354 lines
12 KiB
C++
Raw Normal View History

2012-05-09 21:45:30 -07:00
// Boost string_algo library classification.hpp header file ---------------------------//
// Copyright Pavol Droba 2002-2003.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/ for updates, documentation, and revision history.
#ifndef BOOST_STRING_CLASSIFICATION_DETAIL_HPP
#define BOOST_STRING_CLASSIFICATION_DETAIL_HPP
#include <boost/algorithm/string/config.hpp>
#include <algorithm>
#include <functional>
#include <locale>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/algorithm/string/predicate_facade.hpp>
#include <boost/type_traits/remove_const.hpp>
namespace boost {
namespace algorithm {
namespace detail {
// classification functors -----------------------------------------------//
// is_classified functor
struct is_classifiedF :
public predicate_facade<is_classifiedF>
{
// Boost.ResultOf support
typedef bool result_type;
// Constructor from a locale
is_classifiedF(std::ctype_base::mask Type, std::locale const & Loc = std::locale()) :
m_Type(Type), m_Locale(Loc) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return std::use_facet< std::ctype<CharT> >(m_Locale).is( m_Type, Ch );
}
#if defined(__BORLANDC__) && (__BORLANDC__ >= 0x560) && (__BORLANDC__ <= 0x582) && !defined(_USE_OLD_RW_STL)
template<>
bool operator()( char const Ch ) const
{
return std::use_facet< std::ctype<char> >(m_Locale).is( m_Type, Ch );
}
#endif
private:
std::ctype_base::mask m_Type;
std::locale m_Locale;
};
// is_any_of functor
/*
returns true if the value is from the specified set
*/
template<typename CharT>
struct is_any_ofF :
public predicate_facade<is_any_ofF<CharT> >
{
private:
// set cannot operate on const value-type
typedef typename ::boost::remove_const<CharT>::type set_value_type;
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
template<typename RangeT>
is_any_ofF( const RangeT& Range ) : m_Size(0)
{
// Prepare storage
m_Storage.m_dynSet=0;
std::size_t Size=::boost::distance(Range);
m_Size=Size;
set_value_type* Storage=0;
if(use_fixed_storage(m_Size))
{
// Use fixed storage
Storage=&m_Storage.m_fixSet[0];
}
else
{
// Use dynamic storage
m_Storage.m_dynSet=new set_value_type[m_Size];
Storage=m_Storage.m_dynSet;
}
// Use fixed storage
::std::copy(::boost::begin(Range), ::boost::end(Range), Storage);
::std::sort(Storage, Storage+m_Size);
}
// Copy constructor
is_any_ofF(const is_any_ofF& Other) : m_Size(Other.m_Size)
{
// Prepare storage
m_Storage.m_dynSet=0;
const set_value_type* SrcStorage=0;
set_value_type* DestStorage=0;
if(use_fixed_storage(m_Size))
{
// Use fixed storage
DestStorage=&m_Storage.m_fixSet[0];
SrcStorage=&Other.m_Storage.m_fixSet[0];
}
else
{
// Use dynamic storage
m_Storage.m_dynSet=new set_value_type[m_Size];
DestStorage=m_Storage.m_dynSet;
SrcStorage=Other.m_Storage.m_dynSet;
}
// Use fixed storage
::std::memcpy(DestStorage, SrcStorage, sizeof(set_value_type)*m_Size);
}
// Destructor
~is_any_ofF()
{
if(!use_fixed_storage(m_Size) && m_Storage.m_dynSet!=0)
{
delete [] m_Storage.m_dynSet;
}
}
// Assignment
is_any_ofF& operator=(const is_any_ofF& Other)
{
// Handle self assignment
if(this==&Other) return *this;
// Prepare storage
const set_value_type* SrcStorage;
set_value_type* DestStorage;
if(use_fixed_storage(Other.m_Size))
{
// Use fixed storage
DestStorage=&m_Storage.m_fixSet[0];
SrcStorage=&Other.m_Storage.m_fixSet[0];
// Delete old storage if was present
if(!use_fixed_storage(m_Size) && m_Storage.m_dynSet!=0)
{
delete [] m_Storage.m_dynSet;
}
// Set new size
m_Size=Other.m_Size;
}
else
{
// Other uses dynamic storage
SrcStorage=Other.m_Storage.m_dynSet;
// Check what kind of storage are we using right now
if(use_fixed_storage(m_Size))
{
// Using fixed storage, allocate new
set_value_type* pTemp=new set_value_type[Other.m_Size];
DestStorage=pTemp;
m_Storage.m_dynSet=pTemp;
m_Size=Other.m_Size;
}
else
{
// Using dynamic storage, check if can reuse
if(m_Storage.m_dynSet!=0 && m_Size>=Other.m_Size && m_Size<Other.m_Size*2)
{
// Reuse the current storage
DestStorage=m_Storage.m_dynSet;
m_Size=Other.m_Size;
}
else
{
// Allocate the new one
set_value_type* pTemp=new set_value_type[Other.m_Size];
DestStorage=pTemp;
// Delete old storage if necessary
if(m_Storage.m_dynSet!=0)
{
delete [] m_Storage.m_dynSet;
}
// Store the new storage
m_Storage.m_dynSet=pTemp;
// Set new size
m_Size=Other.m_Size;
}
}
}
// Copy the data
::std::memcpy(DestStorage, SrcStorage, sizeof(set_value_type)*m_Size);
return *this;
}
// Operation
template<typename Char2T>
bool operator()( Char2T Ch ) const
{
const set_value_type* Storage=
(use_fixed_storage(m_Size))
? &m_Storage.m_fixSet[0]
: m_Storage.m_dynSet;
return ::std::binary_search(Storage, Storage+m_Size, Ch);
}
private:
// check if the size is eligible for fixed storage
static bool use_fixed_storage(std::size_t size)
{
return size<=sizeof(set_value_type*)*2;
}
private:
// storage
// The actual used storage is selected on the type
union
{
set_value_type* m_dynSet;
set_value_type m_fixSet[sizeof(set_value_type*)*2];
}
m_Storage;
// storage size
::std::size_t m_Size;
};
// is_from_range functor
/*
returns true if the value is from the specified range.
(i.e. x>=From && x>=To)
*/
template<typename CharT>
struct is_from_rangeF :
public predicate_facade< is_from_rangeF<CharT> >
{
// Boost.ResultOf support
typedef bool result_type;
// Constructor
is_from_rangeF( CharT From, CharT To ) : m_From(From), m_To(To) {}
// Operation
template<typename Char2T>
bool operator()( Char2T Ch ) const
{
return ( m_From <= Ch ) && ( Ch <= m_To );
}
private:
CharT m_From;
CharT m_To;
};
// class_and composition predicate
template<typename Pred1T, typename Pred2T>
struct pred_andF :
public predicate_facade< pred_andF<Pred1T,Pred2T> >
{
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
pred_andF( Pred1T Pred1, Pred2T Pred2 ) :
m_Pred1(Pred1), m_Pred2(Pred2) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return m_Pred1(Ch) && m_Pred2(Ch);
}
private:
Pred1T m_Pred1;
Pred2T m_Pred2;
};
// class_or composition predicate
template<typename Pred1T, typename Pred2T>
struct pred_orF :
public predicate_facade< pred_orF<Pred1T,Pred2T> >
{
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
pred_orF( Pred1T Pred1, Pred2T Pred2 ) :
m_Pred1(Pred1), m_Pred2(Pred2) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return m_Pred1(Ch) || m_Pred2(Ch);
}
private:
Pred1T m_Pred1;
Pred2T m_Pred2;
};
// class_not composition predicate
template< typename PredT >
struct pred_notF :
public predicate_facade< pred_notF<PredT> >
{
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
pred_notF( PredT Pred ) : m_Pred(Pred) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return !m_Pred(Ch);
}
private:
PredT m_Pred;
};
} // namespace detail
} // namespace algorithm
} // namespace boost
#endif // BOOST_STRING_CLASSIFICATION_DETAIL_HPP