1150 lines
41 KiB
C++
1150 lines
41 KiB
C++
|
//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This coordinates the per-function state used while generating code.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "CodeGenFunction.h"
|
||
|
#include "CodeGenModule.h"
|
||
|
#include "CGCUDARuntime.h"
|
||
|
#include "CGCXXABI.h"
|
||
|
#include "CGDebugInfo.h"
|
||
|
#include "clang/Basic/TargetInfo.h"
|
||
|
#include "clang/AST/ASTContext.h"
|
||
|
#include "clang/AST/Decl.h"
|
||
|
#include "clang/AST/DeclCXX.h"
|
||
|
#include "clang/AST/StmtCXX.h"
|
||
|
#include "clang/Frontend/CodeGenOptions.h"
|
||
|
#include "llvm/Intrinsics.h"
|
||
|
#include "llvm/Support/MDBuilder.h"
|
||
|
#include "llvm/Target/TargetData.h"
|
||
|
using namespace clang;
|
||
|
using namespace CodeGen;
|
||
|
|
||
|
CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
|
||
|
: CodeGenTypeCache(cgm), CGM(cgm),
|
||
|
Target(CGM.getContext().getTargetInfo()),
|
||
|
Builder(cgm.getModule().getContext()),
|
||
|
AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
|
||
|
LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
|
||
|
FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
|
||
|
DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
|
||
|
IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
|
||
|
CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
|
||
|
CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
|
||
|
TerminateHandler(0), TrapBB(0) {
|
||
|
|
||
|
CatchUndefined = getContext().getLangOpts().CatchUndefined;
|
||
|
CGM.getCXXABI().getMangleContext().startNewFunction();
|
||
|
}
|
||
|
|
||
|
CodeGenFunction::~CodeGenFunction() {
|
||
|
// If there are any unclaimed block infos, go ahead and destroy them
|
||
|
// now. This can happen if IR-gen gets clever and skips evaluating
|
||
|
// something.
|
||
|
if (FirstBlockInfo)
|
||
|
destroyBlockInfos(FirstBlockInfo);
|
||
|
}
|
||
|
|
||
|
|
||
|
llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
|
||
|
return CGM.getTypes().ConvertTypeForMem(T);
|
||
|
}
|
||
|
|
||
|
llvm::Type *CodeGenFunction::ConvertType(QualType T) {
|
||
|
return CGM.getTypes().ConvertType(T);
|
||
|
}
|
||
|
|
||
|
bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
|
||
|
switch (type.getCanonicalType()->getTypeClass()) {
|
||
|
#define TYPE(name, parent)
|
||
|
#define ABSTRACT_TYPE(name, parent)
|
||
|
#define NON_CANONICAL_TYPE(name, parent) case Type::name:
|
||
|
#define DEPENDENT_TYPE(name, parent) case Type::name:
|
||
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
|
||
|
#include "clang/AST/TypeNodes.def"
|
||
|
llvm_unreachable("non-canonical or dependent type in IR-generation");
|
||
|
|
||
|
case Type::Builtin:
|
||
|
case Type::Pointer:
|
||
|
case Type::BlockPointer:
|
||
|
case Type::LValueReference:
|
||
|
case Type::RValueReference:
|
||
|
case Type::MemberPointer:
|
||
|
case Type::Vector:
|
||
|
case Type::ExtVector:
|
||
|
case Type::FunctionProto:
|
||
|
case Type::FunctionNoProto:
|
||
|
case Type::Enum:
|
||
|
case Type::ObjCObjectPointer:
|
||
|
return false;
|
||
|
|
||
|
// Complexes, arrays, records, and Objective-C objects.
|
||
|
case Type::Complex:
|
||
|
case Type::ConstantArray:
|
||
|
case Type::IncompleteArray:
|
||
|
case Type::VariableArray:
|
||
|
case Type::Record:
|
||
|
case Type::ObjCObject:
|
||
|
case Type::ObjCInterface:
|
||
|
return true;
|
||
|
|
||
|
// In IRGen, atomic types are just the underlying type
|
||
|
case Type::Atomic:
|
||
|
return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
|
||
|
}
|
||
|
llvm_unreachable("unknown type kind!");
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitReturnBlock() {
|
||
|
// For cleanliness, we try to avoid emitting the return block for
|
||
|
// simple cases.
|
||
|
llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
|
||
|
|
||
|
if (CurBB) {
|
||
|
assert(!CurBB->getTerminator() && "Unexpected terminated block.");
|
||
|
|
||
|
// We have a valid insert point, reuse it if it is empty or there are no
|
||
|
// explicit jumps to the return block.
|
||
|
if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
|
||
|
ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
|
||
|
delete ReturnBlock.getBlock();
|
||
|
} else
|
||
|
EmitBlock(ReturnBlock.getBlock());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Otherwise, if the return block is the target of a single direct
|
||
|
// branch then we can just put the code in that block instead. This
|
||
|
// cleans up functions which started with a unified return block.
|
||
|
if (ReturnBlock.getBlock()->hasOneUse()) {
|
||
|
llvm::BranchInst *BI =
|
||
|
dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
|
||
|
if (BI && BI->isUnconditional() &&
|
||
|
BI->getSuccessor(0) == ReturnBlock.getBlock()) {
|
||
|
// Reset insertion point, including debug location, and delete the branch.
|
||
|
Builder.SetCurrentDebugLocation(BI->getDebugLoc());
|
||
|
Builder.SetInsertPoint(BI->getParent());
|
||
|
BI->eraseFromParent();
|
||
|
delete ReturnBlock.getBlock();
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FIXME: We are at an unreachable point, there is no reason to emit the block
|
||
|
// unless it has uses. However, we still need a place to put the debug
|
||
|
// region.end for now.
|
||
|
|
||
|
EmitBlock(ReturnBlock.getBlock());
|
||
|
}
|
||
|
|
||
|
static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
|
||
|
if (!BB) return;
|
||
|
if (!BB->use_empty())
|
||
|
return CGF.CurFn->getBasicBlockList().push_back(BB);
|
||
|
delete BB;
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
|
||
|
assert(BreakContinueStack.empty() &&
|
||
|
"mismatched push/pop in break/continue stack!");
|
||
|
|
||
|
// Pop any cleanups that might have been associated with the
|
||
|
// parameters. Do this in whatever block we're currently in; it's
|
||
|
// important to do this before we enter the return block or return
|
||
|
// edges will be *really* confused.
|
||
|
if (EHStack.stable_begin() != PrologueCleanupDepth)
|
||
|
PopCleanupBlocks(PrologueCleanupDepth);
|
||
|
|
||
|
// Emit function epilog (to return).
|
||
|
EmitReturnBlock();
|
||
|
|
||
|
if (ShouldInstrumentFunction())
|
||
|
EmitFunctionInstrumentation("__cyg_profile_func_exit");
|
||
|
|
||
|
// Emit debug descriptor for function end.
|
||
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
||
|
DI->setLocation(EndLoc);
|
||
|
DI->EmitFunctionEnd(Builder);
|
||
|
}
|
||
|
|
||
|
EmitFunctionEpilog(*CurFnInfo);
|
||
|
EmitEndEHSpec(CurCodeDecl);
|
||
|
|
||
|
assert(EHStack.empty() &&
|
||
|
"did not remove all scopes from cleanup stack!");
|
||
|
|
||
|
// If someone did an indirect goto, emit the indirect goto block at the end of
|
||
|
// the function.
|
||
|
if (IndirectBranch) {
|
||
|
EmitBlock(IndirectBranch->getParent());
|
||
|
Builder.ClearInsertionPoint();
|
||
|
}
|
||
|
|
||
|
// Remove the AllocaInsertPt instruction, which is just a convenience for us.
|
||
|
llvm::Instruction *Ptr = AllocaInsertPt;
|
||
|
AllocaInsertPt = 0;
|
||
|
Ptr->eraseFromParent();
|
||
|
|
||
|
// If someone took the address of a label but never did an indirect goto, we
|
||
|
// made a zero entry PHI node, which is illegal, zap it now.
|
||
|
if (IndirectBranch) {
|
||
|
llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
|
||
|
if (PN->getNumIncomingValues() == 0) {
|
||
|
PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
|
||
|
PN->eraseFromParent();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EmitIfUsed(*this, EHResumeBlock);
|
||
|
EmitIfUsed(*this, TerminateLandingPad);
|
||
|
EmitIfUsed(*this, TerminateHandler);
|
||
|
EmitIfUsed(*this, UnreachableBlock);
|
||
|
|
||
|
if (CGM.getCodeGenOpts().EmitDeclMetadata)
|
||
|
EmitDeclMetadata();
|
||
|
}
|
||
|
|
||
|
/// ShouldInstrumentFunction - Return true if the current function should be
|
||
|
/// instrumented with __cyg_profile_func_* calls
|
||
|
bool CodeGenFunction::ShouldInstrumentFunction() {
|
||
|
if (!CGM.getCodeGenOpts().InstrumentFunctions)
|
||
|
return false;
|
||
|
if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
|
||
|
/// instrumentation function with the current function and the call site, if
|
||
|
/// function instrumentation is enabled.
|
||
|
void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
|
||
|
// void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
|
||
|
llvm::PointerType *PointerTy = Int8PtrTy;
|
||
|
llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
|
||
|
llvm::FunctionType *FunctionTy =
|
||
|
llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
|
||
|
|
||
|
llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
|
||
|
llvm::CallInst *CallSite = Builder.CreateCall(
|
||
|
CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
|
||
|
llvm::ConstantInt::get(Int32Ty, 0),
|
||
|
"callsite");
|
||
|
|
||
|
Builder.CreateCall2(F,
|
||
|
llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
|
||
|
CallSite);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitMCountInstrumentation() {
|
||
|
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
|
||
|
|
||
|
llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
|
||
|
Target.getMCountName());
|
||
|
Builder.CreateCall(MCountFn);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
|
||
|
llvm::Function *Fn,
|
||
|
const CGFunctionInfo &FnInfo,
|
||
|
const FunctionArgList &Args,
|
||
|
SourceLocation StartLoc) {
|
||
|
const Decl *D = GD.getDecl();
|
||
|
|
||
|
DidCallStackSave = false;
|
||
|
CurCodeDecl = CurFuncDecl = D;
|
||
|
FnRetTy = RetTy;
|
||
|
CurFn = Fn;
|
||
|
CurFnInfo = &FnInfo;
|
||
|
assert(CurFn->isDeclaration() && "Function already has body?");
|
||
|
|
||
|
// Pass inline keyword to optimizer if it appears explicitly on any
|
||
|
// declaration.
|
||
|
if (!CGM.getCodeGenOpts().NoInline)
|
||
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
|
||
|
for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
|
||
|
RE = FD->redecls_end(); RI != RE; ++RI)
|
||
|
if (RI->isInlineSpecified()) {
|
||
|
Fn->addFnAttr(llvm::Attribute::InlineHint);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (getContext().getLangOpts().OpenCL) {
|
||
|
// Add metadata for a kernel function.
|
||
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
|
||
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
||
|
llvm::LLVMContext &Context = getLLVMContext();
|
||
|
llvm::NamedMDNode *OpenCLMetadata =
|
||
|
CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
|
||
|
|
||
|
llvm::Value *Op = Fn;
|
||
|
OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
|
||
|
|
||
|
// Create a marker to make it easy to insert allocas into the entryblock
|
||
|
// later. Don't create this with the builder, because we don't want it
|
||
|
// folded.
|
||
|
llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
|
||
|
AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
|
||
|
if (Builder.isNamePreserving())
|
||
|
AllocaInsertPt->setName("allocapt");
|
||
|
|
||
|
ReturnBlock = getJumpDestInCurrentScope("return");
|
||
|
|
||
|
Builder.SetInsertPoint(EntryBB);
|
||
|
|
||
|
// Emit subprogram debug descriptor.
|
||
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
||
|
unsigned NumArgs = 0;
|
||
|
QualType *ArgsArray = new QualType[Args.size()];
|
||
|
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
|
||
|
i != e; ++i) {
|
||
|
ArgsArray[NumArgs++] = (*i)->getType();
|
||
|
}
|
||
|
|
||
|
QualType FnType =
|
||
|
getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
|
||
|
FunctionProtoType::ExtProtoInfo());
|
||
|
|
||
|
delete[] ArgsArray;
|
||
|
|
||
|
DI->setLocation(StartLoc);
|
||
|
DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
|
||
|
}
|
||
|
|
||
|
if (ShouldInstrumentFunction())
|
||
|
EmitFunctionInstrumentation("__cyg_profile_func_enter");
|
||
|
|
||
|
if (CGM.getCodeGenOpts().InstrumentForProfiling)
|
||
|
EmitMCountInstrumentation();
|
||
|
|
||
|
if (RetTy->isVoidType()) {
|
||
|
// Void type; nothing to return.
|
||
|
ReturnValue = 0;
|
||
|
} else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
|
||
|
hasAggregateLLVMType(CurFnInfo->getReturnType())) {
|
||
|
// Indirect aggregate return; emit returned value directly into sret slot.
|
||
|
// This reduces code size, and affects correctness in C++.
|
||
|
ReturnValue = CurFn->arg_begin();
|
||
|
} else {
|
||
|
ReturnValue = CreateIRTemp(RetTy, "retval");
|
||
|
|
||
|
// Tell the epilog emitter to autorelease the result. We do this
|
||
|
// now so that various specialized functions can suppress it
|
||
|
// during their IR-generation.
|
||
|
if (getLangOpts().ObjCAutoRefCount &&
|
||
|
!CurFnInfo->isReturnsRetained() &&
|
||
|
RetTy->isObjCRetainableType())
|
||
|
AutoreleaseResult = true;
|
||
|
}
|
||
|
|
||
|
EmitStartEHSpec(CurCodeDecl);
|
||
|
|
||
|
PrologueCleanupDepth = EHStack.stable_begin();
|
||
|
EmitFunctionProlog(*CurFnInfo, CurFn, Args);
|
||
|
|
||
|
if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
|
||
|
CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
|
||
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
|
||
|
if (MD->getParent()->isLambda() &&
|
||
|
MD->getOverloadedOperator() == OO_Call) {
|
||
|
// We're in a lambda; figure out the captures.
|
||
|
MD->getParent()->getCaptureFields(LambdaCaptureFields,
|
||
|
LambdaThisCaptureField);
|
||
|
if (LambdaThisCaptureField) {
|
||
|
// If this lambda captures this, load it.
|
||
|
QualType LambdaTagType =
|
||
|
getContext().getTagDeclType(LambdaThisCaptureField->getParent());
|
||
|
LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
|
||
|
LambdaTagType);
|
||
|
LValue ThisLValue = EmitLValueForField(LambdaLV,
|
||
|
LambdaThisCaptureField);
|
||
|
CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
|
||
|
}
|
||
|
} else {
|
||
|
// Not in a lambda; just use 'this' from the method.
|
||
|
// FIXME: Should we generate a new load for each use of 'this'? The
|
||
|
// fast register allocator would be happier...
|
||
|
CXXThisValue = CXXABIThisValue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If any of the arguments have a variably modified type, make sure to
|
||
|
// emit the type size.
|
||
|
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
|
||
|
i != e; ++i) {
|
||
|
QualType Ty = (*i)->getType();
|
||
|
|
||
|
if (Ty->isVariablyModifiedType())
|
||
|
EmitVariablyModifiedType(Ty);
|
||
|
}
|
||
|
// Emit a location at the end of the prologue.
|
||
|
if (CGDebugInfo *DI = getDebugInfo())
|
||
|
DI->EmitLocation(Builder, StartLoc);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
|
||
|
const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
|
||
|
assert(FD->getBody());
|
||
|
EmitStmt(FD->getBody());
|
||
|
}
|
||
|
|
||
|
/// Tries to mark the given function nounwind based on the
|
||
|
/// non-existence of any throwing calls within it. We believe this is
|
||
|
/// lightweight enough to do at -O0.
|
||
|
static void TryMarkNoThrow(llvm::Function *F) {
|
||
|
// LLVM treats 'nounwind' on a function as part of the type, so we
|
||
|
// can't do this on functions that can be overwritten.
|
||
|
if (F->mayBeOverridden()) return;
|
||
|
|
||
|
for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
|
||
|
for (llvm::BasicBlock::iterator
|
||
|
BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
|
||
|
if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
|
||
|
if (!Call->doesNotThrow())
|
||
|
return;
|
||
|
} else if (isa<llvm::ResumeInst>(&*BI)) {
|
||
|
return;
|
||
|
}
|
||
|
F->setDoesNotThrow(true);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
|
||
|
const CGFunctionInfo &FnInfo) {
|
||
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
||
|
|
||
|
// Check if we should generate debug info for this function.
|
||
|
if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
|
||
|
DebugInfo = CGM.getModuleDebugInfo();
|
||
|
|
||
|
FunctionArgList Args;
|
||
|
QualType ResTy = FD->getResultType();
|
||
|
|
||
|
CurGD = GD;
|
||
|
if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
|
||
|
CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
|
||
|
|
||
|
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
|
||
|
Args.push_back(FD->getParamDecl(i));
|
||
|
|
||
|
SourceRange BodyRange;
|
||
|
if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
|
||
|
|
||
|
// Emit the standard function prologue.
|
||
|
StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
|
||
|
|
||
|
// Generate the body of the function.
|
||
|
if (isa<CXXDestructorDecl>(FD))
|
||
|
EmitDestructorBody(Args);
|
||
|
else if (isa<CXXConstructorDecl>(FD))
|
||
|
EmitConstructorBody(Args);
|
||
|
else if (getContext().getLangOpts().CUDA &&
|
||
|
!CGM.getCodeGenOpts().CUDAIsDevice &&
|
||
|
FD->hasAttr<CUDAGlobalAttr>())
|
||
|
CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
|
||
|
else if (isa<CXXConversionDecl>(FD) &&
|
||
|
cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
|
||
|
// The lambda conversion to block pointer is special; the semantics can't be
|
||
|
// expressed in the AST, so IRGen needs to special-case it.
|
||
|
EmitLambdaToBlockPointerBody(Args);
|
||
|
} else if (isa<CXXMethodDecl>(FD) &&
|
||
|
cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
|
||
|
// The lambda "__invoke" function is special, because it forwards or
|
||
|
// clones the body of the function call operator (but is actually static).
|
||
|
EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
|
||
|
}
|
||
|
else
|
||
|
EmitFunctionBody(Args);
|
||
|
|
||
|
// Emit the standard function epilogue.
|
||
|
FinishFunction(BodyRange.getEnd());
|
||
|
|
||
|
// If we haven't marked the function nothrow through other means, do
|
||
|
// a quick pass now to see if we can.
|
||
|
if (!CurFn->doesNotThrow())
|
||
|
TryMarkNoThrow(CurFn);
|
||
|
}
|
||
|
|
||
|
/// ContainsLabel - Return true if the statement contains a label in it. If
|
||
|
/// this statement is not executed normally, it not containing a label means
|
||
|
/// that we can just remove the code.
|
||
|
bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
|
||
|
// Null statement, not a label!
|
||
|
if (S == 0) return false;
|
||
|
|
||
|
// If this is a label, we have to emit the code, consider something like:
|
||
|
// if (0) { ... foo: bar(); } goto foo;
|
||
|
//
|
||
|
// TODO: If anyone cared, we could track __label__'s, since we know that you
|
||
|
// can't jump to one from outside their declared region.
|
||
|
if (isa<LabelStmt>(S))
|
||
|
return true;
|
||
|
|
||
|
// If this is a case/default statement, and we haven't seen a switch, we have
|
||
|
// to emit the code.
|
||
|
if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
|
||
|
return true;
|
||
|
|
||
|
// If this is a switch statement, we want to ignore cases below it.
|
||
|
if (isa<SwitchStmt>(S))
|
||
|
IgnoreCaseStmts = true;
|
||
|
|
||
|
// Scan subexpressions for verboten labels.
|
||
|
for (Stmt::const_child_range I = S->children(); I; ++I)
|
||
|
if (ContainsLabel(*I, IgnoreCaseStmts))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// containsBreak - Return true if the statement contains a break out of it.
|
||
|
/// If the statement (recursively) contains a switch or loop with a break
|
||
|
/// inside of it, this is fine.
|
||
|
bool CodeGenFunction::containsBreak(const Stmt *S) {
|
||
|
// Null statement, not a label!
|
||
|
if (S == 0) return false;
|
||
|
|
||
|
// If this is a switch or loop that defines its own break scope, then we can
|
||
|
// include it and anything inside of it.
|
||
|
if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
|
||
|
isa<ForStmt>(S))
|
||
|
return false;
|
||
|
|
||
|
if (isa<BreakStmt>(S))
|
||
|
return true;
|
||
|
|
||
|
// Scan subexpressions for verboten breaks.
|
||
|
for (Stmt::const_child_range I = S->children(); I; ++I)
|
||
|
if (containsBreak(*I))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
|
||
|
/// to a constant, or if it does but contains a label, return false. If it
|
||
|
/// constant folds return true and set the boolean result in Result.
|
||
|
bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
|
||
|
bool &ResultBool) {
|
||
|
llvm::APInt ResultInt;
|
||
|
if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
|
||
|
return false;
|
||
|
|
||
|
ResultBool = ResultInt.getBoolValue();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
|
||
|
/// to a constant, or if it does but contains a label, return false. If it
|
||
|
/// constant folds return true and set the folded value.
|
||
|
bool CodeGenFunction::
|
||
|
ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
|
||
|
// FIXME: Rename and handle conversion of other evaluatable things
|
||
|
// to bool.
|
||
|
llvm::APSInt Int;
|
||
|
if (!Cond->EvaluateAsInt(Int, getContext()))
|
||
|
return false; // Not foldable, not integer or not fully evaluatable.
|
||
|
|
||
|
if (CodeGenFunction::ContainsLabel(Cond))
|
||
|
return false; // Contains a label.
|
||
|
|
||
|
ResultInt = Int;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
|
||
|
/// statement) to the specified blocks. Based on the condition, this might try
|
||
|
/// to simplify the codegen of the conditional based on the branch.
|
||
|
///
|
||
|
void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
|
||
|
llvm::BasicBlock *TrueBlock,
|
||
|
llvm::BasicBlock *FalseBlock) {
|
||
|
Cond = Cond->IgnoreParens();
|
||
|
|
||
|
if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
|
||
|
// Handle X && Y in a condition.
|
||
|
if (CondBOp->getOpcode() == BO_LAnd) {
|
||
|
// If we have "1 && X", simplify the code. "0 && X" would have constant
|
||
|
// folded if the case was simple enough.
|
||
|
bool ConstantBool = false;
|
||
|
if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
|
||
|
ConstantBool) {
|
||
|
// br(1 && X) -> br(X).
|
||
|
return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
|
||
|
}
|
||
|
|
||
|
// If we have "X && 1", simplify the code to use an uncond branch.
|
||
|
// "X && 0" would have been constant folded to 0.
|
||
|
if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
|
||
|
ConstantBool) {
|
||
|
// br(X && 1) -> br(X).
|
||
|
return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
|
||
|
}
|
||
|
|
||
|
// Emit the LHS as a conditional. If the LHS conditional is false, we
|
||
|
// want to jump to the FalseBlock.
|
||
|
llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
|
||
|
|
||
|
ConditionalEvaluation eval(*this);
|
||
|
EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
|
||
|
EmitBlock(LHSTrue);
|
||
|
|
||
|
// Any temporaries created here are conditional.
|
||
|
eval.begin(*this);
|
||
|
EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
|
||
|
eval.end(*this);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (CondBOp->getOpcode() == BO_LOr) {
|
||
|
// If we have "0 || X", simplify the code. "1 || X" would have constant
|
||
|
// folded if the case was simple enough.
|
||
|
bool ConstantBool = false;
|
||
|
if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
|
||
|
!ConstantBool) {
|
||
|
// br(0 || X) -> br(X).
|
||
|
return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
|
||
|
}
|
||
|
|
||
|
// If we have "X || 0", simplify the code to use an uncond branch.
|
||
|
// "X || 1" would have been constant folded to 1.
|
||
|
if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
|
||
|
!ConstantBool) {
|
||
|
// br(X || 0) -> br(X).
|
||
|
return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
|
||
|
}
|
||
|
|
||
|
// Emit the LHS as a conditional. If the LHS conditional is true, we
|
||
|
// want to jump to the TrueBlock.
|
||
|
llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
|
||
|
|
||
|
ConditionalEvaluation eval(*this);
|
||
|
EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
|
||
|
EmitBlock(LHSFalse);
|
||
|
|
||
|
// Any temporaries created here are conditional.
|
||
|
eval.begin(*this);
|
||
|
EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
|
||
|
eval.end(*this);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
|
||
|
// br(!x, t, f) -> br(x, f, t)
|
||
|
if (CondUOp->getOpcode() == UO_LNot)
|
||
|
return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
|
||
|
}
|
||
|
|
||
|
if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
|
||
|
// br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
|
||
|
llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
|
||
|
llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
|
||
|
|
||
|
ConditionalEvaluation cond(*this);
|
||
|
EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
|
||
|
|
||
|
cond.begin(*this);
|
||
|
EmitBlock(LHSBlock);
|
||
|
EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
|
||
|
cond.end(*this);
|
||
|
|
||
|
cond.begin(*this);
|
||
|
EmitBlock(RHSBlock);
|
||
|
EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
|
||
|
cond.end(*this);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Emit the code with the fully general case.
|
||
|
llvm::Value *CondV = EvaluateExprAsBool(Cond);
|
||
|
Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
|
||
|
}
|
||
|
|
||
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
||
|
/// specified stmt yet.
|
||
|
void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
|
||
|
bool OmitOnError) {
|
||
|
CGM.ErrorUnsupported(S, Type, OmitOnError);
|
||
|
}
|
||
|
|
||
|
/// emitNonZeroVLAInit - Emit the "zero" initialization of a
|
||
|
/// variable-length array whose elements have a non-zero bit-pattern.
|
||
|
///
|
||
|
/// \param src - a char* pointing to the bit-pattern for a single
|
||
|
/// base element of the array
|
||
|
/// \param sizeInChars - the total size of the VLA, in chars
|
||
|
/// \param align - the total alignment of the VLA
|
||
|
static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
|
||
|
llvm::Value *dest, llvm::Value *src,
|
||
|
llvm::Value *sizeInChars) {
|
||
|
std::pair<CharUnits,CharUnits> baseSizeAndAlign
|
||
|
= CGF.getContext().getTypeInfoInChars(baseType);
|
||
|
|
||
|
CGBuilderTy &Builder = CGF.Builder;
|
||
|
|
||
|
llvm::Value *baseSizeInChars
|
||
|
= llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
|
||
|
|
||
|
llvm::Type *i8p = Builder.getInt8PtrTy();
|
||
|
|
||
|
llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
|
||
|
llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
|
||
|
|
||
|
llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
|
||
|
llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
|
||
|
llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
|
||
|
|
||
|
// Make a loop over the VLA. C99 guarantees that the VLA element
|
||
|
// count must be nonzero.
|
||
|
CGF.EmitBlock(loopBB);
|
||
|
|
||
|
llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
|
||
|
cur->addIncoming(begin, originBB);
|
||
|
|
||
|
// memcpy the individual element bit-pattern.
|
||
|
Builder.CreateMemCpy(cur, src, baseSizeInChars,
|
||
|
baseSizeAndAlign.second.getQuantity(),
|
||
|
/*volatile*/ false);
|
||
|
|
||
|
// Go to the next element.
|
||
|
llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
|
||
|
|
||
|
// Leave if that's the end of the VLA.
|
||
|
llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
|
||
|
Builder.CreateCondBr(done, contBB, loopBB);
|
||
|
cur->addIncoming(next, loopBB);
|
||
|
|
||
|
CGF.EmitBlock(contBB);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
|
||
|
// Ignore empty classes in C++.
|
||
|
if (getContext().getLangOpts().CPlusPlus) {
|
||
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
|
if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Cast the dest ptr to the appropriate i8 pointer type.
|
||
|
unsigned DestAS =
|
||
|
cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
|
||
|
llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
|
||
|
if (DestPtr->getType() != BP)
|
||
|
DestPtr = Builder.CreateBitCast(DestPtr, BP);
|
||
|
|
||
|
// Get size and alignment info for this aggregate.
|
||
|
std::pair<CharUnits, CharUnits> TypeInfo =
|
||
|
getContext().getTypeInfoInChars(Ty);
|
||
|
CharUnits Size = TypeInfo.first;
|
||
|
CharUnits Align = TypeInfo.second;
|
||
|
|
||
|
llvm::Value *SizeVal;
|
||
|
const VariableArrayType *vla;
|
||
|
|
||
|
// Don't bother emitting a zero-byte memset.
|
||
|
if (Size.isZero()) {
|
||
|
// But note that getTypeInfo returns 0 for a VLA.
|
||
|
if (const VariableArrayType *vlaType =
|
||
|
dyn_cast_or_null<VariableArrayType>(
|
||
|
getContext().getAsArrayType(Ty))) {
|
||
|
QualType eltType;
|
||
|
llvm::Value *numElts;
|
||
|
llvm::tie(numElts, eltType) = getVLASize(vlaType);
|
||
|
|
||
|
SizeVal = numElts;
|
||
|
CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
|
||
|
if (!eltSize.isOne())
|
||
|
SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
|
||
|
vla = vlaType;
|
||
|
} else {
|
||
|
return;
|
||
|
}
|
||
|
} else {
|
||
|
SizeVal = CGM.getSize(Size);
|
||
|
vla = 0;
|
||
|
}
|
||
|
|
||
|
// If the type contains a pointer to data member we can't memset it to zero.
|
||
|
// Instead, create a null constant and copy it to the destination.
|
||
|
// TODO: there are other patterns besides zero that we can usefully memset,
|
||
|
// like -1, which happens to be the pattern used by member-pointers.
|
||
|
if (!CGM.getTypes().isZeroInitializable(Ty)) {
|
||
|
// For a VLA, emit a single element, then splat that over the VLA.
|
||
|
if (vla) Ty = getContext().getBaseElementType(vla);
|
||
|
|
||
|
llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
|
||
|
|
||
|
llvm::GlobalVariable *NullVariable =
|
||
|
new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
|
||
|
/*isConstant=*/true,
|
||
|
llvm::GlobalVariable::PrivateLinkage,
|
||
|
NullConstant, Twine());
|
||
|
llvm::Value *SrcPtr =
|
||
|
Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
|
||
|
|
||
|
if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
|
||
|
|
||
|
// Get and call the appropriate llvm.memcpy overload.
|
||
|
Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Otherwise, just memset the whole thing to zero. This is legal
|
||
|
// because in LLVM, all default initializers (other than the ones we just
|
||
|
// handled above) are guaranteed to have a bit pattern of all zeros.
|
||
|
Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
|
||
|
Align.getQuantity(), false);
|
||
|
}
|
||
|
|
||
|
llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
|
||
|
// Make sure that there is a block for the indirect goto.
|
||
|
if (IndirectBranch == 0)
|
||
|
GetIndirectGotoBlock();
|
||
|
|
||
|
llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
|
||
|
|
||
|
// Make sure the indirect branch includes all of the address-taken blocks.
|
||
|
IndirectBranch->addDestination(BB);
|
||
|
return llvm::BlockAddress::get(CurFn, BB);
|
||
|
}
|
||
|
|
||
|
llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
|
||
|
// If we already made the indirect branch for indirect goto, return its block.
|
||
|
if (IndirectBranch) return IndirectBranch->getParent();
|
||
|
|
||
|
CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
|
||
|
|
||
|
// Create the PHI node that indirect gotos will add entries to.
|
||
|
llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
|
||
|
"indirect.goto.dest");
|
||
|
|
||
|
// Create the indirect branch instruction.
|
||
|
IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
|
||
|
return IndirectBranch->getParent();
|
||
|
}
|
||
|
|
||
|
/// Computes the length of an array in elements, as well as the base
|
||
|
/// element type and a properly-typed first element pointer.
|
||
|
llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
|
||
|
QualType &baseType,
|
||
|
llvm::Value *&addr) {
|
||
|
const ArrayType *arrayType = origArrayType;
|
||
|
|
||
|
// If it's a VLA, we have to load the stored size. Note that
|
||
|
// this is the size of the VLA in bytes, not its size in elements.
|
||
|
llvm::Value *numVLAElements = 0;
|
||
|
if (isa<VariableArrayType>(arrayType)) {
|
||
|
numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
|
||
|
|
||
|
// Walk into all VLAs. This doesn't require changes to addr,
|
||
|
// which has type T* where T is the first non-VLA element type.
|
||
|
do {
|
||
|
QualType elementType = arrayType->getElementType();
|
||
|
arrayType = getContext().getAsArrayType(elementType);
|
||
|
|
||
|
// If we only have VLA components, 'addr' requires no adjustment.
|
||
|
if (!arrayType) {
|
||
|
baseType = elementType;
|
||
|
return numVLAElements;
|
||
|
}
|
||
|
} while (isa<VariableArrayType>(arrayType));
|
||
|
|
||
|
// We get out here only if we find a constant array type
|
||
|
// inside the VLA.
|
||
|
}
|
||
|
|
||
|
// We have some number of constant-length arrays, so addr should
|
||
|
// have LLVM type [M x [N x [...]]]*. Build a GEP that walks
|
||
|
// down to the first element of addr.
|
||
|
SmallVector<llvm::Value*, 8> gepIndices;
|
||
|
|
||
|
// GEP down to the array type.
|
||
|
llvm::ConstantInt *zero = Builder.getInt32(0);
|
||
|
gepIndices.push_back(zero);
|
||
|
|
||
|
// It's more efficient to calculate the count from the LLVM
|
||
|
// constant-length arrays than to re-evaluate the array bounds.
|
||
|
uint64_t countFromCLAs = 1;
|
||
|
|
||
|
llvm::ArrayType *llvmArrayType =
|
||
|
cast<llvm::ArrayType>(
|
||
|
cast<llvm::PointerType>(addr->getType())->getElementType());
|
||
|
while (true) {
|
||
|
assert(isa<ConstantArrayType>(arrayType));
|
||
|
assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
|
||
|
== llvmArrayType->getNumElements());
|
||
|
|
||
|
gepIndices.push_back(zero);
|
||
|
countFromCLAs *= llvmArrayType->getNumElements();
|
||
|
|
||
|
llvmArrayType =
|
||
|
dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
|
||
|
if (!llvmArrayType) break;
|
||
|
|
||
|
arrayType = getContext().getAsArrayType(arrayType->getElementType());
|
||
|
assert(arrayType && "LLVM and Clang types are out-of-synch");
|
||
|
}
|
||
|
|
||
|
baseType = arrayType->getElementType();
|
||
|
|
||
|
// Create the actual GEP.
|
||
|
addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
|
||
|
|
||
|
llvm::Value *numElements
|
||
|
= llvm::ConstantInt::get(SizeTy, countFromCLAs);
|
||
|
|
||
|
// If we had any VLA dimensions, factor them in.
|
||
|
if (numVLAElements)
|
||
|
numElements = Builder.CreateNUWMul(numVLAElements, numElements);
|
||
|
|
||
|
return numElements;
|
||
|
}
|
||
|
|
||
|
std::pair<llvm::Value*, QualType>
|
||
|
CodeGenFunction::getVLASize(QualType type) {
|
||
|
const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
|
||
|
assert(vla && "type was not a variable array type!");
|
||
|
return getVLASize(vla);
|
||
|
}
|
||
|
|
||
|
std::pair<llvm::Value*, QualType>
|
||
|
CodeGenFunction::getVLASize(const VariableArrayType *type) {
|
||
|
// The number of elements so far; always size_t.
|
||
|
llvm::Value *numElements = 0;
|
||
|
|
||
|
QualType elementType;
|
||
|
do {
|
||
|
elementType = type->getElementType();
|
||
|
llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
|
||
|
assert(vlaSize && "no size for VLA!");
|
||
|
assert(vlaSize->getType() == SizeTy);
|
||
|
|
||
|
if (!numElements) {
|
||
|
numElements = vlaSize;
|
||
|
} else {
|
||
|
// It's undefined behavior if this wraps around, so mark it that way.
|
||
|
numElements = Builder.CreateNUWMul(numElements, vlaSize);
|
||
|
}
|
||
|
} while ((type = getContext().getAsVariableArrayType(elementType)));
|
||
|
|
||
|
return std::pair<llvm::Value*,QualType>(numElements, elementType);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
|
||
|
assert(type->isVariablyModifiedType() &&
|
||
|
"Must pass variably modified type to EmitVLASizes!");
|
||
|
|
||
|
EnsureInsertPoint();
|
||
|
|
||
|
// We're going to walk down into the type and look for VLA
|
||
|
// expressions.
|
||
|
do {
|
||
|
assert(type->isVariablyModifiedType());
|
||
|
|
||
|
const Type *ty = type.getTypePtr();
|
||
|
switch (ty->getTypeClass()) {
|
||
|
|
||
|
#define TYPE(Class, Base)
|
||
|
#define ABSTRACT_TYPE(Class, Base)
|
||
|
#define NON_CANONICAL_TYPE(Class, Base)
|
||
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
||
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
|
||
|
#include "clang/AST/TypeNodes.def"
|
||
|
llvm_unreachable("unexpected dependent type!");
|
||
|
|
||
|
// These types are never variably-modified.
|
||
|
case Type::Builtin:
|
||
|
case Type::Complex:
|
||
|
case Type::Vector:
|
||
|
case Type::ExtVector:
|
||
|
case Type::Record:
|
||
|
case Type::Enum:
|
||
|
case Type::Elaborated:
|
||
|
case Type::TemplateSpecialization:
|
||
|
case Type::ObjCObject:
|
||
|
case Type::ObjCInterface:
|
||
|
case Type::ObjCObjectPointer:
|
||
|
llvm_unreachable("type class is never variably-modified!");
|
||
|
|
||
|
case Type::Pointer:
|
||
|
type = cast<PointerType>(ty)->getPointeeType();
|
||
|
break;
|
||
|
|
||
|
case Type::BlockPointer:
|
||
|
type = cast<BlockPointerType>(ty)->getPointeeType();
|
||
|
break;
|
||
|
|
||
|
case Type::LValueReference:
|
||
|
case Type::RValueReference:
|
||
|
type = cast<ReferenceType>(ty)->getPointeeType();
|
||
|
break;
|
||
|
|
||
|
case Type::MemberPointer:
|
||
|
type = cast<MemberPointerType>(ty)->getPointeeType();
|
||
|
break;
|
||
|
|
||
|
case Type::ConstantArray:
|
||
|
case Type::IncompleteArray:
|
||
|
// Losing element qualification here is fine.
|
||
|
type = cast<ArrayType>(ty)->getElementType();
|
||
|
break;
|
||
|
|
||
|
case Type::VariableArray: {
|
||
|
// Losing element qualification here is fine.
|
||
|
const VariableArrayType *vat = cast<VariableArrayType>(ty);
|
||
|
|
||
|
// Unknown size indication requires no size computation.
|
||
|
// Otherwise, evaluate and record it.
|
||
|
if (const Expr *size = vat->getSizeExpr()) {
|
||
|
// It's possible that we might have emitted this already,
|
||
|
// e.g. with a typedef and a pointer to it.
|
||
|
llvm::Value *&entry = VLASizeMap[size];
|
||
|
if (!entry) {
|
||
|
// Always zexting here would be wrong if it weren't
|
||
|
// undefined behavior to have a negative bound.
|
||
|
entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
|
||
|
/*signed*/ false);
|
||
|
}
|
||
|
}
|
||
|
type = vat->getElementType();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case Type::FunctionProto:
|
||
|
case Type::FunctionNoProto:
|
||
|
type = cast<FunctionType>(ty)->getResultType();
|
||
|
break;
|
||
|
|
||
|
case Type::Paren:
|
||
|
case Type::TypeOf:
|
||
|
case Type::UnaryTransform:
|
||
|
case Type::Attributed:
|
||
|
case Type::SubstTemplateTypeParm:
|
||
|
// Keep walking after single level desugaring.
|
||
|
type = type.getSingleStepDesugaredType(getContext());
|
||
|
break;
|
||
|
|
||
|
case Type::Typedef:
|
||
|
case Type::Decltype:
|
||
|
case Type::Auto:
|
||
|
// Stop walking: nothing to do.
|
||
|
return;
|
||
|
|
||
|
case Type::TypeOfExpr:
|
||
|
// Stop walking: emit typeof expression.
|
||
|
EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
|
||
|
return;
|
||
|
|
||
|
case Type::Atomic:
|
||
|
type = cast<AtomicType>(ty)->getValueType();
|
||
|
break;
|
||
|
}
|
||
|
} while (type->isVariablyModifiedType());
|
||
|
}
|
||
|
|
||
|
llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
|
||
|
if (getContext().getBuiltinVaListType()->isArrayType())
|
||
|
return EmitScalarExpr(E);
|
||
|
return EmitLValue(E).getAddress();
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
|
||
|
llvm::Constant *Init) {
|
||
|
assert (Init && "Invalid DeclRefExpr initializer!");
|
||
|
if (CGDebugInfo *Dbg = getDebugInfo())
|
||
|
Dbg->EmitGlobalVariable(E->getDecl(), Init);
|
||
|
}
|
||
|
|
||
|
CodeGenFunction::PeepholeProtection
|
||
|
CodeGenFunction::protectFromPeepholes(RValue rvalue) {
|
||
|
// At the moment, the only aggressive peephole we do in IR gen
|
||
|
// is trunc(zext) folding, but if we add more, we can easily
|
||
|
// extend this protection.
|
||
|
|
||
|
if (!rvalue.isScalar()) return PeepholeProtection();
|
||
|
llvm::Value *value = rvalue.getScalarVal();
|
||
|
if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
|
||
|
|
||
|
// Just make an extra bitcast.
|
||
|
assert(HaveInsertPoint());
|
||
|
llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
|
||
|
Builder.GetInsertBlock());
|
||
|
|
||
|
PeepholeProtection protection;
|
||
|
protection.Inst = inst;
|
||
|
return protection;
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
|
||
|
if (!protection.Inst) return;
|
||
|
|
||
|
// In theory, we could try to duplicate the peepholes now, but whatever.
|
||
|
protection.Inst->eraseFromParent();
|
||
|
}
|
||
|
|
||
|
llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
|
||
|
llvm::Value *AnnotatedVal,
|
||
|
llvm::StringRef AnnotationStr,
|
||
|
SourceLocation Location) {
|
||
|
llvm::Value *Args[4] = {
|
||
|
AnnotatedVal,
|
||
|
Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
|
||
|
Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
|
||
|
CGM.EmitAnnotationLineNo(Location)
|
||
|
};
|
||
|
return Builder.CreateCall(AnnotationFn, Args);
|
||
|
}
|
||
|
|
||
|
void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
|
||
|
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
|
||
|
// FIXME We create a new bitcast for every annotation because that's what
|
||
|
// llvm-gcc was doing.
|
||
|
for (specific_attr_iterator<AnnotateAttr>
|
||
|
ai = D->specific_attr_begin<AnnotateAttr>(),
|
||
|
ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
|
||
|
EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
|
||
|
Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
|
||
|
(*ai)->getAnnotation(), D->getLocation());
|
||
|
}
|
||
|
|
||
|
llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
|
||
|
llvm::Value *V) {
|
||
|
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
|
||
|
llvm::Type *VTy = V->getType();
|
||
|
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
|
||
|
CGM.Int8PtrTy);
|
||
|
|
||
|
for (specific_attr_iterator<AnnotateAttr>
|
||
|
ai = D->specific_attr_begin<AnnotateAttr>(),
|
||
|
ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
|
||
|
// FIXME Always emit the cast inst so we can differentiate between
|
||
|
// annotation on the first field of a struct and annotation on the struct
|
||
|
// itself.
|
||
|
if (VTy != CGM.Int8PtrTy)
|
||
|
V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
|
||
|
V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
|
||
|
V = Builder.CreateBitCast(V, VTy);
|
||
|
}
|
||
|
|
||
|
return V;
|
||
|
}
|