Start work on complex types

This commit is contained in:
Austen Adler 2021-05-30 16:31:13 -04:00
parent 4b0e6e7e10
commit 445ae3f535
6 changed files with 1339 additions and 963 deletions

File diff suppressed because it is too large Load Diff

336
src/calc/entries.rs Normal file
View File

@ -0,0 +1,336 @@
// use super::operations::CalculatorStateChange;
use super::errors::CalculatorResult;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Copy, Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct Number {
pub value: f64,
}
// #[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
// pub struct Vector {
// pub value: Vec<Number>,
// }
#[derive(Copy, Clone, PartialEq, Debug, Serialize, Deserialize)]
pub enum Entry {
Number(Number),
// Vector(Vector),
// Matrix(Vec<Vec<f64>>),
}
impl CalculatorEntry for Entry {
fn is_valid(&self) -> bool {
match self {
Entry::Number(number) => number.is_valid(),
// Entry::Vector(vector) => vector.add(),
}
}
fn add(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.add(arg),
// Entry::Vector(vector) => vector.add(),
}
}
fn sub(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.sub(arg),
// Entry::Vector(vector) => vector.sub(),
}
}
fn mul(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.mul(arg),
// Entry::Vector(vector) => vector.mul(),
}
}
fn div(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.div(arg),
// Entry::Vector(vector) => vector.div(),
}
}
fn int_divide(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.int_divide(arg),
// Entry::Vector(vector) => vector.int_divide(),
}
}
fn negate(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.negate(),
// Entry::Vector(vector) => vector.negate(),
}
}
fn abs(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.abs(),
// Entry::Vector(vector) => vector.abs(),
}
}
fn inverse(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.inverse(),
// Entry::Vector(vector) => vector.inverse(),
}
}
fn modulo(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.modulo(arg),
// Entry::Vector(vector) => vector.modulo(),
}
}
fn sin(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.sin(),
// Entry::Vector(vector) => vector.sin(),
}
}
fn cos(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.cos(),
// Entry::Vector(vector) => vector.cos(),
}
}
fn tan(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.tan(),
// Entry::Vector(vector) => vector.tan(),
}
}
fn asin(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.asin(),
// Entry::Vector(vector) => vector.asin(),
}
}
fn acos(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.acos(),
// Entry::Vector(vector) => vector.acos(),
}
}
fn atan(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.atan(),
// Entry::Vector(vector) => vector.atan(),
}
}
fn sqrt(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.sqrt(),
// Entry::Vector(vector) => vector.sqrt(),
}
}
fn log(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.log(),
// Entry::Vector(vector) => vector.log(),
}
}
fn ln(&self) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.ln(),
// Entry::Vector(vector) => vector.ln(),
}
}
fn pow(&self, arg: Entry) -> CalculatorResult<Entry> {
match self {
Entry::Number(number) => number.pow(arg),
// Entry::Vector(vector) => vector.pow(),
}
}
}
impl CalculatorEntry for Number {
fn is_valid(&self) -> bool {
!self.value.is_nan() && !self.value.is_infinite()
}
fn add(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64 + self.value,
}))
}
fn sub(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64 - self.value,
}))
}
fn mul(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64 * self.value,
}))
}
fn div(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64 / self.value,
}))
}
fn int_divide(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64.div_euclid(self.value),
}))
}
fn negate(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: -self.value }))
}
fn abs(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: self.value.abs(),
}))
}
fn inverse(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: self.value.recip(),
}))
}
fn modulo(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64 % self.value,
}))
}
fn sin(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: self.value }))
// match self.angle_mode {
// CalculatorAngleMode::Degrees => {
// |self.value: f64| a.to_radians().sin()
// }
// CalculatorAngleMode::Radians => |a: f64| a.sin(),
// CalculatorAngleMode::Grads => |a: f64| {
// (a * std::f64::consts::PI / 200.0).sin()
// },
// }
}
fn cos(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: self.value }))
// match self.angle_mode {
// CalculatorAngleMode::Degrees => {
// |self.value: f64| a.to_radians().cos()
// }
// CalculatorAngleMode::Radians => |a: f64| a.cos(),
// CalculatorAngleMode::Grads => |a: f64| {
// (a * std::f64::consts::PI / 200.0).cos()
// },
// }
}
fn tan(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: self.value }))
// match self.angle_mode {
// CalculatorAngleMode::Degrees => {
// |self.value: f64| a.to_radians().tan()
// }
// CalculatorAngleMode::Radians => |a: f64| a.tan(),
// CalculatorAngleMode::Grads => |a: f64| {
// (a * std::f64::consts::PI / 200.0).tan()
// },
// }
}
fn asin(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: self.value }))
// match self.angle_mode {
// CalculatorAngleMode::Degrees => {
// |self.value: f64| a.asin().to_degrees()
// }
// CalculatorAngleMode::Radians => |a: f64| a.asin(),
// CalculatorAngleMode::Grads => |a: f64| {
// a.asin() * std::f64::consts::PI / 200.0
// },
// }
}
fn acos(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: self.value }))
// match self.angle_mode {
// CalculatorAngleMode::Degrees => {
// |self.value: f64| a.acos().to_degrees()
// }
// CalculatorAngleMode::Radians => |a: f64| a.acos(),
// CalculatorAngleMode::Grads => |a: f64| {
// a.acos() * std::f64::consts::PI / 200.0
// },
// }
}
fn atan(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number { value: self.value }))
// match self.angle_mode {
// CalculatorAngleMode::Degrees => {
// |self.value: f64| a.atan().to_degrees()
// }
// CalculatorAngleMode::Radians => |a: f64| a.atan(),
// CalculatorAngleMode::Grads => |a: f64| {
// a.atan() * std::f64::consts::PI / 200.0
// },
// }
}
fn sqrt(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: self.value.sqrt(),
}))
}
fn log(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: self.value.log10(),
}))
}
fn ln(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: self.value.ln(),
}))
}
fn pow(&self, _arg: Entry) -> CalculatorResult<Entry> {
Ok(Entry::Number(Number {
value: 1.0f64.powf(self.value),
}))
}
// fn e(&self, _arg: Entry) -> CalculatorResult<Entry> {
// Ok(Entry::Number(Number { value:1.0f64 * 10.0_f64.powf(self.value) }))
// }
}
pub trait CalculatorEntry {
fn is_valid(&self) -> bool;
fn add(&self, arg: Entry) -> CalculatorResult<Entry>;
fn sub(&self, arg: Entry) -> CalculatorResult<Entry>;
fn mul(&self, arg: Entry) -> CalculatorResult<Entry>;
fn div(&self, arg: Entry) -> CalculatorResult<Entry>;
fn int_divide(&self, arg: Entry) -> CalculatorResult<Entry>;
fn negate(&self) -> CalculatorResult<Entry>;
fn abs(&self) -> CalculatorResult<Entry>;
fn inverse(&self) -> CalculatorResult<Entry>;
fn modulo(&self, arg: Entry) -> CalculatorResult<Entry>;
fn sin(&self) -> CalculatorResult<Entry>;
fn cos(&self) -> CalculatorResult<Entry>;
fn tan(&self) -> CalculatorResult<Entry>;
fn asin(&self) -> CalculatorResult<Entry>;
fn acos(&self) -> CalculatorResult<Entry>;
fn atan(&self) -> CalculatorResult<Entry>;
fn sqrt(&self) -> CalculatorResult<Entry>;
fn log(&self) -> CalculatorResult<Entry>;
fn ln(&self) -> CalculatorResult<Entry>;
fn pow(&self, arg: Entry) -> CalculatorResult<Entry>;
// fn e(&self, arg: Entry) -> CalculatorResult<Entry>;
}
impl fmt::Display for Entry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Number(Number { value }) => write!(f, "{}", value),
}
}
}
impl fmt::Display for Number {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self)
}
}
// impl fmt::Display for Vector {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match self {
// Self::Degrees => write!(f, "DEG"),
// Self::Radians => write!(f, "RAD"),
// Self::Grads => write!(f, "GRD"),
// }
// }
// }

View File

@ -7,65 +7,68 @@ pub type CalculatorResult<T> = Result<T, CalculatorError>;
/// All possible errors the calculator can throw
#[derive(Debug)]
pub enum CalculatorError {
/// Divide by zero, log(-1), etc
ArithmeticError,
/// Not enough stck entries for operation
NotEnoughStackEntries,
/// Thrown when an undo or redo cannot be performed
CorruptStateChange(String),
/// Cannot undo or redo
EmptyHistory(String),
/// Constant undefined
NoSuchConstant(char),
/// Register undefined
NoSuchRegister(char),
/// Macro undefined
NoSuchMacro(char),
/// Operator undefined
NoSuchOperator(char),
/// Setting undefined
NoSuchSetting(char),
/// Macro calls itself
RecursiveMacro(char),
/// Could not convert l to number
ParseError,
/// Requested precision is too high
PrecisionTooHigh,
/// Config serialization error
SaveError(Option<ConfyError>),
/// Config deserialization error
LoadError(Option<ConfyError>),
/// Divide by zero, log(-1), etc
ArithmeticError,
/// Not enough stck entries for operation
NotEnoughStackEntries,
/// Requested type does not match target type
TypeMismatch,
/// Thrown when an undo or redo cannot be performed
CorruptStateChange(String),
/// Cannot undo or redo
EmptyHistory(String),
/// Constant undefined
NoSuchConstant(char),
/// Register undefined
NoSuchRegister(char),
/// Macro undefined
NoSuchMacro(char),
/// Operator undefined
NoSuchOperator(char),
/// Setting undefined
NoSuchSetting(char),
/// Macro calls itself
RecursiveMacro(char),
/// Could not convert l to number
ParseError,
/// Requested precision is too high
PrecisionTooHigh,
/// Config serialization error
SaveError(Option<ConfyError>),
/// Config deserialization error
LoadError(Option<ConfyError>),
}
impl error::Error for CalculatorError {}
impl fmt::Display for CalculatorError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::ArithmeticError => write!(f, "Arithmetic Error"),
Self::NotEnoughStackEntries => write!(f, "Not enough items in the stack"),
Self::CorruptStateChange(msg) => {
write!(f, "Corrupt state change: {}", msg)
}
Self::EmptyHistory(msg) => write!(f, "No history to {}", msg),
Self::NoSuchOperator(c) => write!(f, "No such operator '{}'", c),
Self::NoSuchConstant(c) => write!(f, "No such constant '{}'", c),
Self::NoSuchRegister(c) => write!(f, "No such register '{}'", c),
Self::NoSuchMacro(c) => write!(f, "No such macro '{}'", c),
Self::NoSuchSetting(c) => write!(f, "No such setting '{}'", c),
Self::RecursiveMacro(c) => write!(f, "Recursive macro '{}'", c),
Self::ParseError => write!(f, "Parse error"),
Self::PrecisionTooHigh => write!(f, "Precision too high"),
Self::SaveError(None) => write!(f, "Could not save"),
Self::SaveError(Some(ConfyError::SerializeTomlError(e))) => {
write!(f, "Save serialization error: {}", e)
}
Self::SaveError(Some(e)) => write!(f, "Could not save: {}", e),
Self::LoadError(None) => write!(f, "Could not load"),
Self::LoadError(Some(ConfyError::SerializeTomlError(e))) => {
write!(f, "Load serialization error: {}", e)
}
Self::LoadError(Some(e)) => write!(f, "Could not load: {}", e),
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::ArithmeticError => write!(f, "Arithmetic Error"),
Self::NotEnoughStackEntries => write!(f, "Not enough items in the stack"),
Self::TypeMismatch => write!(f, "Type mismatch"),
Self::CorruptStateChange(msg) => {
write!(f, "Corrupt state change: {}", msg)
}
Self::EmptyHistory(msg) => write!(f, "No history to {}", msg),
Self::NoSuchOperator(c) => write!(f, "No such operator '{}'", c),
Self::NoSuchConstant(c) => write!(f, "No such constant '{}'", c),
Self::NoSuchRegister(c) => write!(f, "No such register '{}'", c),
Self::NoSuchMacro(c) => write!(f, "No such macro '{}'", c),
Self::NoSuchSetting(c) => write!(f, "No such setting '{}'", c),
Self::RecursiveMacro(c) => write!(f, "Recursive macro '{}'", c),
Self::ParseError => write!(f, "Parse error"),
Self::PrecisionTooHigh => write!(f, "Precision too high"),
Self::SaveError(None) => write!(f, "Could not save"),
Self::SaveError(Some(ConfyError::SerializeTomlError(e))) => {
write!(f, "Save serialization error: {}", e)
}
Self::SaveError(Some(e)) => write!(f, "Could not save: {}", e),
Self::LoadError(None) => write!(f, "Could not load"),
Self::LoadError(Some(ConfyError::SerializeTomlError(e))) => {
write!(f, "Load serialization error: {}", e)
}
Self::LoadError(Some(e)) => write!(f, "Could not load: {}", e),
}
}
}
}

View File

@ -1,3 +1,4 @@
use super::entries::Entry;
use serde::{Deserialize, Serialize};
/// Operations that can be sent to the calculator such as +, -, or undo
#[derive(PartialEq, Debug, Serialize, Deserialize)]
@ -12,9 +13,6 @@ pub enum CalculatorOperation {
Modulo,
IntegerDivide,
//Remainder,
Drop,
Dup,
Swap,
Sin,
Cos,
Tan,
@ -28,7 +26,9 @@ pub enum CalculatorOperation {
// Factorial,
Log,
Ln,
E,
Drop,
Dup,
Swap,
Macro(MacroState),
}
@ -45,9 +45,9 @@ pub enum OpArgs {
/// This is a macro start and end noop
Macro(MacroState),
/// Operation takes 1 argument, ex: sqrt or negate
Unary(f64),
Unary(Entry),
/// Operation takes 2 arguments, ex: + or -
Binary([f64; 2]),
Binary([Entry; 2]),
/// Operation takes no arguments, ex: push
None,
}

View File

@ -1,3 +1,4 @@
use super::entries::Entry;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::fmt;
@ -5,38 +6,38 @@ use std::fmt;
/// The calculator state
#[derive(Debug, Serialize, Deserialize)]
pub enum CalculatorState {
Normal,
WaitingForConstant,
WaitingForMacro,
WaitingForRegister(RegisterState),
WaitingForSetting,
Normal,
WaitingForConstant,
WaitingForMacro,
WaitingForRegister(RegisterState),
WaitingForSetting,
}
impl Default for CalculatorState {
fn default() -> Self {
Self::Normal
}
fn default() -> Self {
Self::Normal
}
}
/// The state of the requested register operation
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub enum RegisterState {
Save,
Load,
Save,
Load,
}
/// One calculator constant containing a message and value
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct CalculatorConstant {
pub help: String,
pub value: f64,
pub help: String,
pub value: Entry,
}
/// One calculator macro containing a messsage and value
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct CalculatorMacro {
pub help: String,
pub value: String,
pub help: String,
pub value: String,
}
/// Map of chars to constants
@ -46,264 +47,269 @@ pub type CalculatorConstants = HashMap<char, CalculatorConstant>;
pub type CalculatorMacros = HashMap<char, CalculatorMacro>;
/// Map of chars to registers
pub type CalculatorRegisters = HashMap<char, f64>;
pub type CalculatorRegisters = HashMap<char, Entry>;
/// Possible calculator angle modes
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "angle_mode")]
pub enum CalculatorAngleMode {
Degrees,
Radians,
Grads,
Degrees,
Radians,
Grads,
}
impl Default for CalculatorAngleMode {
fn default() -> Self {
Self::Degrees
}
fn default() -> Self {
Self::Degrees
}
}
impl fmt::Display for CalculatorAngleMode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Degrees => write!(f, "DEG"),
Self::Radians => write!(f, "RAD"),
Self::Grads => write!(f, "GRD"),
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Degrees => write!(f, "DEG"),
Self::Radians => write!(f, "RAD"),
Self::Grads => write!(f, "GRD"),
}
}
}
}
/// The calculator digit display mode
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "display_mode")]
pub enum CalculatorDisplayMode {
/// Rust's default f64 format
Default,
/// Thousands separator
Separated { separator: char },
/// Aligned scientific format
Scientific { precision: usize },
/// Scientific format, chunked by groups of 3
///
/// Example: 1 E+5 or 100E+5
Engineering { precision: usize },
/// Fixed precision
Fixed { precision: usize },
/// Rust's default Entry format
Default,
/// Thousands separator
Separated { separator: char },
/// Aligned scientific format
Scientific { precision: usize },
/// Scientific format, chunked by groups of 3
///
/// Example: 1 E+5 or 100E+5
Engineering { precision: usize },
/// Fixed precision
Fixed { precision: usize },
}
impl fmt::Display for CalculatorDisplayMode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Default => write!(f, "DEF"),
Self::Separated { separator } => write!(f, "SEP({})", separator),
Self::Scientific { precision } => write!(f, "SCI({})", precision),
Self::Engineering { precision } => write!(f, "ENG({})", precision),
Self::Fixed { precision } => write!(f, "FIX({})", precision),
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Default => write!(f, "DEF"),
Self::Separated { separator } => write!(f, "SEP({})", separator),
Self::Scientific { precision } => write!(f, "SCI({})", precision),
Self::Engineering { precision } => write!(f, "ENG({})", precision),
Self::Fixed { precision } => write!(f, "FIX({})", precision),
}
}
}
}
impl Default for CalculatorDisplayMode {
fn default() -> Self {
Self::Default
}
fn default() -> Self {
Self::Default
}
}
impl CalculatorDisplayMode {
pub fn format_number(&self, number: f64) -> String {
match self {
Self::Default => format!("{}", number),
Self::Separated { separator } => Self::separated(number, *separator),
Self::Scientific { precision } => Self::scientific(number, *precision),
Self::Engineering { precision } => Self::engineering(number, *precision),
Self::Fixed { precision } => {
format!("{:0>.precision$}", number, precision = precision)
}
pub fn format_number(&self, number: &Entry) -> String {
match self {
Self::Default => format!("{}", number),
Self::Separated { separator } => Self::separated(number, *separator),
Self::Scientific { precision } => Self::scientific(number, *precision),
Self::Engineering { precision } => Self::engineering(number, *precision),
Self::Fixed { precision } => {
format!("{:0>.precision$}", number, precision = precision)
}
}
}
}
// Based on https://stackoverflow.com/a/65266882
fn scientific(f: f64, precision: usize) -> String {
let mut ret = format!("{:.precision$E}", f, precision = precision);
let exp = ret.split_off(ret.find('E').unwrap_or(0));
let (exp_sign, exp) = exp
.strip_prefix("E-")
.map_or_else(|| ('+', &exp[1..]), |stripped| ('-', stripped));
// Based on https://stackoverflow.com/a/65266882
fn scientific(_f: &Entry, _precision: usize) -> String {
// TODO
String::from("TODO")
// let mut ret = format!("{:.precision$E}", f, precision = precision);
// let exp = ret.split_off(ret.find('E').unwrap_or(0));
// let (exp_sign, exp) = exp
// .strip_prefix("E-")
// .map_or_else(|| ('+', &exp[1..]), |stripped| ('-', stripped));
let sign = if ret.starts_with('-') { "" } else { " " };
format!("{}{} E{}{:0>pad$}", sign, ret, exp_sign, exp, pad = 2)
}
fn engineering(f: f64, precision: usize) -> String {
// Format the string so the first digit is always in the first column, and remove '.'. Requested precision + 2 to account for using 1, 2, or 3 digits for the whole portion of the string
// 1,000 => 1000E3
let all = format!(" {:.precision$E}", f, precision = precision)
// Remove . since it can be moved
.replacen(".", "", 1)
// Add 00E before E here so the length is enough for slicing below
.replacen("E", "00E", 1);
// Extract mantissa and the string representation of the exponent. Unwrap should be safe as formatter will insert E
// 1000E3 => (1000, E3)
let (num_str, exp_str) = all.split_at(all.find('E').unwrap());
// Extract the exponent as an isize. This should always be true because f64 max will be ~400
// E3 => 3 as isize
let exp = exp_str[1..].parse::<isize>().unwrap();
// Sign of the exponent. If string representation starts with E-, then negative
let display_exp_sign = if exp_str.strip_prefix("E-").is_some() {
'-'
} else {
'+'
};
// The exponent to display. Always a multiple of 3 in engineering mode. Always positive because sign is added with display_exp_sign above
// 100 => 0, 1000 => 3, .1 => 3 (but will show as -3)
let display_exp = (exp.div_euclid(3) * 3).abs();
// Number of whole digits. Always 1, 2, or 3 depending on exponent divisibility
let num_whole_digits = exp.rem_euclid(3) as usize + 1;
// If this is a negative number, strip off the added space, otherwise keep the space (and next digit)
let num_str = if num_str.strip_prefix(" -").is_some() {
&num_str[1..]
} else {
num_str
};
// Whole portion of number. Slice is safe because the num_whole_digits is always 3 and the num_str will always have length >= 3 since precision in all=2 (+original whole digit)
// Original number is 1,000 => whole will be 1, if original is 0.01, whole will be 10
let whole = &num_str[0..=num_whole_digits];
// Decimal portion of the number. Sliced from the number of whole digits to the *requested* precision. Precision generated in all will be requested precision + 2
let decimal = &num_str[(num_whole_digits + 1)..=(precision + num_whole_digits)];
// Right align whole portion, always have decimal point
format!(
"{: >4}.{} E{}{:0>pad$}",
// display_sign,
whole,
decimal,
display_exp_sign,
display_exp,
pad = 2
)
}
fn separated(f: f64, sep: char) -> String {
let mut ret = f.to_string();
let start = if ret.starts_with('-') { 1 } else { 0 };
let end = ret.find('.').unwrap_or_else(|| ret.len());
for i in 0..((end - start - 1).div_euclid(3)) {
ret.insert(end - (i + 1) * 3, sep);
// let sign = if ret.starts_with('-') { "" } else { " " };
// format!("{}{} E{}{:0>pad$}", sign, ret, exp_sign, exp, pad = 2)
}
fn engineering(_f: &Entry, _precision: usize) -> String {
// TODO
String::from("TODO")
/*// Format the string so the first digit is always in the first column, and remove '.'. Requested precision + 2 to account for using 1, 2, or 3 digits for the whole portion of the string
// 1,000 => 1000E3
let all = format!(" {:.precision$E}", f, precision = precision)
// Remove . since it can be moved
.replacen(".", "", 1)
// Add 00E before E here so the length is enough for slicing below
.replacen("E", "00E", 1);
// Extract mantissa and the string representation of the exponent. Unwrap should be safe as formatter will insert E
// 1000E3 => (1000, E3)
let (num_str, exp_str) = all.split_at(all.find('E').unwrap());
// Extract the exponent as an isize. This should always be true because Entry max will be ~400
// E3 => 3 as isize
let exp = exp_str[1..].parse::<isize>().unwrap();
// Sign of the exponent. If string representation starts with E-, then negative
let display_exp_sign = if exp_str.strip_prefix("E-").is_some() {
'-'
} else {
'+'
};
// The exponent to display. Always a multiple of 3 in engineering mode. Always positive because sign is added with display_exp_sign above
// 100 => 0, 1000 => 3, .1 => 3 (but will show as -3)
let display_exp = (exp.div_euclid(3) * 3).abs();
// Number of whole digits. Always 1, 2, or 3 depending on exponent divisibility
let num_whole_digits = exp.rem_euclid(3) as usize + 1;
// If this is a negative number, strip off the added space, otherwise keep the space (and next digit)
let num_str = if num_str.strip_prefix(" -").is_some() {
&num_str[1..]
} else {
num_str
};
// Whole portion of number. Slice is safe because the num_whole_digits is always 3 and the num_str will always have length >= 3 since precision in all=2 (+original whole digit)
// Original number is 1,000 => whole will be 1, if original is 0.01, whole will be 10
let whole = &num_str[0..=num_whole_digits];
// Decimal portion of the number. Sliced from the number of whole digits to the *requested* precision. Precision generated in all will be requested precision + 2
let decimal = &num_str[(num_whole_digits + 1)..=(precision + num_whole_digits)];
// Right align whole portion, always have decimal point
format!(
"{: >4}.{} E{}{:0>pad$}",
// display_sign,
whole,
decimal,
display_exp_sign,
display_exp,
pad = 2
)
*/
}
fn separated(f: &Entry, sep: char) -> String {
let mut ret = f.to_string();
let start = if ret.starts_with('-') { 1 } else { 0 };
let end = ret.find('.').unwrap_or_else(|| ret.len());
for i in 0..((end - start - 1).div_euclid(3)) {
ret.insert(end - (i + 1) * 3, sep);
}
ret
}
ret
}
}
/// Left or right calculator alignment
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum CalculatorAlignment {
Right,
Left,
Right,
Left,
}
impl Default for CalculatorAlignment {
fn default() -> Self {
Self::Left
}
fn default() -> Self {
Self::Left
}
}
impl fmt::Display for CalculatorAlignment {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Left => write!(f, "L"),
Self::Right => write!(f, "R"),
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Left => write!(f, "L"),
Self::Right => write!(f, "R"),
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_scientific() {
for (f, precision, s) in vec![
// Basic
(1.0, 0, " 1 E+00"),
(-1.0, 0, "-1 E+00"),
(100.0, 0, " 1 E+02"),
(0.1, 0, " 1 E-01"),
(0.01, 0, " 1 E-02"),
(-0.1, 0, "-1 E-01"),
// i
(1.0, 0, " 1 E+00"),
// Precision
(-0.123456789, 3, "-1.235 E-01"),
(-0.123456789, 2, "-1.23 E-01"),
(-0.123456789, 2, "-1.23 E-01"),
(-1e99, 2, "-1.00 E+99"),
(-1e100, 2, "-1.00 E+100"),
// Rounding
(0.5, 2, " 5.00 E-01"),
(0.5, 1, " 5.0 E-01"),
(0.5, 0, " 5 E-01"),
(1.5, 2, " 1.50 E+00"),
(1.5, 1, " 1.5 E+00"),
(1.5, 0, " 2 E+00"),
] {
assert_eq!(
CalculatorDisplayMode::Scientific { precision }.format_number(f),
s
);
use super::*;
#[test]
fn test_scientific() {
for (f, precision, s) in vec![
// Basic
(1.0, 0, " 1 E+00"),
(-1.0, 0, "-1 E+00"),
(100.0, 0, " 1 E+02"),
(0.1, 0, " 1 E-01"),
(0.01, 0, " 1 E-02"),
(-0.1, 0, "-1 E-01"),
// i
(1.0, 0, " 1 E+00"),
// Precision
(-0.123_456_789, 3, "-1.235 E-01"),
(-0.123_456_789, 2, "-1.23 E-01"),
(-0.123_456_789, 2, "-1.23 E-01"),
(-1e99, 2, "-1.00 E+99"),
(-1e100, 2, "-1.00 E+100"),
// Rounding
(0.5, 2, " 5.00 E-01"),
(0.5, 1, " 5.0 E-01"),
(0.5, 0, " 5 E-01"),
(1.5, 2, " 1.50 E+00"),
(1.5, 1, " 1.5 E+00"),
(1.5, 0, " 2 E+00"),
] {
assert_eq!(
CalculatorDisplayMode::Scientific { precision }.format_number(f),
s
);
}
}
}
#[test]
fn test_separated() {
for (f, separator, s) in vec![
(100.0, ',', "100"),
(100.0, ',', "100"),
(-100.0, ',', "-100"),
(1_000.0, ',', "1,000"),
(-1_000.0, ',', "-1,000"),
(10_000.0, ',', "10,000"),
(-10_000.0, ',', "-10,000"),
(100_000.0, ',', "100,000"),
(-100_000.0, ',', "-100,000"),
(1_000_000.0, ',', "1,000,000"),
(-1_000_000.0, ',', "-1,000,000"),
(1_000_000.123456789, ',', "1,000,000.123456789"),
(-1_000_000.123456789, ',', "-1,000,000.123456789"),
(1_000_000.123456789, ' ', "1 000 000.123456789"),
(1_000_000.123456789, ' ', "1 000 000.123456789"),
] {
assert_eq!(
CalculatorDisplayMode::Separated { separator }.format_number(f),
s
);
#[test]
fn test_separated() {
for (f, separator, s) in vec![
(100.0, ',', "100"),
(100.0, ',', "100"),
(-100.0, ',', "-100"),
(1_000.0, ',', "1,000"),
(-1_000.0, ',', "-1,000"),
(10_000.0, ',', "10,000"),
(-10_000.0, ',', "-10,000"),
(100_000.0, ',', "100,000"),
(-100_000.0, ',', "-100,000"),
(1_000_000.0, ',', "1,000,000"),
(-1_000_000.0, ',', "-1,000,000"),
(1_000_000.123_456_789, ',', "1,000,000.123456789"),
(-1_000_000.123_456_789, ',', "-1,000,000.123456789"),
(1_000_000.123_456_789, ' ', "1 000 000.123456789"),
(1_000_000.123_456_789, ' ', "1 000 000.123456789"),
] {
assert_eq!(
CalculatorDisplayMode::Separated { separator }.format_number(f),
s
);
}
}
}
#[test]
fn test_engineering() {
for (f, precision, s) in vec![
(100.0, 3, " 100.000 E+00"),
(100.0, 3, " 100.000 E+00"),
(-100.0, 3, "-100.000 E+00"),
(100.0, 0, " 100. E+00"),
(-100.0, 0, "-100. E+00"),
(0.1, 2, " 100.00 E-03"),
(0.01, 2, " 10.00 E-03"),
(0.001, 2, " 1.00 E-03"),
(0.0001, 2, " 100.00 E-06"),
// Rounding
(0.5, 2, " 500.00 E-03"),
(0.5, 1, " 500.0 E-03"),
(0.5, 0, " 500. E-03"),
(1.5, 2, " 1.50 E+00"),
(1.5, 1, " 1.5 E+00"),
(1.5, 0, " 2. E+00"),
] {
assert_eq!(
CalculatorDisplayMode::Engineering { precision }.format_number(f),
s
);
#[test]
fn test_engineering() {
for (f, precision, s) in vec![
(100.0, 3, " 100.000 E+00"),
(100.0, 3, " 100.000 E+00"),
(-100.0, 3, "-100.000 E+00"),
(100.0, 0, " 100. E+00"),
(-100.0, 0, "-100. E+00"),
(0.1, 2, " 100.00 E-03"),
(0.01, 2, " 10.00 E-03"),
(0.001, 2, " 1.00 E-03"),
(0.0001, 2, " 100.00 E-06"),
// Rounding
(0.5, 2, " 500.00 E-03"),
(0.5, 1, " 500.0 E-03"),
(0.5, 0, " 500. E-03"),
(1.5, 2, " 1.50 E+00"),
(1.5, 1, " 1.5 E+00"),
(1.5, 0, " 2. E+00"),
] {
assert_eq!(
CalculatorDisplayMode::Engineering { precision }.format_number(f),
s
);
}
}
}
}

View File

@ -113,7 +113,7 @@ impl App {
"{}: {} ({})",
key,
constant.help,
self.calculator.display_mode.format_number(constant.value)
self.calculator.display_mode.format_number(&constant.value)
)
})
.fold(String::new(), |acc, s| acc + &s + "\n")
@ -233,9 +233,11 @@ impl App {
.enumerate()
.rev()
.map(|(i, m)| {
let number = self.calculator.display_mode.format_number(*m);
let number = self.calculator.display_mode.format_number(&*m);
let content = match self.calculator.calculator_alignment {
CalculatorAlignment::Left => format!("{:>2}: {}", i, number),
CalculatorAlignment::Left => {
format!("{:>2}: {}", i, number)
}
CalculatorAlignment::Right => {
let ret = format!("{} :{:>2}", number, i);
if ret.len() < chunk.width.saturating_sub(BORDER_SIZE) as usize {