// echo ALGORITHM.adoc | entr sh -c "podman run --rm -it --network none -v "${PWD}:/documents/" asciidoctor/docker-asciidoctor asciidoctor -r asciidoctor-mathematical -a mathematical-format=svg ALGORITHM.adoc; printf 'Done ($(date -Isecond))\n'" :toc: :nofooter: :!webfonts: :source-highlighter: rouge :rouge-style: molokai // :stem: :sectlinks: = Algorithm == Encoding [%header,cols="2m,5a"] |=== |Step |Code |(lat, lon) |Given |(x, y, z)/Point | [source,rust] ---- fn lat_lon_to_xyz(lat: f64, lon: f64) -> (f64, f64, f64) { let x = cos(lon) * cos(lat); let y = sin(lon) * cos(lat); let z = sin(lat); (x, y, z) } ---- |(face, u, v) | [source,rust] ---- fn face(x: f64, y: f64, z: f64) -> u8 { let (x_abs, y_abs, z_abs) = (x.abs(), y.abs(), z.abs()); let mut id = 0; let mut value = x; if y_abs > x_abs { id = 1; value = y; } if z_abs > value.abs() { id = 2; value = z; } if value < 0. { id += 3; } id } fn xyz_to_fuv(x: f64, y: f64, z: f64) -> (u8, f64, f64) { let f: u8 = face(x, y, z); let (u, v) = match face { 0 => (y / x, z / x), 1 => (-x / y, z / y), 2 => (-x / z, -y / z), 3 => (z / x, y / x), 4 => (z / y, -x / y), 5 => (-y / z, -x / z), _ => panic!("Face {f} out of bounds"), }; (f, u, v) } ---- |(face, s, t) | [source,rust] ---- pub fn u_or_v_to_s_or_t(u_or_v: f64) -> f64 { if u_or_v >= 0.0 { 0.5 * (1.0 + 3.0 * u_or_v).sqrt() } else { 1.0 - 0.5 * (1.0 - 3.0 * u_or_v).sqrt() } } fn fuv_to_fst(f: u8, u: u64, v: u64) -> (u8, f64, f64) { let s = u_or_v_to_s_or_t(u); let t = u_or_v_to_s_or_t(v); (f, s, t) } ---- |(face, i, j) | [source,rust] ---- fn st_to_ij(s: f64) -> u32 { clamp((MAX_SIZE as f64 * s).floor() as u32, 0, MAX_SIZE_I32 - 1) } fn fst_to_fij(f: u8, s: u64, t: u64) -> (u8, u32, u32) { let i = st_to_ij(s); let j = st_to_ij(t); (f, i, j) } ---- |(cellid) | [source,go] ---- func cellIDFromFaceIJ(f, i, j int) CellID { // Note that this value gets shifted one bit to the left at the end // of the function. n := uint64(f) << (posBits - 1) // Alternating faces have opposite Hilbert curve orientations; this // is necessary in order for all faces to have a right-handed // coordinate system. bits := f & swapMask // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert // curve position. The lookup table transforms a 10-bit key of the form // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and // Hilbert curve orientation respectively. for k := 7; k >= 0; k-- { mask := (1 << lookupBits) - 1 bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2) bits += ((j >> uint(k*lookupBits)) & mask) << 2 bits = lookupPos[bits] n \|= uint64(bits>>2) << (uint(k) * 2 * lookupBits) bits &= (swapMask \| invertMask) } return CellID(n*2 + 1) } ---- [source,rust] ---- fn fij_to_cellid(f: u8, s: u32, t: u32) -> u64 { let mut n = u64::from(f) << (POS_BITS - 1); let mut bits = u32::from(f & SWAP_MASK); let mut k = 7; let mask = (1 << LOOKUP_BITS) - 1; loop { bits += ((i >> (k * LOOKUP_BITS)) & mask) << (LOOKUP_BITS + 2); bits += ((j >> (k * LOOKUP_BITS)) & mask) << 2; bits = LOOKUP_POS[bits as usize] as u32; n \|= ((bits >> 2) as u64) << ((k * 2 * LOOKUP_BITS) as u64); bits &= u32::from(SWAP_MASK \| INVERT_MASK); if k == 0 { break; } k -= 1; } n * 2 + 1 } ---- |(number, word1, word2, word3) | |=== == Decoding [%header,cols="m,a,"] |=== |Step |Formula |Description |(number, word1, word2, word3) |Given | |(cellid) | | |(face, i, j) | | |(face, s, t) | | |(face, u, v) | | |(x, y, z)/Point | | |(lat, lon) | | |=== ++++ ++++