623 lines
22 KiB
C++
623 lines
22 KiB
C++
|
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file defines the LoopInfo class that is used to identify natural loops
|
||
|
// and determine the loop depth of various nodes of the CFG. Note that the
|
||
|
// loops identified may actually be several natural loops that share the same
|
||
|
// header node... not just a single natural loop.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Analysis/LoopInfo.h"
|
||
|
#include "llvm/Constants.h"
|
||
|
#include "llvm/Instructions.h"
|
||
|
#include "llvm/Analysis/Dominators.h"
|
||
|
#include "llvm/Analysis/LoopIterator.h"
|
||
|
#include "llvm/Analysis/ValueTracking.h"
|
||
|
#include "llvm/Assembly/Writer.h"
|
||
|
#include "llvm/Support/CFG.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/ADT/DepthFirstIterator.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include <algorithm>
|
||
|
using namespace llvm;
|
||
|
|
||
|
// Always verify loopinfo if expensive checking is enabled.
|
||
|
#ifdef XDEBUG
|
||
|
static bool VerifyLoopInfo = true;
|
||
|
#else
|
||
|
static bool VerifyLoopInfo = false;
|
||
|
#endif
|
||
|
static cl::opt<bool,true>
|
||
|
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
|
||
|
cl::desc("Verify loop info (time consuming)"));
|
||
|
|
||
|
char LoopInfo::ID = 0;
|
||
|
INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
|
||
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
||
|
INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Loop implementation
|
||
|
//
|
||
|
|
||
|
/// isLoopInvariant - Return true if the specified value is loop invariant
|
||
|
///
|
||
|
bool Loop::isLoopInvariant(Value *V) const {
|
||
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
||
|
return !contains(I);
|
||
|
return true; // All non-instructions are loop invariant
|
||
|
}
|
||
|
|
||
|
/// hasLoopInvariantOperands - Return true if all the operands of the
|
||
|
/// specified instruction are loop invariant.
|
||
|
bool Loop::hasLoopInvariantOperands(Instruction *I) const {
|
||
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
||
|
if (!isLoopInvariant(I->getOperand(i)))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// makeLoopInvariant - If the given value is an instruciton inside of the
|
||
|
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
|
||
|
/// Return true if the value after any hoisting is loop invariant. This
|
||
|
/// function can be used as a slightly more aggressive replacement for
|
||
|
/// isLoopInvariant.
|
||
|
///
|
||
|
/// If InsertPt is specified, it is the point to hoist instructions to.
|
||
|
/// If null, the terminator of the loop preheader is used.
|
||
|
///
|
||
|
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
|
||
|
Instruction *InsertPt) const {
|
||
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
||
|
return makeLoopInvariant(I, Changed, InsertPt);
|
||
|
return true; // All non-instructions are loop-invariant.
|
||
|
}
|
||
|
|
||
|
/// makeLoopInvariant - If the given instruction is inside of the
|
||
|
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
|
||
|
/// Return true if the instruction after any hoisting is loop invariant. This
|
||
|
/// function can be used as a slightly more aggressive replacement for
|
||
|
/// isLoopInvariant.
|
||
|
///
|
||
|
/// If InsertPt is specified, it is the point to hoist instructions to.
|
||
|
/// If null, the terminator of the loop preheader is used.
|
||
|
///
|
||
|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
|
||
|
Instruction *InsertPt) const {
|
||
|
// Test if the value is already loop-invariant.
|
||
|
if (isLoopInvariant(I))
|
||
|
return true;
|
||
|
if (!isSafeToSpeculativelyExecute(I))
|
||
|
return false;
|
||
|
if (I->mayReadFromMemory())
|
||
|
return false;
|
||
|
// The landingpad instruction is immobile.
|
||
|
if (isa<LandingPadInst>(I))
|
||
|
return false;
|
||
|
// Determine the insertion point, unless one was given.
|
||
|
if (!InsertPt) {
|
||
|
BasicBlock *Preheader = getLoopPreheader();
|
||
|
// Without a preheader, hoisting is not feasible.
|
||
|
if (!Preheader)
|
||
|
return false;
|
||
|
InsertPt = Preheader->getTerminator();
|
||
|
}
|
||
|
// Don't hoist instructions with loop-variant operands.
|
||
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
||
|
if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
|
||
|
return false;
|
||
|
|
||
|
// Hoist.
|
||
|
I->moveBefore(InsertPt);
|
||
|
Changed = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
|
||
|
/// induction variable: an integer recurrence that starts at 0 and increments
|
||
|
/// by one each time through the loop. If so, return the phi node that
|
||
|
/// corresponds to it.
|
||
|
///
|
||
|
/// The IndVarSimplify pass transforms loops to have a canonical induction
|
||
|
/// variable.
|
||
|
///
|
||
|
PHINode *Loop::getCanonicalInductionVariable() const {
|
||
|
BasicBlock *H = getHeader();
|
||
|
|
||
|
BasicBlock *Incoming = 0, *Backedge = 0;
|
||
|
pred_iterator PI = pred_begin(H);
|
||
|
assert(PI != pred_end(H) &&
|
||
|
"Loop must have at least one backedge!");
|
||
|
Backedge = *PI++;
|
||
|
if (PI == pred_end(H)) return 0; // dead loop
|
||
|
Incoming = *PI++;
|
||
|
if (PI != pred_end(H)) return 0; // multiple backedges?
|
||
|
|
||
|
if (contains(Incoming)) {
|
||
|
if (contains(Backedge))
|
||
|
return 0;
|
||
|
std::swap(Incoming, Backedge);
|
||
|
} else if (!contains(Backedge))
|
||
|
return 0;
|
||
|
|
||
|
// Loop over all of the PHI nodes, looking for a canonical indvar.
|
||
|
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
|
||
|
PHINode *PN = cast<PHINode>(I);
|
||
|
if (ConstantInt *CI =
|
||
|
dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
|
||
|
if (CI->isNullValue())
|
||
|
if (Instruction *Inc =
|
||
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
|
||
|
if (Inc->getOpcode() == Instruction::Add &&
|
||
|
Inc->getOperand(0) == PN)
|
||
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
|
||
|
if (CI->equalsInt(1))
|
||
|
return PN;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/// isLCSSAForm - Return true if the Loop is in LCSSA form
|
||
|
bool Loop::isLCSSAForm(DominatorTree &DT) const {
|
||
|
// Sort the blocks vector so that we can use binary search to do quick
|
||
|
// lookups.
|
||
|
SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
|
||
|
|
||
|
for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
|
||
|
BasicBlock *BB = *BI;
|
||
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
|
||
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
|
||
|
++UI) {
|
||
|
User *U = *UI;
|
||
|
BasicBlock *UserBB = cast<Instruction>(U)->getParent();
|
||
|
if (PHINode *P = dyn_cast<PHINode>(U))
|
||
|
UserBB = P->getIncomingBlock(UI);
|
||
|
|
||
|
// Check the current block, as a fast-path, before checking whether
|
||
|
// the use is anywhere in the loop. Most values are used in the same
|
||
|
// block they are defined in. Also, blocks not reachable from the
|
||
|
// entry are special; uses in them don't need to go through PHIs.
|
||
|
if (UserBB != BB &&
|
||
|
!LoopBBs.count(UserBB) &&
|
||
|
DT.isReachableFromEntry(UserBB))
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// isLoopSimplifyForm - Return true if the Loop is in the form that
|
||
|
/// the LoopSimplify form transforms loops to, which is sometimes called
|
||
|
/// normal form.
|
||
|
bool Loop::isLoopSimplifyForm() const {
|
||
|
// Normal-form loops have a preheader, a single backedge, and all of their
|
||
|
// exits have all their predecessors inside the loop.
|
||
|
return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
|
||
|
}
|
||
|
|
||
|
/// isSafeToClone - Return true if the loop body is safe to clone in practice.
|
||
|
/// Routines that reform the loop CFG and split edges often fail on indirectbr.
|
||
|
bool Loop::isSafeToClone() const {
|
||
|
// Return false if any loop blocks contain indirectbrs.
|
||
|
for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
|
||
|
if (isa<IndirectBrInst>((*I)->getTerminator()))
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// hasDedicatedExits - Return true if no exit block for the loop
|
||
|
/// has a predecessor that is outside the loop.
|
||
|
bool Loop::hasDedicatedExits() const {
|
||
|
// Sort the blocks vector so that we can use binary search to do quick
|
||
|
// lookups.
|
||
|
SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
|
||
|
// Each predecessor of each exit block of a normal loop is contained
|
||
|
// within the loop.
|
||
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
||
|
getExitBlocks(ExitBlocks);
|
||
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
||
|
for (pred_iterator PI = pred_begin(ExitBlocks[i]),
|
||
|
PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
|
||
|
if (!LoopBBs.count(*PI))
|
||
|
return false;
|
||
|
// All the requirements are met.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
|
||
|
/// These are the blocks _outside of the current loop_ which are branched to.
|
||
|
/// This assumes that loop exits are in canonical form.
|
||
|
///
|
||
|
void
|
||
|
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
|
||
|
assert(hasDedicatedExits() &&
|
||
|
"getUniqueExitBlocks assumes the loop has canonical form exits!");
|
||
|
|
||
|
// Sort the blocks vector so that we can use binary search to do quick
|
||
|
// lookups.
|
||
|
SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
|
||
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
||
|
|
||
|
SmallVector<BasicBlock *, 32> switchExitBlocks;
|
||
|
|
||
|
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
|
||
|
|
||
|
BasicBlock *current = *BI;
|
||
|
switchExitBlocks.clear();
|
||
|
|
||
|
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
|
||
|
// If block is inside the loop then it is not a exit block.
|
||
|
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
|
||
|
continue;
|
||
|
|
||
|
pred_iterator PI = pred_begin(*I);
|
||
|
BasicBlock *firstPred = *PI;
|
||
|
|
||
|
// If current basic block is this exit block's first predecessor
|
||
|
// then only insert exit block in to the output ExitBlocks vector.
|
||
|
// This ensures that same exit block is not inserted twice into
|
||
|
// ExitBlocks vector.
|
||
|
if (current != firstPred)
|
||
|
continue;
|
||
|
|
||
|
// If a terminator has more then two successors, for example SwitchInst,
|
||
|
// then it is possible that there are multiple edges from current block
|
||
|
// to one exit block.
|
||
|
if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
|
||
|
ExitBlocks.push_back(*I);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// In case of multiple edges from current block to exit block, collect
|
||
|
// only one edge in ExitBlocks. Use switchExitBlocks to keep track of
|
||
|
// duplicate edges.
|
||
|
if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
|
||
|
== switchExitBlocks.end()) {
|
||
|
switchExitBlocks.push_back(*I);
|
||
|
ExitBlocks.push_back(*I);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
|
||
|
/// block, return that block. Otherwise return null.
|
||
|
BasicBlock *Loop::getUniqueExitBlock() const {
|
||
|
SmallVector<BasicBlock *, 8> UniqueExitBlocks;
|
||
|
getUniqueExitBlocks(UniqueExitBlocks);
|
||
|
if (UniqueExitBlocks.size() == 1)
|
||
|
return UniqueExitBlocks[0];
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void Loop::dump() const {
|
||
|
print(dbgs());
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// UnloopUpdater implementation
|
||
|
//
|
||
|
|
||
|
namespace {
|
||
|
/// Find the new parent loop for all blocks within the "unloop" whose last
|
||
|
/// backedges has just been removed.
|
||
|
class UnloopUpdater {
|
||
|
Loop *Unloop;
|
||
|
LoopInfo *LI;
|
||
|
|
||
|
LoopBlocksDFS DFS;
|
||
|
|
||
|
// Map unloop's immediate subloops to their nearest reachable parents. Nested
|
||
|
// loops within these subloops will not change parents. However, an immediate
|
||
|
// subloop's new parent will be the nearest loop reachable from either its own
|
||
|
// exits *or* any of its nested loop's exits.
|
||
|
DenseMap<Loop*, Loop*> SubloopParents;
|
||
|
|
||
|
// Flag the presence of an irreducible backedge whose destination is a block
|
||
|
// directly contained by the original unloop.
|
||
|
bool FoundIB;
|
||
|
|
||
|
public:
|
||
|
UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
|
||
|
Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
|
||
|
|
||
|
void updateBlockParents();
|
||
|
|
||
|
void removeBlocksFromAncestors();
|
||
|
|
||
|
void updateSubloopParents();
|
||
|
|
||
|
protected:
|
||
|
Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
|
||
|
};
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
/// updateBlockParents - Update the parent loop for all blocks that are directly
|
||
|
/// contained within the original "unloop".
|
||
|
void UnloopUpdater::updateBlockParents() {
|
||
|
if (Unloop->getNumBlocks()) {
|
||
|
// Perform a post order CFG traversal of all blocks within this loop,
|
||
|
// propagating the nearest loop from sucessors to predecessors.
|
||
|
LoopBlocksTraversal Traversal(DFS, LI);
|
||
|
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
|
||
|
POE = Traversal.end(); POI != POE; ++POI) {
|
||
|
|
||
|
Loop *L = LI->getLoopFor(*POI);
|
||
|
Loop *NL = getNearestLoop(*POI, L);
|
||
|
|
||
|
if (NL != L) {
|
||
|
// For reducible loops, NL is now an ancestor of Unloop.
|
||
|
assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
|
||
|
"uninitialized successor");
|
||
|
LI->changeLoopFor(*POI, NL);
|
||
|
}
|
||
|
else {
|
||
|
// Or the current block is part of a subloop, in which case its parent
|
||
|
// is unchanged.
|
||
|
assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Each irreducible loop within the unloop induces a round of iteration using
|
||
|
// the DFS result cached by Traversal.
|
||
|
bool Changed = FoundIB;
|
||
|
for (unsigned NIters = 0; Changed; ++NIters) {
|
||
|
assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
|
||
|
|
||
|
// Iterate over the postorder list of blocks, propagating the nearest loop
|
||
|
// from successors to predecessors as before.
|
||
|
Changed = false;
|
||
|
for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
|
||
|
POE = DFS.endPostorder(); POI != POE; ++POI) {
|
||
|
|
||
|
Loop *L = LI->getLoopFor(*POI);
|
||
|
Loop *NL = getNearestLoop(*POI, L);
|
||
|
if (NL != L) {
|
||
|
assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
|
||
|
"uninitialized successor");
|
||
|
LI->changeLoopFor(*POI, NL);
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
|
||
|
/// their new parents.
|
||
|
void UnloopUpdater::removeBlocksFromAncestors() {
|
||
|
// Remove all unloop's blocks (including those in nested subloops) from
|
||
|
// ancestors below the new parent loop.
|
||
|
for (Loop::block_iterator BI = Unloop->block_begin(),
|
||
|
BE = Unloop->block_end(); BI != BE; ++BI) {
|
||
|
Loop *OuterParent = LI->getLoopFor(*BI);
|
||
|
if (Unloop->contains(OuterParent)) {
|
||
|
while (OuterParent->getParentLoop() != Unloop)
|
||
|
OuterParent = OuterParent->getParentLoop();
|
||
|
OuterParent = SubloopParents[OuterParent];
|
||
|
}
|
||
|
// Remove blocks from former Ancestors except Unloop itself which will be
|
||
|
// deleted.
|
||
|
for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
|
||
|
OldParent = OldParent->getParentLoop()) {
|
||
|
assert(OldParent && "new loop is not an ancestor of the original");
|
||
|
OldParent->removeBlockFromLoop(*BI);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// updateSubloopParents - Update the parent loop for all subloops directly
|
||
|
/// nested within unloop.
|
||
|
void UnloopUpdater::updateSubloopParents() {
|
||
|
while (!Unloop->empty()) {
|
||
|
Loop *Subloop = *llvm::prior(Unloop->end());
|
||
|
Unloop->removeChildLoop(llvm::prior(Unloop->end()));
|
||
|
|
||
|
assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
|
||
|
if (SubloopParents[Subloop])
|
||
|
SubloopParents[Subloop]->addChildLoop(Subloop);
|
||
|
else
|
||
|
LI->addTopLevelLoop(Subloop);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// getNearestLoop - Return the nearest parent loop among this block's
|
||
|
/// successors. If a successor is a subloop header, consider its parent to be
|
||
|
/// the nearest parent of the subloop's exits.
|
||
|
///
|
||
|
/// For subloop blocks, simply update SubloopParents and return NULL.
|
||
|
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
|
||
|
|
||
|
// Initially for blocks directly contained by Unloop, NearLoop == Unloop and
|
||
|
// is considered uninitialized.
|
||
|
Loop *NearLoop = BBLoop;
|
||
|
|
||
|
Loop *Subloop = 0;
|
||
|
if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
|
||
|
Subloop = NearLoop;
|
||
|
// Find the subloop ancestor that is directly contained within Unloop.
|
||
|
while (Subloop->getParentLoop() != Unloop) {
|
||
|
Subloop = Subloop->getParentLoop();
|
||
|
assert(Subloop && "subloop is not an ancestor of the original loop");
|
||
|
}
|
||
|
// Get the current nearest parent of the Subloop exits, initially Unloop.
|
||
|
if (!SubloopParents.count(Subloop))
|
||
|
SubloopParents[Subloop] = Unloop;
|
||
|
NearLoop = SubloopParents[Subloop];
|
||
|
}
|
||
|
|
||
|
succ_iterator I = succ_begin(BB), E = succ_end(BB);
|
||
|
if (I == E) {
|
||
|
assert(!Subloop && "subloop blocks must have a successor");
|
||
|
NearLoop = 0; // unloop blocks may now exit the function.
|
||
|
}
|
||
|
for (; I != E; ++I) {
|
||
|
if (*I == BB)
|
||
|
continue; // self loops are uninteresting
|
||
|
|
||
|
Loop *L = LI->getLoopFor(*I);
|
||
|
if (L == Unloop) {
|
||
|
// This successor has not been processed. This path must lead to an
|
||
|
// irreducible backedge.
|
||
|
assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
|
||
|
FoundIB = true;
|
||
|
}
|
||
|
if (L != Unloop && Unloop->contains(L)) {
|
||
|
// Successor is in a subloop.
|
||
|
if (Subloop)
|
||
|
continue; // Branching within subloops. Ignore it.
|
||
|
|
||
|
// BB branches from the original into a subloop header.
|
||
|
assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
|
||
|
|
||
|
// Get the current nearest parent of the Subloop's exits.
|
||
|
L = SubloopParents[L];
|
||
|
// L could be Unloop if the only exit was an irreducible backedge.
|
||
|
}
|
||
|
if (L == Unloop) {
|
||
|
continue;
|
||
|
}
|
||
|
// Handle critical edges from Unloop into a sibling loop.
|
||
|
if (L && !L->contains(Unloop)) {
|
||
|
L = L->getParentLoop();
|
||
|
}
|
||
|
// Remember the nearest parent loop among successors or subloop exits.
|
||
|
if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
|
||
|
NearLoop = L;
|
||
|
}
|
||
|
if (Subloop) {
|
||
|
SubloopParents[Subloop] = NearLoop;
|
||
|
return BBLoop;
|
||
|
}
|
||
|
return NearLoop;
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// LoopInfo implementation
|
||
|
//
|
||
|
bool LoopInfo::runOnFunction(Function &) {
|
||
|
releaseMemory();
|
||
|
LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// updateUnloop - The last backedge has been removed from a loop--now the
|
||
|
/// "unloop". Find a new parent for the blocks contained within unloop and
|
||
|
/// update the loop tree. We don't necessarily have valid dominators at this
|
||
|
/// point, but LoopInfo is still valid except for the removal of this loop.
|
||
|
///
|
||
|
/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
|
||
|
/// checking first is illegal.
|
||
|
void LoopInfo::updateUnloop(Loop *Unloop) {
|
||
|
|
||
|
// First handle the special case of no parent loop to simplify the algorithm.
|
||
|
if (!Unloop->getParentLoop()) {
|
||
|
// Since BBLoop had no parent, Unloop blocks are no longer in a loop.
|
||
|
for (Loop::block_iterator I = Unloop->block_begin(),
|
||
|
E = Unloop->block_end(); I != E; ++I) {
|
||
|
|
||
|
// Don't reparent blocks in subloops.
|
||
|
if (getLoopFor(*I) != Unloop)
|
||
|
continue;
|
||
|
|
||
|
// Blocks no longer have a parent but are still referenced by Unloop until
|
||
|
// the Unloop object is deleted.
|
||
|
LI.changeLoopFor(*I, 0);
|
||
|
}
|
||
|
|
||
|
// Remove the loop from the top-level LoopInfo object.
|
||
|
for (LoopInfo::iterator I = LI.begin();; ++I) {
|
||
|
assert(I != LI.end() && "Couldn't find loop");
|
||
|
if (*I == Unloop) {
|
||
|
LI.removeLoop(I);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Move all of the subloops to the top-level.
|
||
|
while (!Unloop->empty())
|
||
|
LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Update the parent loop for all blocks within the loop. Blocks within
|
||
|
// subloops will not change parents.
|
||
|
UnloopUpdater Updater(Unloop, this);
|
||
|
Updater.updateBlockParents();
|
||
|
|
||
|
// Remove blocks from former ancestor loops.
|
||
|
Updater.removeBlocksFromAncestors();
|
||
|
|
||
|
// Add direct subloops as children in their new parent loop.
|
||
|
Updater.updateSubloopParents();
|
||
|
|
||
|
// Remove unloop from its parent loop.
|
||
|
Loop *ParentLoop = Unloop->getParentLoop();
|
||
|
for (Loop::iterator I = ParentLoop->begin();; ++I) {
|
||
|
assert(I != ParentLoop->end() && "Couldn't find loop");
|
||
|
if (*I == Unloop) {
|
||
|
ParentLoop->removeChildLoop(I);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void LoopInfo::verifyAnalysis() const {
|
||
|
// LoopInfo is a FunctionPass, but verifying every loop in the function
|
||
|
// each time verifyAnalysis is called is very expensive. The
|
||
|
// -verify-loop-info option can enable this. In order to perform some
|
||
|
// checking by default, LoopPass has been taught to call verifyLoop
|
||
|
// manually during loop pass sequences.
|
||
|
|
||
|
if (!VerifyLoopInfo) return;
|
||
|
|
||
|
DenseSet<const Loop*> Loops;
|
||
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||
|
assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
|
||
|
(*I)->verifyLoopNest(&Loops);
|
||
|
}
|
||
|
|
||
|
// Verify that blocks are mapped to valid loops.
|
||
|
//
|
||
|
// FIXME: With an up-to-date DFS (see LoopIterator.h) and DominatorTree, we
|
||
|
// could also verify that the blocks are still in the correct loops.
|
||
|
for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
|
||
|
E = LI.BBMap.end(); I != E; ++I) {
|
||
|
assert(Loops.count(I->second) && "orphaned loop");
|
||
|
assert(I->second->contains(I->first) && "orphaned block");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
|
AU.setPreservesAll();
|
||
|
AU.addRequired<DominatorTree>();
|
||
|
}
|
||
|
|
||
|
void LoopInfo::print(raw_ostream &OS, const Module*) const {
|
||
|
LI.print(OS);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// LoopBlocksDFS implementation
|
||
|
//
|
||
|
|
||
|
/// Traverse the loop blocks and store the DFS result.
|
||
|
/// Useful for clients that just want the final DFS result and don't need to
|
||
|
/// visit blocks during the initial traversal.
|
||
|
void LoopBlocksDFS::perform(LoopInfo *LI) {
|
||
|
LoopBlocksTraversal Traversal(*this, LI);
|
||
|
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
|
||
|
POE = Traversal.end(); POI != POE; ++POI) ;
|
||
|
}
|