YouCompleteMe/cpp/BoostParts/boost/unordered/detail/table.hpp

908 lines
28 KiB
C++
Raw Normal View History

2012-05-10 00:45:30 -04:00
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#include <boost/unordered/detail/buckets.hpp>
#include <boost/unordered/detail/util.hpp>
#include <boost/type_traits/aligned_storage.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <cmath>
2013-01-13 17:38:19 -05:00
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#endif
2012-05-10 00:45:30 -04:00
namespace boost { namespace unordered { namespace detail {
////////////////////////////////////////////////////////////////////////////
// convert double to std::size_t
inline std::size_t double_to_size(double f)
{
return f >= static_cast<double>(
(std::numeric_limits<std::size_t>::max)()) ?
(std::numeric_limits<std::size_t>::max)() :
static_cast<std::size_t>(f);
}
// The space used to store values in a node.
template <typename ValueType>
struct value_base
{
typedef ValueType value_type;
typename boost::aligned_storage<
sizeof(value_type),
boost::alignment_of<value_type>::value>::type data_;
void* address() {
return this;
}
value_type& value() {
return *(ValueType*) this;
}
value_type* value_ptr() {
return (ValueType*) this;
}
private:
value_base& operator=(value_base const&);
};
2013-01-13 17:38:19 -05:00
template <typename NodeAlloc>
struct copy_nodes
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
node_constructor<NodeAlloc> constructor;
explicit copy_nodes(NodeAlloc& a) : constructor(a) {}
typename node_allocator_traits::pointer create(
typename node_allocator_traits::value_type::value_type const& v)
{
constructor.construct_with_value2(v);
return constructor.release();
}
};
template <typename NodeAlloc>
struct move_nodes
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
node_constructor<NodeAlloc> constructor;
explicit move_nodes(NodeAlloc& a) : constructor(a) {}
typename node_allocator_traits::pointer create(
typename node_allocator_traits::value_type::value_type& v)
{
constructor.construct_with_value2(boost::move(v));
return constructor.release();
}
};
template <typename Buckets>
struct assign_nodes
{
node_holder<typename Buckets::node_allocator> holder;
explicit assign_nodes(Buckets& b) : holder(b) {}
typename Buckets::node_pointer create(
typename Buckets::value_type const& v)
{
return holder.copy_of(v);
}
};
template <typename Buckets>
struct move_assign_nodes
{
node_holder<typename Buckets::node_allocator> holder;
explicit move_assign_nodes(Buckets& b) : holder(b) {}
typename Buckets::node_pointer create(
typename Buckets::value_type& v)
{
return holder.move_copy_of(v);
}
};
2012-05-10 00:45:30 -04:00
template <typename Types>
struct table :
2013-01-13 17:38:19 -05:00
Types::policy,
2012-05-10 00:45:30 -04:00
boost::unordered::detail::functions<
typename Types::hasher,
typename Types::key_equal>
{
private:
table(table const&);
table& operator=(table const&);
public:
2013-01-13 17:38:19 -05:00
typedef typename Types::node node;
typedef typename Types::bucket bucket;
2012-05-10 00:45:30 -04:00
typedef typename Types::hasher hasher;
typedef typename Types::key_equal key_equal;
typedef typename Types::key_type key_type;
typedef typename Types::extractor extractor;
typedef typename Types::value_type value_type;
typedef typename Types::table table_impl;
typedef typename Types::link_pointer link_pointer;
2012-07-21 14:37:40 -04:00
typedef typename Types::policy policy;
2012-05-10 00:45:30 -04:00
typedef boost::unordered::detail::functions<
typename Types::hasher,
typename Types::key_equal> functions;
2013-01-13 17:38:19 -05:00
typedef typename Types::allocator allocator;
typedef typename boost::unordered::detail::
rebind_wrap<allocator, node>::type node_allocator;
typedef typename boost::unordered::detail::
rebind_wrap<allocator, bucket>::type bucket_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef boost::unordered::detail::allocator_traits<bucket_allocator>
bucket_allocator_traits;
typedef typename node_allocator_traits::pointer
node_pointer;
typedef typename node_allocator_traits::const_pointer
const_node_pointer;
typedef typename bucket_allocator_traits::pointer
bucket_pointer;
typedef typename bucket::previous_pointer
previous_pointer;
typedef boost::unordered::detail::node_constructor<node_allocator>
node_constructor;
typedef boost::unordered::iterator_detail::
iterator<node_pointer, value_type> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<const_node_pointer, node_pointer, value_type> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node_pointer, value_type, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<const_node_pointer, node_pointer, value_type, policy>
cl_iterator;
2012-05-10 00:45:30 -04:00
2013-01-13 17:38:19 -05:00
////////////////////////////////////////////////////////////////////////
2012-05-10 00:45:30 -04:00
// Members
2013-01-13 17:38:19 -05:00
boost::unordered::detail::compressed<bucket_allocator, node_allocator>
allocators_;
std::size_t bucket_count_;
std::size_t size_;
2012-05-10 00:45:30 -04:00
float mlf_;
2013-01-13 17:38:19 -05:00
std::size_t max_load_;
bucket_pointer buckets_;
////////////////////////////////////////////////////////////////////////
// Data access
bucket_allocator const& bucket_alloc() const
{
return allocators_.first();
}
node_allocator const& node_alloc() const
{
return allocators_.second();
}
bucket_allocator& bucket_alloc()
{
return allocators_.first();
}
node_allocator& node_alloc()
{
return allocators_.second();
}
std::size_t max_bucket_count() const
{
// -1 to account for the start bucket.
return policy::prev_bucket_count(
bucket_allocator_traits::max_size(bucket_alloc()) - 1);
}
bucket_pointer get_bucket(std::size_t bucket_index) const
{
BOOST_ASSERT(buckets_);
return buckets_ + static_cast<std::ptrdiff_t>(bucket_index);
}
previous_pointer get_previous_start() const
{
return get_bucket(bucket_count_)->first_from_start();
}
previous_pointer get_previous_start(std::size_t bucket_index) const
{
return get_bucket(bucket_index)->next_;
}
iterator begin() const
{
return size_ ? iterator(static_cast<node_pointer>(
get_previous_start()->next_)) : iterator();
}
iterator begin(std::size_t bucket_index) const
{
if (!size_) return iterator();
previous_pointer prev = get_previous_start(bucket_index);
return prev ? iterator(static_cast<node_pointer>(prev->next_)) :
iterator();
}
float load_factor() const
{
BOOST_ASSERT(bucket_count_ != 0);
return static_cast<float>(size_)
/ static_cast<float>(bucket_count_);
}
std::size_t bucket_size(std::size_t index) const
{
iterator it = begin(index);
if (!it.node_) return 0;
std::size_t count = 0;
while(it.node_ && policy::to_bucket(
bucket_count_, it.node_->hash_) == index)
{
++count;
++it;
}
return count;
}
2012-05-10 00:45:30 -04:00
////////////////////////////////////////////////////////////////////////
// Load methods
std::size_t max_size() const
{
using namespace std;
// size < mlf_ * count
return boost::unordered::detail::double_to_size(ceil(
2013-01-13 17:38:19 -05:00
static_cast<double>(mlf_) *
static_cast<double>(max_bucket_count())
2012-05-10 00:45:30 -04:00
)) - 1;
}
2013-01-13 17:38:19 -05:00
void recalculate_max_load()
2012-05-10 00:45:30 -04:00
{
using namespace std;
// From 6.3.1/13:
// Only resize when size >= mlf_ * count
2013-01-13 17:38:19 -05:00
max_load_ = buckets_ ? boost::unordered::detail::double_to_size(ceil(
static_cast<double>(mlf_) *
static_cast<double>(bucket_count_)
)) : 0;
2012-05-10 00:45:30 -04:00
}
2013-01-13 17:38:19 -05:00
2012-05-10 00:45:30 -04:00
void max_load_factor(float z)
{
BOOST_ASSERT(z > 0);
mlf_ = (std::max)(z, minimum_max_load_factor);
2013-01-13 17:38:19 -05:00
recalculate_max_load();
2012-05-10 00:45:30 -04:00
}
std::size_t min_buckets_for_size(std::size_t size) const
{
2013-01-13 17:38:19 -05:00
BOOST_ASSERT(mlf_ >= minimum_max_load_factor);
2012-05-10 00:45:30 -04:00
using namespace std;
// From 6.3.1/13:
// size < mlf_ * count
// => count > size / mlf_
//
// Or from rehash post-condition:
// count > size / mlf_
2012-07-21 14:37:40 -04:00
return policy::new_bucket_count(
2012-05-10 00:45:30 -04:00
boost::unordered::detail::double_to_size(floor(
static_cast<double>(size) /
static_cast<double>(mlf_))) + 1);
}
////////////////////////////////////////////////////////////////////////
// Constructors
table(std::size_t num_buckets,
hasher const& hf,
key_equal const& eq,
node_allocator const& a) :
functions(hf, eq),
2013-01-13 17:38:19 -05:00
allocators_(a,a),
bucket_count_(policy::new_bucket_count(num_buckets)),
size_(0),
2012-05-10 00:45:30 -04:00
mlf_(1.0f),
2013-01-13 17:38:19 -05:00
max_load_(0),
buckets_()
2012-05-10 00:45:30 -04:00
{}
table(table const& x, node_allocator const& a) :
functions(x),
2013-01-13 17:38:19 -05:00
allocators_(a,a),
bucket_count_(x.min_buckets_for_size(x.size_)),
size_(0),
2012-05-10 00:45:30 -04:00
mlf_(x.mlf_),
2013-01-13 17:38:19 -05:00
max_load_(0),
buckets_()
{}
2012-05-10 00:45:30 -04:00
table(table& x, boost::unordered::detail::move_tag m) :
functions(x),
2013-01-13 17:38:19 -05:00
allocators_(x.allocators_, m),
bucket_count_(x.bucket_count_),
size_(x.size_),
2012-05-10 00:45:30 -04:00
mlf_(x.mlf_),
2013-01-13 17:38:19 -05:00
max_load_(x.max_load_),
buckets_(x.buckets_)
{
x.buckets_ = bucket_pointer();
x.size_ = 0;
x.max_load_ = 0;
}
2012-05-10 00:45:30 -04:00
table(table& x, node_allocator const& a,
2013-01-13 17:38:19 -05:00
boost::unordered::detail::move_tag) :
2012-05-10 00:45:30 -04:00
functions(x),
2013-01-13 17:38:19 -05:00
allocators_(a, a),
bucket_count_(x.bucket_count_),
size_(0),
2012-05-10 00:45:30 -04:00
mlf_(x.mlf_),
2013-01-13 17:38:19 -05:00
max_load_(x.max_load_),
buckets_()
{}
////////////////////////////////////////////////////////////////////////
// Initialisation.
void init(table const& x)
2012-05-10 00:45:30 -04:00
{
2013-01-13 17:38:19 -05:00
if (x.size_) {
create_buckets(bucket_count_);
copy_nodes<node_allocator> copy(node_alloc());
table_impl::fill_buckets(x.begin(), *this, copy);
}
}
void move_init(table& x)
{
if(node_alloc() == x.node_alloc()) {
move_buckets_from(x);
2012-05-10 00:45:30 -04:00
}
else if(x.size_) {
2013-01-13 17:38:19 -05:00
// TODO: Could pick new bucket size?
create_buckets(bucket_count_);
2012-05-10 00:45:30 -04:00
2013-01-13 17:38:19 -05:00
move_nodes<node_allocator> move(node_alloc());
node_holder<node_allocator> nodes(x);
table_impl::fill_buckets(nodes.begin(), *this, move);
2012-05-10 00:45:30 -04:00
}
}
2013-01-13 17:38:19 -05:00
////////////////////////////////////////////////////////////////////////
// Create buckets
void create_buckets(std::size_t new_count)
{
boost::unordered::detail::array_constructor<bucket_allocator>
constructor(bucket_alloc());
// Creates an extra bucket to act as the start node.
constructor.construct(bucket(), new_count + 1);
if (buckets_)
{
// Copy the nodes to the new buckets, including the dummy
// node if there is one.
(constructor.get() +
static_cast<std::ptrdiff_t>(new_count))->next_ =
(buckets_ + static_cast<std::ptrdiff_t>(
bucket_count_))->next_;
destroy_buckets();
}
else if (bucket::extra_node)
{
node_constructor a(node_alloc());
a.construct();
(constructor.get() +
static_cast<std::ptrdiff_t>(new_count))->next_ =
a.release();
}
2012-05-10 00:45:30 -04:00
2013-01-13 17:38:19 -05:00
bucket_count_ = new_count;
buckets_ = constructor.release();
recalculate_max_load();
2012-05-10 00:45:30 -04:00
}
2013-01-13 17:38:19 -05:00
////////////////////////////////////////////////////////////////////////
// Swap and Move
2012-05-10 00:45:30 -04:00
2013-01-13 17:38:19 -05:00
void swap_allocators(table& other, false_type)
2012-05-10 00:45:30 -04:00
{
2013-01-13 17:38:19 -05:00
// According to 23.2.1.8, if propagate_on_container_swap is
// false the behaviour is undefined unless the allocators
// are equal.
BOOST_ASSERT(node_alloc() == other.node_alloc());
}
void swap_allocators(table& other, true_type)
{
allocators_.swap(other.allocators_);
}
// Only swaps the allocators if propagate_on_container_swap
void swap(table& x)
{
boost::unordered::detail::set_hash_functions<hasher, key_equal>
op1(*this, x);
boost::unordered::detail::set_hash_functions<hasher, key_equal>
op2(x, *this);
// I think swap can throw if Propagate::value,
// since the allocators' swap can throw. Not sure though.
swap_allocators(x,
2012-05-10 00:45:30 -04:00
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
2013-01-13 17:38:19 -05:00
propagate_on_container_swap::value>());
boost::swap(buckets_, x.buckets_);
boost::swap(bucket_count_, x.bucket_count_);
boost::swap(size_, x.size_);
std::swap(mlf_, x.mlf_);
std::swap(max_load_, x.max_load_);
op1.commit();
op2.commit();
}
void move_buckets_from(table& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
BOOST_ASSERT(!buckets_);
buckets_ = other.buckets_;
bucket_count_ = other.bucket_count_;
size_ = other.size_;
other.buckets_ = bucket_pointer();
other.size_ = 0;
other.max_load_ = 0;
}
////////////////////////////////////////////////////////////////////////
// Delete/destruct
~table()
{
delete_buckets();
}
void delete_node(c_iterator n)
{
boost::unordered::detail::destroy_value_impl(node_alloc(),
n.node_->value_ptr());
node_allocator_traits::destroy(node_alloc(),
boost::addressof(*n.node_));
node_allocator_traits::deallocate(node_alloc(), n.node_, 1);
--size_;
}
std::size_t delete_nodes(c_iterator begin, c_iterator end)
{
std::size_t count = 0;
while(begin != end) {
c_iterator n = begin;
++begin;
delete_node(n);
++count;
}
return count;
}
void delete_buckets()
{
if(buckets_) {
delete_nodes(begin(), iterator());
if (bucket::extra_node) {
node_pointer n = static_cast<node_pointer>(
get_bucket(bucket_count_)->next_);
node_allocator_traits::destroy(node_alloc(),
boost::addressof(*n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
}
destroy_buckets();
buckets_ = bucket_pointer();
max_load_ = 0;
}
BOOST_ASSERT(!size_);
}
void clear()
{
if(!size_) return;
delete_nodes(begin(), iterator());
get_previous_start()->next_ = link_pointer();
clear_buckets();
BOOST_ASSERT(!size_);
}
void clear_buckets()
{
bucket_pointer end = get_bucket(bucket_count_);
for(bucket_pointer it = buckets_; it != end; ++it)
{
it->next_ = node_pointer();
}
}
void destroy_buckets()
{
bucket_pointer end = get_bucket(bucket_count_ + 1);
for(bucket_pointer it = buckets_; it != end; ++it)
{
bucket_allocator_traits::destroy(bucket_alloc(),
boost::addressof(*it));
}
bucket_allocator_traits::deallocate(bucket_alloc(),
buckets_, bucket_count_ + 1);
}
////////////////////////////////////////////////////////////////////////
// Fix buckets after erase
// This is called after erasing a node or group of nodes to fix up
// the bucket pointers.
void fix_buckets(bucket_pointer this_bucket,
previous_pointer prev, node_pointer next)
{
if (!next)
{
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
else
{
bucket_pointer next_bucket = get_bucket(
policy::to_bucket(bucket_count_, next->hash_));
if (next_bucket != this_bucket)
{
next_bucket->next_ = prev;
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
}
}
// This is called after erasing a range of nodes to fix any bucket
// pointers into that range.
void fix_buckets_range(std::size_t bucket_index,
previous_pointer prev, node_pointer begin, node_pointer end)
{
node_pointer n = begin;
// If we're not at the start of the current bucket, then
// go to the start of the next bucket.
if (get_bucket(bucket_index)->next_ != prev)
{
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) {
if (n) {
std::size_t new_bucket_index =
policy::to_bucket(bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
get_bucket(new_bucket_index)->next_ = prev;
}
}
return;
}
std::size_t new_bucket_index =
policy::to_bucket(bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
break;
}
}
}
// Iterate through the remaining nodes, clearing out the bucket
// pointers.
get_bucket(bucket_index)->next_ = previous_pointer();
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) break;
std::size_t new_bucket_index =
policy::to_bucket(bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
get_bucket(bucket_index)->next_ = previous_pointer();
}
};
// Finally fix the bucket containing the trailing node.
if (n) {
get_bucket(
policy::to_bucket(bucket_count_, n->hash_))->next_
= prev;
}
}
////////////////////////////////////////////////////////////////////////
// Assignment
void assign(table const& x)
{
if (this != boost::addressof(x))
{
assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_copy_assignment::value>());
}
2012-05-10 00:45:30 -04:00
}
void assign(table const& x, false_type)
{
2013-01-13 17:38:19 -05:00
// Strong exception safety.
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
new_func_this.commit();
mlf_ = x.mlf_;
recalculate_max_load();
if (!size_ && !x.size_) return;
if (x.size_ >= max_load_) {
create_buckets(min_buckets_for_size(x.size_));
}
else {
clear_buckets();
}
// assign_nodes takes ownership of the container's elements,
// assigning to them if possible, and deleting any that are
// left over.
assign_nodes<table> assign(*this);
table_impl::fill_buckets(x.begin(), *this, assign);
2012-05-10 00:45:30 -04:00
}
void assign(table const& x, true_type)
{
2013-01-13 17:38:19 -05:00
if (node_alloc() == x.node_alloc()) {
allocators_.assign(x.allocators_);
assign(x, false_type());
}
else {
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
// Delete everything with current allocators before assigning
// the new ones.
delete_buckets();
allocators_.assign(x.allocators_);
// Copy over other data, all no throw.
new_func_this.commit();
mlf_ = x.mlf_;
bucket_count_ = min_buckets_for_size(x.size_);
max_load_ = 0;
// Finally copy the elements.
if (x.size_) {
create_buckets(bucket_count_);
copy_nodes<node_allocator> copy(node_alloc());
table_impl::fill_buckets(x.begin(), *this, copy);
}
}
2012-05-10 00:45:30 -04:00
}
void move_assign(table& x)
{
2013-01-13 17:38:19 -05:00
if (this != boost::addressof(x))
{
move_assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_move_assignment::value>());
}
2012-05-10 00:45:30 -04:00
}
void move_assign(table& x, true_type)
{
2013-01-13 17:38:19 -05:00
delete_buckets();
allocators_.move_assign(x.allocators_);
2012-05-10 00:45:30 -04:00
move_assign_no_alloc(x);
}
void move_assign(table& x, false_type)
{
2013-01-13 17:38:19 -05:00
if (node_alloc() == x.node_alloc()) {
delete_buckets();
2012-05-10 00:45:30 -04:00
move_assign_no_alloc(x);
}
else {
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
2013-01-13 17:38:19 -05:00
new_func_this.commit();
mlf_ = x.mlf_;
recalculate_max_load();
2012-05-10 00:45:30 -04:00
2013-01-13 17:38:19 -05:00
if (!size_ && !x.size_) return;
if (x.size_ >= max_load_) {
create_buckets(min_buckets_for_size(x.size_));
2012-05-10 00:45:30 -04:00
}
else {
2013-01-13 17:38:19 -05:00
clear_buckets();
2012-05-10 00:45:30 -04:00
}
2013-01-13 17:38:19 -05:00
// move_assign_nodes takes ownership of the container's
// elements, assigning to them if possible, and deleting
// any that are left over.
move_assign_nodes<table> assign(*this);
node_holder<node_allocator> nodes(x);
table_impl::fill_buckets(nodes.begin(), *this, assign);
2012-05-10 00:45:30 -04:00
}
}
void move_assign_no_alloc(table& x)
{
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
// No throw from here.
2013-01-13 17:38:19 -05:00
mlf_ = x.mlf_;
max_load_ = x.max_load_;
move_buckets_from(x);
2012-05-10 00:45:30 -04:00
new_func_this.commit();
}
// Accessors
key_type const& get_key(value_type const& x) const
{
return extractor::extract(x);
}
2012-07-21 14:37:40 -04:00
std::size_t hash(key_type const& k) const
{
return policy::apply_hash(this->hash_function(), k);
}
2012-05-10 00:45:30 -04:00
// Find Node
template <typename Key, typename Hash, typename Pred>
2012-07-21 14:37:40 -04:00
iterator generic_find_node(
2012-05-10 00:45:30 -04:00
Key const& k,
2012-07-21 14:37:40 -04:00
Hash const& hf,
2012-05-10 00:45:30 -04:00
Pred const& eq) const
{
return static_cast<table_impl const*>(this)->
2012-07-21 14:37:40 -04:00
find_node_impl(policy::apply_hash(hf, k), k, eq);
2012-05-10 00:45:30 -04:00
}
2012-07-21 14:37:40 -04:00
iterator find_node(
std::size_t key_hash,
2012-05-10 00:45:30 -04:00
key_type const& k) const
{
return static_cast<table_impl const*>(this)->
2012-07-21 14:37:40 -04:00
find_node_impl(key_hash, k, this->key_eq());
2012-05-10 00:45:30 -04:00
}
2012-07-21 14:37:40 -04:00
iterator find_node(key_type const& k) const
2012-05-10 00:45:30 -04:00
{
return static_cast<table_impl const*>(this)->
2013-01-13 17:38:19 -05:00
find_node_impl(hash(k), k, this->key_eq());
2012-05-10 00:45:30 -04:00
}
2012-07-21 14:37:40 -04:00
iterator find_matching_node(iterator n) const
2012-05-10 00:45:30 -04:00
{
// TODO: Does this apply to C++11?
//
// For some stupid reason, I decided to support equality comparison
// when different hash functions are used. So I can't use the hash
// value from the node here.
2012-07-21 14:37:40 -04:00
return find_node(get_key(*n));
2012-05-10 00:45:30 -04:00
}
// Reserve and rehash
void reserve_for_insert(std::size_t);
void rehash(std::size_t);
2012-07-21 14:37:40 -04:00
void reserve(std::size_t);
2012-05-10 00:45:30 -04:00
};
////////////////////////////////////////////////////////////////////////////
// Reserve & Rehash
// basic exception safety
template <typename Types>
inline void table<Types>::reserve_for_insert(std::size_t size)
{
2013-01-13 17:38:19 -05:00
if (!buckets_) {
create_buckets((std::max)(bucket_count_,
min_buckets_for_size(size)));
2012-05-10 00:45:30 -04:00
}
2012-07-21 14:37:40 -04:00
// According to the standard this should be 'size >= max_load_',
// but I think this is better, defect report filed.
else if(size > max_load_) {
2012-05-10 00:45:30 -04:00
std::size_t num_buckets
2013-01-13 17:38:19 -05:00
= min_buckets_for_size((std::max)(size,
size_ + (size_ >> 1)));
if (num_buckets != bucket_count_)
2012-05-10 00:45:30 -04:00
static_cast<table_impl*>(this)->rehash_impl(num_buckets);
}
}
// if hash function throws, basic exception safety
// strong otherwise.
template <typename Types>
2012-07-21 14:37:40 -04:00
inline void table<Types>::rehash(std::size_t min_buckets)
2012-05-10 00:45:30 -04:00
{
using namespace std;
2013-01-13 17:38:19 -05:00
if(!size_) {
delete_buckets();
bucket_count_ = policy::new_bucket_count(min_buckets);
2012-05-10 00:45:30 -04:00
}
else {
2012-07-21 14:37:40 -04:00
min_buckets = policy::new_bucket_count((std::max)(min_buckets,
2012-05-10 00:45:30 -04:00
boost::unordered::detail::double_to_size(floor(
2013-01-13 17:38:19 -05:00
static_cast<double>(size_) /
2012-05-10 00:45:30 -04:00
static_cast<double>(mlf_))) + 1));
2013-01-13 17:38:19 -05:00
if(min_buckets != bucket_count_)
2012-05-10 00:45:30 -04:00
static_cast<table_impl*>(this)->rehash_impl(min_buckets);
}
}
2012-07-21 14:37:40 -04:00
template <typename Types>
inline void table<Types>::reserve(std::size_t num_elements)
{
rehash(static_cast<std::size_t>(
2013-01-13 17:38:19 -05:00
std::ceil(static_cast<double>(num_elements) / mlf_)));
2012-07-21 14:37:40 -04:00
}
2012-05-10 00:45:30 -04:00
}}}
2013-01-13 17:38:19 -05:00
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
2012-05-10 00:45:30 -04:00
#endif