allocator>& x, map<Key,T,Compare,Allocator>& y)
{ x.swap(y); }
/// @cond
// Forward declaration of operators < and ==, needed for friend declaration.
template <class Key, class T, class Compare, class Allocator>
inline bool operator==(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
inline bool operator<(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);
} //namespace container {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class T, class C, class Allocator>
struct has_trivial_destructor_after_move<boost::container::map<K, T, C, Allocator> >
{
static const bool value = has_trivial_destructor_after_move<Allocator>::value && has_trivial_destructor_after_move<C>::value;
};
namespace container {
/// @endcond
//! A multimap is a kind of associative container that supports equivalent keys
//! (possibly containing multiple copies of the same key value) and provides for
//! fast retrieval of values of another type T based on the keys. The multimap class
//! supports bidirectional iterators.
//!
//! A multimap satisfies all of the requirements of a container and of a reversible
//! container and of an associative container. For a
//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>.
//!
//! Compare is the ordering function for Keys (e.g. <i>std::less<Key></i>).
//!
//! Allocator is the allocator to allocate the value_types
//!(e.g. <i>allocator< std::pair<<b>const</b> Key, T> ></i>).
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class T, class Compare = std::less<Key>, class Allocator = std::allocator< std::pair< const Key, T> > >
#else
template <class Key, class T, class Compare, class Allocator>
#endif
class multimap
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(multimap)
typedef std::pair<const Key, T> value_type_impl;
typedef container_detail::rbtree
<Key, value_type_impl, container_detail::select1st<value_type_impl>, Compare, Allocator> tree_t;
typedef container_detail::pair <Key, T> movable_value_type_impl;
typedef container_detail::tree_value_compare
< Key, value_type_impl, Compare, container_detail::select1st<value_type_impl>
> value_compare_impl;
tree_t m_tree; // red-black tree representing map
/// @endcond
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef Key key_type;
typedef T mapped_type;
typedef std::pair<const Key, T> value_type;
typedef typename boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename boost::container::allocator_traits<Allocator>::reference reference;
typedef typename boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type;
typedef BOOST_CONTAINER_IMPDEF(value_compare_impl) value_compare;
typedef Compare key_compare;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator;
typedef std::pair<key_type, mapped_type> nonconst_value_type;
typedef BOOST_CONTAINER_IMPDEF(movable_value_type_impl) movable_value_type;
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Default constructs an empty multimap.
//!
//! <b>Complexity</b>: Constant.
multimap()
: m_tree()
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
2014-03-01 11:00:20 -08:00
//! <b>Effects</b>: Constructs an empty multimap using the specified allocator.
//!
//! <b>Complexity</b>: Constant.
explicit multimap(const Compare& comp, const allocator_type& a = allocator_type())
: m_tree(comp, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
2014-03-01 11:00:20 -08:00
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison
//! object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit multimap(const allocator_type& a)
: m_tree(a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison object
//! and allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_tree(false, first, last, comp, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison object and
//! allocator, and inserts elements from the ordered range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
//!
//! <b>Complexity</b>: Linear in N.
2014-03-01 11:00:20 -08:00
//!
//! <b>Note</b>: Non-standard extension.
template <class InputIterator>
multimap(ordered_range_t, InputIterator first, InputIterator last, const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a multimap.
//!
//! <b>Complexity</b>: Linear in x.size().
multimap(const multimap& x)
: m_tree(x.m_tree)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Move constructs a multimap. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Postcondition</b>: x is emptied.
multimap(BOOST_RV_REF(multimap) x)
: m_tree(boost::move(x.m_tree))
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Copy constructs a multimap.
//!
//! <b>Complexity</b>: Linear in x.size().
multimap(const multimap& x, const allocator_type &a)
: m_tree(x.m_tree, a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Move constructs a multimap using the specified allocator.
//! Constructs *this using x's resources.
//! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
//!
//! <b>Postcondition</b>: x is emptied.
multimap(BOOST_RV_REF(multimap) x, const allocator_type &a)
: m_tree(boost::move(x.m_tree), a)
{
//Allocator type must be std::pair<CONST Key, T>
BOOST_STATIC_ASSERT((container_detail::is_same<std::pair<const Key, T>, typename Allocator::value_type>::value));
}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
multimap& operator=(BOOST_COPY_ASSIGN_REF(multimap) x)
{ m_tree = x.m_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
multimap& operator=(BOOST_RV_REF(multimap) x)
{ m_tree = boost::move(x.m_tree); return *this; }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.get_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.get_stored_allocator(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return this->cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.rend(); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return m_tree.max_size(); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_tree.emplace_equal(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_hint_equal(hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const value_type& x)
{ return m_tree.insert_equal(x); }
//! <b>Effects</b>: Inserts a new value constructed from x and returns
//! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const nonconst_value_type& x)
{ return m_tree.insert_equal(x); }
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns
//! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(BOOST_RV_REF(nonconst_value_type) x)
{ return m_tree.insert_equal(boost::move(x)); }
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns
//! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(BOOST_RV_REF(movable_value_type) x)
{ return m_tree.insert_equal(boost::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, const value_type& x)
{ return m_tree.insert_equal(position, x); }
//! <b>Effects</b>: Inserts a new value constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, const nonconst_value_type& x)
{ return m_tree.insert_equal(position, x); }
//! <b>Effects</b>: Inserts a new value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, BOOST_RV_REF(nonconst_value_type) x)
{ return m_tree.insert_equal(position, boost::move(x)); }
//! <b>Effects</b>: Inserts a new value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator position, BOOST_RV_REF(movable_value_type) x)
{ return m_tree.insert_equal(position, boost::move(x)); }
//! <b>Requires</b>: first, last are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) .
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_tree.insert_equal(first, last); }
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Amortized constant time
iterator erase(const_iterator position) BOOST_CONTAINER_NOEXCEPT
{ return m_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: log(size()) + count(k)
size_type erase(const key_type& x) BOOST_CONTAINER_NOEXCEPT
{ return m_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{ return m_tree.erase(first, last); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(multimap& x)
{ m_tree.swap(x.m_tree); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear() BOOST_CONTAINER_NOEXCEPT
{ m_tree.clear(); }
//////////////////////////////////////////////
//
// observers
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return value_compare(m_tree.key_comp()); }
//////////////////////////////////////////////
//
// map operations
//
//////////////////////////////////////////////
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_tree.find(x); }
//! <b>Returns</b>: Allocator const iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return m_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{return m_tree.lower_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_tree.upper_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return m_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
{ return m_tree.equal_range(x); }
/// @cond
template <class K1, class T1, class C1, class A1>
friend bool operator== (const multimap<K1, T1, C1, A1>& x,
const multimap<K1, T1, C1, A1>& y);
template <class K1, class T1, class C1, class A1>
friend bool operator< (const multimap<K1, T1, C1, A1>& x,
const multimap<K1, T1, C1, A1>& y);
/// @endcond
};
template <class Key, class T, class Compare, class Allocator>
inline bool operator==(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y)
{ return x.m_tree == y.m_tree; }
template <class Key, class T, class Compare, class Allocator>
inline bool operator<(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y)
{ return x.m_tree < y.m_tree; }
template <class Key, class T, class Compare, class Allocator>
inline bool operator!=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y)
{ return !(x == y); }
template <class Key, class T, class Compare, class Allocator>
inline bool operator>(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y)
{ return y < x; }
template <class Key, class T, class Compare, class Allocator>
inline bool operator<=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y)
{ return !(y < x); }
template <class Key, class T, class Compare, class Allocator>
inline bool operator>=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y)
{ return !(x < y); }
template <class Key, class T, class Compare, class Allocator>
inline void swap(multimap<Key,T,Compare,Allocator>& x, multimap<Key,T,Compare,Allocator>& y)
{ x.swap(y); }
/// @cond
} //namespace container {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class T, class C, class Allocator>
struct has_trivial_destructor_after_move<boost::container::multimap<K, T, C, Allocator> >
{
static const bool value = has_trivial_destructor_after_move<Allocator>::value && has_trivial_destructor_after_move<C>::value;
};
namespace container {
/// @endcond
}}
#include <boost/container/detail/config_end.hpp>
#endif /* BOOST_CONTAINER_MAP_HPP */