Split all datatypes

This commit is contained in:
Austen Adler 2021-10-02 08:20:23 -04:00
parent b5e944e82c
commit 2f2976bfd7
9 changed files with 1255 additions and 971 deletions

2
Cargo.lock generated
View File

@ -231,7 +231,7 @@ dependencies = [
[[package]]
name = "rpn_rs"
version = "0.5.0"
version = "0.6.0"
dependencies = [
"confy",
"crossterm",

View File

@ -1,6 +1,6 @@
[package]
name = "rpn_rs"
version = "0.5.0"
version = "0.6.0"
description = "A TUI RPN calculator, similar to Orpie"
authors = ["Austen Adler <agadler@austenadler.com>"]
edition = "2018"

22
pipeline.yml Normal file
View File

@ -0,0 +1,22 @@
---
resources:
- name: source
type: git
source:
uri: https://gitea.austen-wares.com/stonewareslord/rpn_rs
branch: develop
jobs:
- name: build
serial: true
plan:
- get: source
- task: build
config:
platform: linux
image_resource:
type: docker-image
source: {repository: }
inputs:
- name: source
outputs:
- name: out

View File

@ -850,14 +850,14 @@ impl Calculator {
/// Checks if a value on the stack is equal to a given value
fn stack_eq(&mut self, idx: usize, value: &Entry) -> CalculatorResult<()> {
if self.peek(idx)? == *value {
Ok(())
} else {
Err(CalculatorError::CorruptStateChange(format!(
"Stack index {} should be {}, but is {}",
idx,
value,
self.peek(idx)?,
)))
} else {
Ok(())
}
}

File diff suppressed because it is too large Load Diff

353
src/calc/entries/matrix.rs Normal file
View File

@ -0,0 +1,353 @@
use super::VectorDirection;
use super::{Entry, Number, Vector};
use crate::calc::errors::{CalculatorError, CalculatorResult};
use crate::calc::types::CalculatorAngleMode;
use crate::calc::CalculatorDisplayMode;
use crate::CalculatorEntry;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct MatrixDimensions {
pub rows: usize,
pub columns: usize,
}
impl MatrixDimensions {
pub const fn transpose(&self) -> Self {
Self {
rows: self.columns,
columns: self.rows,
}
}
}
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct Matrix {
pub vectors: Vec<Vector>,
pub dimensions: MatrixDimensions,
}
impl Matrix {
pub fn from(entries: &[Entry]) -> CalculatorResult<Entry> {
if entries.is_empty() {
return Err(CalculatorError::NotEnoughStackEntries);
}
let vectors = entries
.iter()
.map(|e| match e {
Entry::Matrix(_) | Entry::Number(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(vector) => Ok(vector.clone()),
})
.collect::<CalculatorResult<Vec<Vector>>>()?;
// Get the num_rows and dimension of the matrix
let first_vector = vectors
.get(0)
.ok_or(CalculatorError::NotEnoughStackEntries)?;
// The number of rows in this column-based matrix
let num_rows = first_vector.values.len();
// The direction all vectors must face
let vector_direction = first_vector.direction;
// Either the dimension lengths mismatch, or the vectors are facing different directions (and are longer than 1, since a 1-length vector orientation does not matter
if vectors.iter().any(|v| v.values.len() != num_rows)
|| (num_rows > 1 && vectors.iter().any(|v| v.direction != vector_direction))
{
return Err(CalculatorError::DimensionMismatch);
}
let dimensions = MatrixDimensions {
rows: num_rows,
columns: vectors.len(),
};
let ret = Self {
vectors,
dimensions,
};
// If the user tried making a matrix out of row vectors, we need to transpose it, which forces column vectors
if vector_direction == VectorDirection::Row && num_rows > 1 {
ret.transpose()
} else {
ret.validate()
}
}
fn iterated_unary(
&self,
op: impl Fn(&Vector) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
Self {
vectors: self
.vectors
.iter()
.map(|v| op(v))
.map(|e| match e {
Ok(Entry::Vector(vector)) => Ok(vector),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Vector>>>()?,
dimensions: self.dimensions.clone(),
}
.validate()
}
fn iterated_binary_num(
&self,
number: &Number,
op: impl Fn(&Vector, &Entry) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
Self {
vectors: self
.vectors
.iter()
.map(|v| op(v, &Entry::Number(*number)))
.map(|e| match e {
Ok(Entry::Vector(vector)) => Ok(vector),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Vector>>>()?,
dimensions: self.dimensions.clone(),
}
.validate()
}
fn iterated_binary_mat(
&self,
m2: &Self,
op: impl Fn(&Vector, &Entry) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
if self.dimensions != m2.dimensions {
return Err(CalculatorError::DimensionMismatch);
}
Self {
vectors: self
.vectors
.iter()
.zip(m2.vectors.iter())
.map(|(v1, v2)| op(v1, &Entry::Vector(v2.clone())))
.map(|e| match e {
Ok(Entry::Vector(vector)) => Ok(vector),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Vector>>>()?,
dimensions: self.dimensions.clone(),
}
.validate()
}
}
impl CalculatorEntry for Matrix {
fn to_editable_string(&self) -> CalculatorResult<String> {
// TODO: Eventualy we can parse and edit a matrix as a string
Err(CalculatorError::TypeMismatch)
}
fn is_valid(&self) -> bool {
// The the number of vectors is equal to the 0th dimension
self.vectors.len() == self.dimensions.columns
// The number of elements in all vectors are equal to the 1st dimension, and each is valid
&& self
.vectors
.iter()
.all(|v| v.values.len() == self.dimensions.rows && v.is_valid())
// The dimensions are not zero
&& self.dimensions.rows > 0 && self.dimensions.columns > 0
}
fn validate(self) -> CalculatorResult<Entry> {
if self.is_valid() {
Ok(Entry::Matrix(self))
} else {
Err(CalculatorError::ArithmeticError)
}
}
fn format_entry(&self, display_mode: &CalculatorDisplayMode) -> String {
format!(
"[ {} ]",
self.vectors
.iter()
.map(|vector| vector.format_entry(display_mode))
.collect::<Vec<String>>()
.join(" ")
)
}
// Mathematical operations
fn negate(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Vector::negate)
}
fn abs(&self) -> CalculatorResult<Entry> {
// TODO: Compute determinant
Err(CalculatorError::NotYetImplemented)
}
fn inverse(&self) -> CalculatorResult<Entry> {
// TODO: Inverse
Err(CalculatorError::NotYetImplemented)
}
fn transpose(&self) -> CalculatorResult<Entry> {
// Iterate over all rows
let mut vectors: Vec<Vector> = vec![];
for r in 0..self.dimensions.rows {
vectors.push(Vector {
values: self
.vectors
.iter()
.map(|v| {
// For each row, get the r'th element to build a new vector
v.values
.get(r)
.map_or_else(|| Err(CalculatorError::DimensionMismatch), |n| Ok(*n))
})
.collect::<CalculatorResult<Vec<Number>>>()?,
direction: VectorDirection::Column,
});
}
Self {
vectors,
dimensions: self.dimensions.transpose(),
}
.validate()
}
fn sin(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|v| v.sin(angle_mode))
}
fn cos(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|v| v.cos(angle_mode))
}
fn tan(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|v| v.tan(angle_mode))
}
fn asin(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|v| v.asin(angle_mode))
}
fn acos(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|v| v.acos(angle_mode))
}
fn atan(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|v| v.atan(angle_mode))
}
fn sqrt(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Vector::sqrt)
}
fn log(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Vector::log)
}
fn ln(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Vector::ln)
}
// Binary
fn add(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(m2) => self.iterated_binary_mat(m2, Vector::add),
Entry::Vector(_vector) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => self.iterated_binary_num(number, Vector::add),
}
}
fn sub(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(m2) => self.iterated_binary_mat(m2, Vector::sub),
Entry::Vector(_vector) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => self.iterated_binary_num(number, Vector::sub),
}
}
fn mul(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(m2) => {
if self.dimensions.columns != m2.dimensions.rows {
return Err(CalculatorError::DimensionMismatch);
}
let dimensions = MatrixDimensions {
rows: self.dimensions.rows,
columns: m2.dimensions.columns,
};
// A matrix is a list of column vectors, so transpose self and zip the columns
let transposed_self: Self = match self.transpose()? {
Entry::Matrix(t) => t,
_ => {
return Err(CalculatorError::InternalError(String::from(
"Matrix transpose produced wrong type",
)))
}
};
let mut vectors: Vec<Vector> = vec![];
for c in &m2.vectors {
let mut vector: Vector = Vector {
values: vec![],
direction: VectorDirection::Column,
};
for r in &transposed_self.vectors {
if let Entry::Number(number) =
c.transpose()?.mul(&Entry::Vector(r.clone()))?
{
vector.values.push(number);
} else {
return Err(CalculatorError::InternalError(String::from(
"Vector multiplication did not produce a number",
)));
}
}
vectors.push(vector);
}
Self {
vectors,
dimensions,
}
.validate()
}
Entry::Vector(vector) => self.mul(&Self::from(
&[Entry::Vector(vector.clone())], // Treat a vector as a 1D matrix
)?),
Entry::Number(number) => self.iterated_binary_num(number, Vector::mul),
}
}
fn div(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(m2) => self.iterated_binary_mat(m2, Vector::div),
Entry::Vector(_vector) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => self.iterated_binary_num(number, Vector::div),
}
}
fn int_divide(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(m2) => self.iterated_binary_mat(m2, Vector::int_divide),
Entry::Vector(_vector) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => self.iterated_binary_num(number, Vector::int_divide),
}
}
fn modulo(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(m2) => self.iterated_binary_mat(m2, Vector::modulo),
Entry::Vector(_vector) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => self.iterated_binary_num(number, Vector::modulo),
}
}
fn pow(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_m2) => Err(CalculatorError::TypeMismatch),
Entry::Vector(_vector) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => self.iterated_binary_num(number, Vector::pow),
}
}
}
impl fmt::Display for Matrix {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"[ {} ]",
self.vectors
.iter()
.map(|vector| format!("{}", vector))
.collect::<Vec<String>>()
.join("; ")
)
}
}

339
src/calc/entries/number.rs Normal file
View File

@ -0,0 +1,339 @@
use super::VectorDirection;
use super::{Entry, Matrix, Vector};
use crate::calc::errors::{CalculatorError, CalculatorResult};
use crate::calc::types::CalculatorAngleMode;
use crate::calc::CalculatorDisplayMode;
use crate::CalculatorEntry;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
pub struct Number {
pub value: f64,
}
impl PartialEq for Number {
fn eq(&self, other: &Self) -> bool {
if self.value.is_nan() && other.value.is_nan()
|| self.value.is_infinite() && other.value.is_infinite()
{
true
} else if self.value.is_nan()
|| self.value.is_infinite()
|| other.value.is_infinite()
|| other.value.is_nan()
{
false
} else {
(self.value - other.value).abs() < f64::EPSILON
}
}
}
impl CalculatorEntry for Number {
fn to_editable_string(&self) -> CalculatorResult<String> {
Ok(format!("{}", self.value))
}
fn format_entry(&self, display_mode: &CalculatorDisplayMode) -> String {
match display_mode {
CalculatorDisplayMode::Default => format!("{}", self.value),
CalculatorDisplayMode::Separated { separator } => separated(self.value, *separator),
CalculatorDisplayMode::Scientific { precision } => scientific(self.value, *precision),
CalculatorDisplayMode::Engineering { precision } => engineering(self.value, *precision),
CalculatorDisplayMode::Fixed { precision } => {
format!("{:0>.precision$}", self.value, precision = precision)
}
}
}
fn is_valid(&self) -> bool {
!self.value.is_nan() && !self.value.is_infinite()
}
fn validate(self) -> CalculatorResult<Entry> {
if self.is_valid() {
Ok(Entry::Number(self))
} else {
Err(CalculatorError::ArithmeticError)
}
}
fn negate(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self { value: -self.value }))
}
fn abs(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: self.value.abs(),
}))
}
fn inverse(&self) -> CalculatorResult<Entry> {
Self {
value: self.value.recip(),
}
.validate()
}
fn transpose(&self) -> CalculatorResult<Entry> {
Err(CalculatorError::TypeMismatch)
}
fn sin(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: match angle_mode {
CalculatorAngleMode::Degrees => self.value.to_radians().sin(),
CalculatorAngleMode::Radians => self.value.sin(),
CalculatorAngleMode::Grads => (self.value * std::f64::consts::PI / 200.0).sin(),
},
}))
}
fn cos(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: match angle_mode {
CalculatorAngleMode::Degrees => self.value.to_radians().cos(),
CalculatorAngleMode::Radians => self.value.cos(),
CalculatorAngleMode::Grads => (self.value * std::f64::consts::PI / 200.0).cos(),
},
}))
}
fn tan(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: match angle_mode {
CalculatorAngleMode::Degrees => self.value.to_radians().tan(),
CalculatorAngleMode::Radians => self.value.tan(),
CalculatorAngleMode::Grads => (self.value * std::f64::consts::PI / 200.0).tan(),
},
}))
}
fn asin(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: match angle_mode {
CalculatorAngleMode::Degrees => self.value.asin().to_degrees(),
CalculatorAngleMode::Radians => self.value.asin(),
CalculatorAngleMode::Grads => self.value.asin() * 200.0 / std::f64::consts::PI,
},
}))
}
fn acos(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: match angle_mode {
CalculatorAngleMode::Degrees => self.value.acos().to_degrees(),
CalculatorAngleMode::Radians => self.value.acos(),
CalculatorAngleMode::Grads => self.value.acos() * 200.0 / std::f64::consts::PI,
},
}))
}
fn atan(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: match angle_mode {
CalculatorAngleMode::Degrees => self.value.atan().to_degrees(),
CalculatorAngleMode::Radians => self.value.atan(),
CalculatorAngleMode::Grads => self.value.atan() * 200.0 / std::f64::consts::PI,
},
}))
}
fn sqrt(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: self.value.sqrt(),
}))
}
fn log(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: self.value.log10(),
}))
}
fn ln(&self) -> CalculatorResult<Entry> {
Ok(Entry::Number(Self {
value: self.value.ln(),
}))
}
fn add(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::add),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::add),
Entry::Number(number) => Self {
value: self.value + number.value,
}
.validate(),
}
}
fn sub(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::sub),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::sub),
Entry::Number(number) => Self {
value: self.value - number.value,
}
.validate(),
}
}
fn mul(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::mul),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::mul),
Entry::Number(number) => Self {
value: self.value * number.value,
}
.validate(),
}
}
fn div(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::div),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::div),
Entry::Number(number) => Self {
value: self.value / number.value,
}
.validate(),
}
}
fn int_divide(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::int_divide),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::int_divide),
Entry::Number(number) => Self {
value: self.value.div_euclid(number.value),
}
.validate(),
}
}
fn modulo(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::modulo),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::modulo),
Entry::Number(number) => Self {
value: self.value % number.value,
}
.validate(),
}
}
fn pow(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(matrix) => self.iterated_binary_mat(matrix, Self::pow),
Entry::Vector(vector) => self.iterated_binary_vec(vector, Self::pow),
Entry::Number(number) => Self {
value: self.value.powf(number.value),
}
.validate(),
}
}
}
impl Number {
pub const ZERO: Self = Self { value: 0.0_f64 };
fn iterated_binary_vec(
self,
vector: &Vector,
op: impl Fn(&Self, &Entry) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
Ok(Entry::Vector(Vector {
values: vector
.values
.iter()
.map(|n| op(&self, &Entry::Number(*n)))
.map(|e| match e {
// Only numbers are valid in a vector
Ok(Entry::Number(number)) => Ok(number),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Self>>>()?,
direction: vector.direction,
}))
}
fn iterated_binary_mat(
self,
matrix: &Matrix,
op: impl Fn(&Self, &Entry) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
Matrix {
vectors: matrix
.vectors
.iter()
.map(|v| op(&self, &Entry::Vector(v.clone())))
.map(|e| match e {
// Only numbers are valid in a vector
Ok(Entry::Vector(vector)) => Ok(vector),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Vector>>>()?,
dimensions: matrix.dimensions.clone(),
}
.validate()
}
}
impl fmt::Display for Number {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.value)
}
}
// Based on https://stackoverflow.com/a/65266882
fn scientific(f: f64, precision: usize) -> String {
let mut ret = format!("{:.precision$E}", f, precision = precision);
let exp = ret.split_off(ret.find('E').unwrap_or(0));
let (exp_sign, exp) = exp
.strip_prefix("E-")
.map_or_else(|| ('+', &exp[1..]), |stripped| ('-', stripped));
let sign = if ret.starts_with('-') { "" } else { " " };
format!("{}{} E{}{:0>pad$}", sign, ret, exp_sign, exp, pad = 2)
}
fn engineering(f: f64, precision: usize) -> String {
// Format the string so the first digit is always in the first column, and remove '.'. Requested precision + 2 to account for using 1, 2, or 3 digits for the whole portion of the string
// 1,000 => 1000E3
let all = format!(" {:.precision$E}", f, precision = precision)
// Remove . since it can be moved
.replacen(".", "", 1)
// Add 00E before E here so the length is enough for slicing below
.replacen("E", "00E", 1);
// Extract mantissa and the string representation of the exponent. Unwrap should be safe as formatter will insert E
// 1000E3 => (1000, E3)
let (num_str, exp_str) = all.split_at(all.find('E').unwrap());
// Extract the exponent as an isize. This should always be true because Entry max will be ~400
// E3 => 3 as isize
let exp = exp_str[1..].parse::<isize>().unwrap();
// Sign of the exponent. If string representation starts with E-, then negative
let display_exp_sign = if exp_str.strip_prefix("E-").is_some() {
'-'
} else {
'+'
};
// The exponent to display. Always a multiple of 3 in engineering mode. Always positive because sign is added with display_exp_sign above
// 100 => 0, 1000 => 3, .1 => 3 (but will show as -3)
let display_exp = (exp.div_euclid(3) * 3).abs();
// Number of whole digits. Always 1, 2, or 3 depending on exponent divisibility
let num_whole_digits = exp.rem_euclid(3) as usize + 1;
// If this is a negative number, strip off the added space, otherwise keep the space (and next digit)
let num_str = if num_str.strip_prefix(" -").is_some() {
&num_str[1..]
} else {
num_str
};
// Whole portion of number. Slice is safe because the num_whole_digits is always 3 and the num_str will always have length >= 3 since precision in all=2 (+original whole digit)
// Original number is 1,000 => whole will be 1, if original is 0.01, whole will be 10
let whole = &num_str[0..=num_whole_digits];
// Decimal portion of the number. Sliced from the number of whole digits to the *requested* precision. Precision generated in all will be requested precision + 2
let decimal = &num_str[(num_whole_digits + 1)..=(precision + num_whole_digits)];
// Right align whole portion, always have decimal point
format!(
"{: >4}.{} E{}{:0>pad$}",
// display_sign,
whole,
decimal,
display_exp_sign,
display_exp,
pad = 2
)
}
fn separated(f: f64, sep: char) -> String {
let mut ret = f.to_string();
let start = if ret.starts_with('-') { 1 } else { 0 };
let end = ret.find('.').unwrap_or_else(|| ret.len());
for i in 0..((end - start - 1).div_euclid(3)) {
ret.insert(end - (i + 1) * 3, sep);
}
ret
}

291
src/calc/entries/vector.rs Normal file
View File

@ -0,0 +1,291 @@
use super::{Entry, Matrix, Number};
use crate::calc::errors::{CalculatorError, CalculatorResult};
use crate::calc::types::CalculatorAngleMode;
use crate::calc::CalculatorDisplayMode;
use crate::CalculatorEntry;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(PartialEq, Copy, Clone, Debug, Serialize, Deserialize)]
pub enum VectorDirection {
Row,
Column,
}
impl VectorDirection {
pub const fn swap(&self) -> Self {
match self {
Self::Row => Self::Column,
Self::Column => Self::Row,
}
}
pub const fn get_separator(&self) -> &str {
match self {
Self::Row => " ",
Self::Column => "; ",
}
}
}
impl Default for VectorDirection {
fn default() -> Self {
// Column vectors are the default
Self::Column
}
}
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct Vector {
pub values: Vec<Number>,
pub direction: VectorDirection,
}
impl CalculatorEntry for Vector {
// Misc
fn to_editable_string(&self) -> CalculatorResult<String> {
// TODO: Eventualy we can parse and edit a vector as a string
Err(CalculatorError::TypeMismatch)
}
fn is_valid(&self) -> bool {
self.values.iter().all(|number| number.is_valid())
}
fn validate(self) -> CalculatorResult<Entry> {
if self.is_valid() {
Ok(Entry::Vector(self))
} else {
Err(CalculatorError::ArithmeticError)
}
}
fn format_entry(&self, display_mode: &CalculatorDisplayMode) -> String {
format!(
"[{}]",
self.values
.iter()
.map(|number| number.format_entry(display_mode))
.collect::<Vec<String>>()
.join(self.direction.get_separator())
)
}
// Mathematical operations
fn negate(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Number::negate)
}
fn abs(&self) -> CalculatorResult<Entry> {
let value: Entry = self
.values
.iter()
.try_fold(Entry::Number(Number::ZERO), |acc, n2| {
acc.add(&n2.pow(&Entry::Number(Number { value: 2.0_f64 }))?)
})?;
value.sqrt()
}
fn inverse(&self) -> CalculatorResult<Entry> {
Err(CalculatorError::TypeMismatch)
}
fn transpose(&self) -> CalculatorResult<Entry> {
Ok(Entry::Vector(Self {
values: self.values.clone(),
direction: self.direction.swap(),
}))
}
fn sin(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|n| n.sin(angle_mode))
}
fn cos(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|n| n.cos(angle_mode))
}
fn tan(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|n| n.tan(angle_mode))
}
fn asin(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|n| n.asin(angle_mode))
}
fn acos(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|n| n.acos(angle_mode))
}
fn atan(&self, angle_mode: CalculatorAngleMode) -> CalculatorResult<Entry> {
self.iterated_unary(|n| n.atan(angle_mode))
}
fn sqrt(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Number::sqrt)
}
fn log(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Number::log)
}
fn ln(&self) -> CalculatorResult<Entry> {
self.iterated_unary(Number::ln)
}
fn add(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(v2) => self.iterated_binary_vec(v2, Number::add),
Entry::Number(number) => self.iterated_binary_num(number, Number::add),
}
}
fn sub(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(v2) => self.iterated_binary_vec(v2, Number::sub),
Entry::Number(number) => self.iterated_binary_num(number, Number::sub),
}
}
fn mul(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_matrix) => Matrix::from(&[Entry::Vector(self.clone())])?.mul(arg),
Entry::Vector(v2) => {
if self.values.len() != v2.values.len() {
return Err(CalculatorError::DimensionMismatch);
}
match (self.direction, v2.direction) {
(VectorDirection::Row, VectorDirection::Column) => {
// Row by column -- will produce a scalar
self.values
.iter()
.zip(v2.values.iter())
.try_fold(Entry::Number(Number::ZERO), |acc, (n1, n2)| {
acc.add(&n1.mul(&Entry::Number(*n2))?)
})
}
(VectorDirection::Column, VectorDirection::Row) => {
// TODO: Do we need to clone?
Matrix::from(&[Entry::Vector(self.clone())])?
.mul(&Matrix::from(&[arg.clone()])?)
}
(VectorDirection::Row, VectorDirection::Row)
| (VectorDirection::Column, VectorDirection::Column) => {
Err(CalculatorError::DimensionMismatch)
}
}
}
Entry::Number(number) => self.iterated_binary_num(number, Number::mul),
}
}
fn div(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(v2) => self.iterated_binary_vec(v2, Number::div),
Entry::Number(number) => self.iterated_binary_num(number, Number::div),
}
}
fn int_divide(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(v2) => self.iterated_binary_vec(v2, Number::int_divide),
Entry::Number(number) => self.iterated_binary_num(number, Number::int_divide),
}
}
fn modulo(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(v2) => self.iterated_binary_vec(v2, Number::modulo),
Entry::Number(number) => self.iterated_binary_num(number, Number::modulo),
}
}
fn pow(&self, arg: &Entry) -> CalculatorResult<Entry> {
match arg {
Entry::Matrix(_) => Err(CalculatorError::TypeMismatch),
Entry::Vector(v2) => self.iterated_binary_vec(v2, Number::pow),
Entry::Number(number) => self.iterated_binary_num(number, Number::pow),
}
}
}
impl Vector {
pub fn from(entries: &[Entry]) -> CalculatorResult<Entry> {
if entries.is_empty() {
return Err(CalculatorError::NotEnoughStackEntries);
}
Self {
values: entries
.iter()
.map(|e| match e {
Entry::Matrix(_) | Entry::Vector(_) => Err(CalculatorError::TypeMismatch),
Entry::Number(number) => Ok(*number),
})
.collect::<CalculatorResult<Vec<Number>>>()?,
direction: VectorDirection::default(),
}
.validate()
}
fn iterated_unary(
&self,
op: impl Fn(&Number) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
Ok(Entry::Vector(Self {
values: self
.values
.iter()
.map(|n| op(n))
.map(|e| match e {
// Only numbers are valid in a vector
Ok(Entry::Number(number)) => Ok(number),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Number>>>()?,
direction: self.direction,
}))
}
fn iterated_binary_vec(
&self,
v2: &Self,
op: impl Fn(&Number, &Entry) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
if self.values.len() != v2.values.len() {
return Err(CalculatorError::DimensionMismatch);
}
if self.direction != v2.direction {
return Err(CalculatorError::DimensionMismatch);
}
Ok(Entry::Vector(Self {
values: self
.values
.iter()
.zip(v2.values.iter())
.map(|(n1, n2)| op(n1, &Entry::Number(*n2)))
.map(|e| match e {
// Only numbers are valid in a vector
Ok(Entry::Number(number)) => Ok(number),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Number>>>()?,
direction: self.direction,
}))
}
fn iterated_binary_num(
&self,
n2: &Number,
op: impl Fn(&Number, &Entry) -> CalculatorResult<Entry>,
) -> CalculatorResult<Entry> {
Ok(Entry::Vector(Self {
values: self
.values
.iter()
.map(|n| op(n, &Entry::Number(*n2)))
.map(|e| match e {
// Only numbers are valid in a vector
Ok(Entry::Number(number)) => Ok(number),
_ => Err(CalculatorError::ArithmeticError),
})
.collect::<CalculatorResult<Vec<Number>>>()?,
direction: self.direction,
}))
}
}
impl fmt::Display for Vector {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"[{}]",
self.values
.iter()
.map(|number| format!("{}", number))
.collect::<Vec<String>>()
.join("; ")
)
}
}

View File

@ -470,7 +470,7 @@ struct ClippyRectangle<'a> {
}
impl ClippyRectangle<'_> {
// TODO: Make this static somehow
// Cannot be static since the clippy rectangle's text can change
fn size(&self) -> Dimensions {
let (width, height) = self.msg.lines().fold((0, 0), |(width, height), l| {
(cmp::max(width, l.len()), height + 1)