452 lines
17 KiB
C++
Raw Normal View History

2012-07-05 17:51:06 -07:00
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities. It does not define any
// actual pass or policy, but provides a single function to perform loop
// unrolling.
//
// The process of unrolling can produce extraneous basic blocks linked with
// unconditional branches. This will be corrected in the future.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
using namespace llvm;
// TODO: Should these be here or in LoopUnroll?
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
static inline void RemapInstruction(Instruction *I,
ValueToValueMapTy &VMap) {
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
Value *Op = I->getOperand(op);
ValueToValueMapTy::iterator It = VMap.find(Op);
if (It != VMap.end())
I->setOperand(op, It->second);
}
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
if (It != VMap.end())
PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
}
}
}
/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
/// only has one predecessor, and that predecessor only has one successor.
/// The LoopInfo Analysis that is passed will be kept consistent.
/// Returns the new combined block.
static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
LPPassManager *LPM) {
// Merge basic blocks into their predecessor if there is only one distinct
// pred, and if there is only one distinct successor of the predecessor, and
// if there are no PHI nodes.
BasicBlock *OnlyPred = BB->getSinglePredecessor();
if (!OnlyPred) return 0;
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
return 0;
DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
// Resolve any PHI nodes at the start of the block. They are all
// guaranteed to have exactly one entry if they exist, unless there are
// multiple duplicate (but guaranteed to be equal) entries for the
// incoming edges. This occurs when there are multiple edges from
// OnlyPred to OnlySucc.
FoldSingleEntryPHINodes(BB);
// Delete the unconditional branch from the predecessor...
OnlyPred->getInstList().pop_back();
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(OnlyPred);
// Move all definitions in the successor to the predecessor...
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
std::string OldName = BB->getName();
// Erase basic block from the function...
// ScalarEvolution holds references to loop exit blocks.
if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
if (Loop *L = LI->getLoopFor(BB))
SE->forgetLoop(L);
}
LI->removeBlock(BB);
BB->eraseFromParent();
// Inherit predecessor's name if it exists...
if (!OldName.empty() && !OnlyPred->hasName())
OnlyPred->setName(OldName);
return OnlyPred;
}
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
/// if unrolling was successful, or false if the loop was unmodified. Unrolling
/// can only fail when the loop's latch block is not terminated by a conditional
/// branch instruction. However, if the trip count (and multiple) are not known,
/// loop unrolling will mostly produce more code that is no faster.
///
/// TripCount is generally defined as the number of times the loop header
/// executes. UnrollLoop relaxes the definition to permit early exits: here
/// TripCount is the iteration on which control exits LatchBlock if no early
/// exits were taken. Note that UnrollLoop assumes that the loop counter test
/// terminates LatchBlock in order to remove unnecesssary instances of the
/// test. In other words, control may exit the loop prior to TripCount
/// iterations via an early branch, but control may not exit the loop from the
/// LatchBlock's terminator prior to TripCount iterations.
///
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
/// execute without exiting the loop.
///
/// The LoopInfo Analysis that is passed will be kept consistent.
///
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
/// removed from the LoopPassManager as well. LPM can also be NULL.
///
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
/// available it must also preserve those analyses.
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
bool AllowRuntime, unsigned TripMultiple,
LoopInfo *LI, LPPassManager *LPM) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
return false;
}
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock) {
DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
return false;
}
// Loops with indirectbr cannot be cloned.
if (!L->isSafeToClone()) {
DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
return false;
}
BasicBlock *Header = L->getHeader();
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
if (!BI || BI->isUnconditional()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
DEBUG(dbgs() <<
" Can't unroll; loop not terminated by a conditional branch.\n");
return false;
}
if (Header->hasAddressTaken()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
DEBUG(dbgs() <<
" Won't unroll loop: address of header block is taken.\n");
return false;
}
if (TripCount != 0)
DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
if (TripMultiple != 1)
DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
// Effectively "DCE" unrolled iterations that are beyond the tripcount
// and will never be executed.
if (TripCount != 0 && Count > TripCount)
Count = TripCount;
// Don't enter the unroll code if there is nothing to do. This way we don't
// need to support "partial unrolling by 1".
if (TripCount == 0 && Count < 2)
return false;
assert(Count > 0);
assert(TripMultiple > 0);
assert(TripCount == 0 || TripCount % TripMultiple == 0);
// Are we eliminating the loop control altogether?
bool CompletelyUnroll = Count == TripCount;
// We assume a run-time trip count if the compiler cannot
// figure out the loop trip count and the unroll-runtime
// flag is specified.
bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
return false;
// Notify ScalarEvolution that the loop will be substantially changed,
// if not outright eliminated.
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
if (SE)
SE->forgetLoop(L);
// If we know the trip count, we know the multiple...
unsigned BreakoutTrip = 0;
if (TripCount != 0) {
BreakoutTrip = TripCount % Count;
TripMultiple = 0;
} else {
// Figure out what multiple to use.
BreakoutTrip = TripMultiple =
(unsigned)GreatestCommonDivisor64(Count, TripMultiple);
}
if (CompletelyUnroll) {
DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
<< " with trip count " << TripCount << "!\n");
} else {
DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
<< " by " << Count);
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
} else if (TripMultiple != 1) {
DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
} else if (RuntimeTripCount) {
DEBUG(dbgs() << " with run-time trip count");
}
DEBUG(dbgs() << "!\n");
}
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
// For the first iteration of the loop, we should use the precloned values for
// PHI nodes. Insert associations now.
ValueToValueMapTy LastValueMap;
std::vector<PHINode*> OrigPHINode;
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
OrigPHINode.push_back(cast<PHINode>(I));
}
std::vector<BasicBlock*> Headers;
std::vector<BasicBlock*> Latches;
Headers.push_back(Header);
Latches.push_back(LatchBlock);
// The current on-the-fly SSA update requires blocks to be processed in
// reverse postorder so that LastValueMap contains the correct value at each
// exit.
LoopBlocksDFS DFS(L);
DFS.perform(LI);
// Stash the DFS iterators before adding blocks to the loop.
LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
for (unsigned It = 1; It != Count; ++It) {
std::vector<BasicBlock*> NewBlocks;
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
ValueToValueMapTy VMap;
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
Header->getParent()->getBasicBlockList().push_back(New);
// Loop over all of the PHI nodes in the block, changing them to use the
// incoming values from the previous block.
if (*BB == Header)
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
if (It > 1 && L->contains(InValI))
InVal = LastValueMap[InValI];
VMap[OrigPHINode[i]] = InVal;
New->getInstList().erase(NewPHI);
}
// Update our running map of newest clones
LastValueMap[*BB] = New;
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
VI != VE; ++VI)
LastValueMap[VI->first] = VI->second;
L->addBasicBlockToLoop(New, LI->getBase());
// Add phi entries for newly created values to all exit blocks.
for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
SI != SE; ++SI) {
if (L->contains(*SI))
continue;
for (BasicBlock::iterator BBI = (*SI)->begin();
PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
Value *Incoming = phi->getIncomingValueForBlock(*BB);
ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
if (It != LastValueMap.end())
Incoming = It->second;
phi->addIncoming(Incoming, New);
}
}
// Keep track of new headers and latches as we create them, so that
// we can insert the proper branches later.
if (*BB == Header)
Headers.push_back(New);
if (*BB == LatchBlock)
Latches.push_back(New);
NewBlocks.push_back(New);
}
// Remap all instructions in the most recent iteration
for (unsigned i = 0; i < NewBlocks.size(); ++i)
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I)
::RemapInstruction(I, LastValueMap);
}
// Loop over the PHI nodes in the original block, setting incoming values.
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *PN = OrigPHINode[i];
if (CompletelyUnroll) {
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
Header->getInstList().erase(PN);
}
else if (Count > 1) {
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
// If this value was defined in the loop, take the value defined by the
// last iteration of the loop.
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
if (L->contains(InValI))
InVal = LastValueMap[InVal];
}
assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
PN->addIncoming(InVal, Latches.back());
}
}
// Now that all the basic blocks for the unrolled iterations are in place,
// set up the branches to connect them.
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
// The original branch was replicated in each unrolled iteration.
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
// The branch destination.
unsigned j = (i + 1) % e;
BasicBlock *Dest = Headers[j];
bool NeedConditional = true;
if (RuntimeTripCount && j != 0) {
NeedConditional = false;
}
// For a complete unroll, make the last iteration end with a branch
// to the exit block.
if (CompletelyUnroll && j == 0) {
Dest = LoopExit;
NeedConditional = false;
}
// If we know the trip count or a multiple of it, we can safely use an
// unconditional branch for some iterations.
if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
NeedConditional = false;
}
if (NeedConditional) {
// Update the conditional branch's successor for the following
// iteration.
Term->setSuccessor(!ContinueOnTrue, Dest);
} else {
// Remove phi operands at this loop exit
if (Dest != LoopExit) {
BasicBlock *BB = Latches[i];
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
if (*SI == Headers[i])
continue;
for (BasicBlock::iterator BBI = (*SI)->begin();
PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
Phi->removeIncomingValue(BB, false);
}
}
}
// Replace the conditional branch with an unconditional one.
BranchInst::Create(Dest, Term);
Term->eraseFromParent();
}
}
// Merge adjacent basic blocks, if possible.
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
if (Term->isUnconditional()) {
BasicBlock *Dest = Term->getSuccessor(0);
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
}
}
// FIXME: Reconstruct dom info, because it is not preserved properly.
// Incrementally updating domtree after loop unrolling would be easy.
if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
DT->runOnFunction(*L->getHeader()->getParent());
// Simplify any new induction variables in the partially unrolled loop.
if (SE && !CompletelyUnroll) {
SmallVector<WeakVH, 16> DeadInsts;
simplifyLoopIVs(L, SE, LPM, DeadInsts);
// Aggressively clean up dead instructions that simplifyLoopIVs already
// identified. Any remaining should be cleaned up below.
while (!DeadInsts.empty())
if (Instruction *Inst =
dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
// At this point, the code is well formed. We now do a quick sweep over the
// inserted code, doing constant propagation and dead code elimination as we
// go.
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
Instruction *Inst = I++;
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
else if (Value *V = SimplifyInstruction(Inst))
if (LI->replacementPreservesLCSSAForm(Inst, V)) {
Inst->replaceAllUsesWith(V);
(*BB)->getInstList().erase(Inst);
}
}
NumCompletelyUnrolled += CompletelyUnroll;
++NumUnrolled;
// Remove the loop from the LoopPassManager if it's completely removed.
if (CompletelyUnroll && LPM != NULL)
LPM->deleteLoopFromQueue(L);
return true;
}