rafalense a4e9947d42 - Added swipe left/right to change between tabs
- Added option to enable/disable infinite swipe between tabs
- Added new menu Plus and moved there all additional Plus features
- Added option to show/hide direct share button in any chat
- Added switch to use direct share without quoting sender
- Added date indicator toast in chat
- Added current download/upload size in chat screen
- Added sort options (default/unread) to all tabs
- Added different options in groups/supergroups for admins when user avatar is clicked in chat screen: ‘Show profile’, ‘Delete from group’ and ‘Set as admin’
- Added option to remove from admin list if user is already an admin
- Added ‘Mark as read’ for individual chats and ‘Mark all as read’ for every tab
- Added option in Plus settings to show username instead of mobile number in menu
- Bug fixes
2016-02-25 10:36:58 +01:00

2611 lines
77 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/planar_functions.h"
#include <string.h> // for memset()
#include "libyuv/cpu_id.h"
#ifdef HAVE_JPEG
#include "libyuv/mjpeg_decoder.h"
#endif
#include "libyuv/row.h"
#include "libyuv/scale_row.h" // for ScaleRowDown2
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Copy a plane of data
LIBYUV_API
void CopyPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
int y;
void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
// Coalesce rows.
if (src_stride_y == width &&
dst_stride_y == width) {
width *= height;
height = 1;
src_stride_y = dst_stride_y = 0;
}
// Nothing to do.
if (src_y == dst_y && src_stride_y == dst_stride_y) {
return;
}
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2;
}
#endif
#if defined(HAS_COPYROW_AVX)
if (TestCpuFlag(kCpuHasAVX)) {
CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX;
}
#endif
#if defined(HAS_COPYROW_ERMS)
if (TestCpuFlag(kCpuHasERMS)) {
CopyRow = CopyRow_ERMS;
}
#endif
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON;
}
#endif
#if defined(HAS_COPYROW_MIPS)
if (TestCpuFlag(kCpuHasMIPS)) {
CopyRow = CopyRow_MIPS;
}
#endif
// Copy plane
for (y = 0; y < height; ++y) {
CopyRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
LIBYUV_API
void CopyPlane_16(const uint16* src_y, int src_stride_y,
uint16* dst_y, int dst_stride_y,
int width, int height) {
int y;
void (*CopyRow)(const uint16* src, uint16* dst, int width) = CopyRow_16_C;
// Coalesce rows.
if (src_stride_y == width &&
dst_stride_y == width) {
width *= height;
height = 1;
src_stride_y = dst_stride_y = 0;
}
#if defined(HAS_COPYROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32)) {
CopyRow = CopyRow_16_SSE2;
}
#endif
#if defined(HAS_COPYROW_16_ERMS)
if (TestCpuFlag(kCpuHasERMS)) {
CopyRow = CopyRow_16_ERMS;
}
#endif
#if defined(HAS_COPYROW_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 32)) {
CopyRow = CopyRow_16_NEON;
}
#endif
#if defined(HAS_COPYROW_16_MIPS)
if (TestCpuFlag(kCpuHasMIPS)) {
CopyRow = CopyRow_16_MIPS;
}
#endif
// Copy plane
for (y = 0; y < height; ++y) {
CopyRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Copy I422.
LIBYUV_API
int I422Copy(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int halfwidth = (width + 1) >> 1;
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
return 0;
}
// Copy I444.
LIBYUV_API
int I444Copy(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
}
// Copy I400.
LIBYUV_API
int I400ToI400(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (!src_y || !dst_y || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
// Convert I420 to I400.
LIBYUV_API
int I420ToI400(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (!src_y || !dst_y || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
// Mirror a plane of data.
void MirrorPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
int y;
void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C;
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
#if defined(HAS_MIRRORROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
MirrorRow = MirrorRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_NEON;
}
}
#endif
#if defined(HAS_MIRRORROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
MirrorRow = MirrorRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_SSSE3;
}
}
#endif
#if defined(HAS_MIRRORROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
MirrorRow = MirrorRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
MirrorRow = MirrorRow_AVX2;
}
}
#endif
// TODO(fbarchard): Mirror on mips handle unaligned memory.
#if defined(HAS_MIRRORROW_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) &&
IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
IS_ALIGNED(dst_y, 4) && IS_ALIGNED(dst_stride_y, 4)) {
MirrorRow = MirrorRow_MIPS_DSPR2;
}
#endif
// Mirror plane
for (y = 0; y < height; ++y) {
MirrorRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Convert YUY2 to I422.
LIBYUV_API
int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int y;
void (*YUY2ToUV422Row)(const uint8* src_yuy2,
uint8* dst_u, uint8* dst_v, int width) =
YUY2ToUV422Row_C;
void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int width) =
YUY2ToYRow_C;
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
// Coalesce rows.
if (src_stride_yuy2 == width * 2 &&
dst_stride_y == width &&
dst_stride_u * 2 == width &&
dst_stride_v * 2 == width) {
width *= height;
height = 1;
src_stride_yuy2 = dst_stride_y = dst_stride_u = dst_stride_v = 0;
}
#if defined(HAS_YUY2TOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2;
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_SSE2;
YUY2ToYRow = YUY2ToYRow_SSE2;
}
}
#endif
#if defined(HAS_YUY2TOYROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2;
YUY2ToYRow = YUY2ToYRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
YUY2ToUV422Row = YUY2ToUV422Row_AVX2;
YUY2ToYRow = YUY2ToYRow_AVX2;
}
}
#endif
#if defined(HAS_YUY2TOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
YUY2ToYRow = YUY2ToYRow_Any_NEON;
if (width >= 16) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON;
}
if (IS_ALIGNED(width, 16)) {
YUY2ToYRow = YUY2ToYRow_NEON;
YUY2ToUV422Row = YUY2ToUV422Row_NEON;
}
}
#endif
for (y = 0; y < height; ++y) {
YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width);
YUY2ToYRow(src_yuy2, dst_y, width);
src_yuy2 += src_stride_yuy2;
dst_y += dst_stride_y;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
return 0;
}
// Convert UYVY to I422.
LIBYUV_API
int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int y;
void (*UYVYToUV422Row)(const uint8* src_uyvy,
uint8* dst_u, uint8* dst_v, int width) =
UYVYToUV422Row_C;
void (*UYVYToYRow)(const uint8* src_uyvy,
uint8* dst_y, int width) = UYVYToYRow_C;
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
src_stride_uyvy = -src_stride_uyvy;
}
// Coalesce rows.
if (src_stride_uyvy == width * 2 &&
dst_stride_y == width &&
dst_stride_u * 2 == width &&
dst_stride_v * 2 == width) {
width *= height;
height = 1;
src_stride_uyvy = dst_stride_y = dst_stride_u = dst_stride_v = 0;
}
#if defined(HAS_UYVYTOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
UYVYToUV422Row = UYVYToUV422Row_Any_SSE2;
UYVYToYRow = UYVYToYRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
UYVYToUV422Row = UYVYToUV422Row_SSE2;
UYVYToYRow = UYVYToYRow_SSE2;
}
}
#endif
#if defined(HAS_UYVYTOYROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
UYVYToUV422Row = UYVYToUV422Row_Any_AVX2;
UYVYToYRow = UYVYToYRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
UYVYToUV422Row = UYVYToUV422Row_AVX2;
UYVYToYRow = UYVYToYRow_AVX2;
}
}
#endif
#if defined(HAS_UYVYTOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
UYVYToYRow = UYVYToYRow_Any_NEON;
if (width >= 16) {
UYVYToUV422Row = UYVYToUV422Row_Any_NEON;
}
if (IS_ALIGNED(width, 16)) {
UYVYToYRow = UYVYToYRow_NEON;
UYVYToUV422Row = UYVYToUV422Row_NEON;
}
}
#endif
for (y = 0; y < height; ++y) {
UYVYToUV422Row(src_uyvy, dst_u, dst_v, width);
UYVYToYRow(src_uyvy, dst_y, width);
src_uyvy += src_stride_uyvy;
dst_y += dst_stride_y;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
return 0;
}
// Mirror I400 with optional flipping
LIBYUV_API
int I400Mirror(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (!src_y || !dst_y ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
// Mirror I420 with optional flipping
LIBYUV_API
int I420Mirror(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
if (dst_y) {
MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
return 0;
}
// ARGB mirror.
LIBYUV_API
int ARGBMirror(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) =
ARGBMirrorRow_C;
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
#if defined(HAS_ARGBMIRRORROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBMirrorRow = ARGBMirrorRow_Any_NEON;
if (IS_ALIGNED(width, 4)) {
ARGBMirrorRow = ARGBMirrorRow_NEON;
}
}
#endif
#if defined(HAS_ARGBMIRRORROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBMirrorRow = ARGBMirrorRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBMirrorRow = ARGBMirrorRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBMIRRORROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBMirrorRow = ARGBMirrorRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBMirrorRow = ARGBMirrorRow_AVX2;
}
}
#endif
// Mirror plane
for (y = 0; y < height; ++y) {
ARGBMirrorRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Get a blender that optimized for the CPU and pixel count.
// As there are 6 blenders to choose from, the caller should try to use
// the same blend function for all pixels if possible.
LIBYUV_API
ARGBBlendRow GetARGBBlend() {
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
uint8* dst_argb, int width) = ARGBBlendRow_C;
#if defined(HAS_ARGBBLENDROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ARGBBlendRow = ARGBBlendRow_SSSE3;
return ARGBBlendRow;
}
#endif
#if defined(HAS_ARGBBLENDROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBBlendRow = ARGBBlendRow_NEON;
}
#endif
return ARGBBlendRow;
}
// Alpha Blend 2 ARGB images and store to destination.
LIBYUV_API
int ARGBBlend(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
uint8* dst_argb, int width) = GetARGBBlend();
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
}
for (y = 0; y < height; ++y) {
ARGBBlendRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Alpha Blend plane and store to destination.
LIBYUV_API
int BlendPlane(const uint8* src_y0, int src_stride_y0,
const uint8* src_y1, int src_stride_y1,
const uint8* alpha, int alpha_stride,
uint8* dst_y, int dst_stride_y,
int width, int height) {
int y;
void (*BlendPlaneRow)(const uint8* src0, const uint8* src1,
const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C;
if (!src_y0 || !src_y1 || !alpha || !dst_y || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_stride_y = -dst_stride_y;
}
// Coalesce rows for Y plane.
if (src_stride_y0 == width &&
src_stride_y1 == width &&
alpha_stride == width &&
dst_stride_y == width) {
width *= height;
height = 1;
src_stride_y0 = src_stride_y1 = alpha_stride = dst_stride_y = 0;
}
#if defined(HAS_BLENDPLANEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
BlendPlaneRow = BlendPlaneRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
BlendPlaneRow = BlendPlaneRow_SSSE3;
}
}
#endif
#if defined(HAS_BLENDPLANEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
BlendPlaneRow = BlendPlaneRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
BlendPlaneRow = BlendPlaneRow_AVX2;
}
}
#endif
for (y = 0; y < height; ++y) {
BlendPlaneRow(src_y0, src_y1, alpha, dst_y, width);
src_y0 += src_stride_y0;
src_y1 += src_stride_y1;
alpha += alpha_stride;
dst_y += dst_stride_y;
}
return 0;
}
#define MAXTWIDTH 2048
// Alpha Blend YUV images and store to destination.
LIBYUV_API
int I420Blend(const uint8* src_y0, int src_stride_y0,
const uint8* src_u0, int src_stride_u0,
const uint8* src_v0, int src_stride_v0,
const uint8* src_y1, int src_stride_y1,
const uint8* src_u1, int src_stride_u1,
const uint8* src_v1, int src_stride_v1,
const uint8* alpha, int alpha_stride,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int y;
// Half width/height for UV.
int halfwidth = (width + 1) >> 1;
void (*BlendPlaneRow)(const uint8* src0, const uint8* src1,
const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C;
void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width) = ScaleRowDown2Box_C;
if (!src_y0 || !src_u0 || !src_v0 || !src_y1 || !src_u1 || !src_v1 ||
!alpha || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_stride_y = -dst_stride_y;
}
// Blend Y plane.
BlendPlane(src_y0, src_stride_y0,
src_y1, src_stride_y1,
alpha, alpha_stride,
dst_y, dst_stride_y,
width, height);
#if defined(HAS_BLENDPLANEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
BlendPlaneRow = BlendPlaneRow_Any_SSSE3;
if (IS_ALIGNED(halfwidth, 8)) {
BlendPlaneRow = BlendPlaneRow_SSSE3;
}
}
#endif
#if defined(HAS_BLENDPLANEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
BlendPlaneRow = BlendPlaneRow_Any_AVX2;
if (IS_ALIGNED(halfwidth, 32)) {
BlendPlaneRow = BlendPlaneRow_AVX2;
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowDown2 = ScaleRowDown2Box_Any_NEON;
if (IS_ALIGNED(halfwidth, 16)) {
ScaleRowDown2 = ScaleRowDown2Box_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowDown2 = ScaleRowDown2Box_Any_SSSE3;
if (IS_ALIGNED(halfwidth, 16)) {
ScaleRowDown2 = ScaleRowDown2Box_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowDown2 = ScaleRowDown2Box_Any_AVX2;
if (IS_ALIGNED(halfwidth, 32)) {
ScaleRowDown2 = ScaleRowDown2Box_AVX2;
}
}
#endif
// Row buffer for intermediate alpha pixels.
align_buffer_64(halfalpha, halfwidth);
for (y = 0; y < height; y += 2) {
// last row of odd height image use 1 row of alpha instead of 2.
if (y == (height - 1)) {
alpha_stride = 0;
}
// Subsample 2 rows of UV to half width and half height.
ScaleRowDown2(alpha, alpha_stride, halfalpha, halfwidth);
alpha += alpha_stride * 2;
BlendPlaneRow(src_u0, src_u1, halfalpha, dst_u, halfwidth);
BlendPlaneRow(src_v0, src_v1, halfalpha, dst_v, halfwidth);
src_u0 += src_stride_u0;
src_u1 += src_stride_u1;
dst_u += dst_stride_u;
src_v0 += src_stride_v0;
src_v1 += src_stride_v1;
dst_v += dst_stride_v;
}
free_aligned_buffer_64(halfalpha);
return 0;
}
// Multiply 2 ARGB images and store to destination.
LIBYUV_API
int ARGBMultiply(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBMultiplyRow)(const uint8* src0, const uint8* src1, uint8* dst,
int width) = ARGBMultiplyRow_C;
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
}
#if defined(HAS_ARGBMULTIPLYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBMultiplyRow = ARGBMultiplyRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBMULTIPLYROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBMultiplyRow = ARGBMultiplyRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBMULTIPLYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBMultiplyRow = ARGBMultiplyRow_NEON;
}
}
#endif
// Multiply plane
for (y = 0; y < height; ++y) {
ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Add 2 ARGB images and store to destination.
LIBYUV_API
int ARGBAdd(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBAddRow)(const uint8* src0, const uint8* src1, uint8* dst,
int width) = ARGBAddRow_C;
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
}
#if defined(HAS_ARGBADDROW_SSE2) && (defined(_MSC_VER) && !defined(__clang__))
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBAddRow = ARGBAddRow_SSE2;
}
#endif
#if defined(HAS_ARGBADDROW_SSE2) && !(defined(_MSC_VER) && !defined(__clang__))
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBAddRow = ARGBAddRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBAddRow = ARGBAddRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBADDROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBAddRow = ARGBAddRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBAddRow = ARGBAddRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBADDROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBAddRow = ARGBAddRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBAddRow = ARGBAddRow_NEON;
}
}
#endif
// Add plane
for (y = 0; y < height; ++y) {
ARGBAddRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Subtract 2 ARGB images and store to destination.
LIBYUV_API
int ARGBSubtract(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBSubtractRow)(const uint8* src0, const uint8* src1, uint8* dst,
int width) = ARGBSubtractRow_C;
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
}
#if defined(HAS_ARGBSUBTRACTROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBSubtractRow = ARGBSubtractRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBSubtractRow = ARGBSubtractRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBSUBTRACTROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBSubtractRow = ARGBSubtractRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBSubtractRow = ARGBSubtractRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBSUBTRACTROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBSubtractRow = ARGBSubtractRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBSubtractRow = ARGBSubtractRow_NEON;
}
}
#endif
// Subtract plane
for (y = 0; y < height; ++y) {
ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert I422 to RGBA with matrix
static int I422ToRGBAMatrix(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_rgba, int dst_stride_rgba,
const struct YuvConstants* yuvconstants,
int width, int height) {
int y;
void (*I422ToRGBARow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) = I422ToRGBARow_C;
if (!src_y || !src_u || !src_v || !dst_rgba ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba;
dst_stride_rgba = -dst_stride_rgba;
}
#if defined(HAS_I422TORGBAROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
I422ToRGBARow = I422ToRGBARow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I422ToRGBARow = I422ToRGBARow_SSSE3;
}
}
#endif
#if defined(HAS_I422TORGBAROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
I422ToRGBARow = I422ToRGBARow_Any_AVX2;
if (IS_ALIGNED(width, 16)) {
I422ToRGBARow = I422ToRGBARow_AVX2;
}
}
#endif
#if defined(HAS_I422TORGBAROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToRGBARow = I422ToRGBARow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
I422ToRGBARow = I422ToRGBARow_NEON;
}
}
#endif
#if defined(HAS_I422TORGBAROW_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) &&
IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) &&
IS_ALIGNED(dst_rgba, 4) && IS_ALIGNED(dst_stride_rgba, 4)) {
I422ToRGBARow = I422ToRGBARow_MIPS_DSPR2;
}
#endif
for (y = 0; y < height; ++y) {
I422ToRGBARow(src_y, src_u, src_v, dst_rgba, yuvconstants, width);
dst_rgba += dst_stride_rgba;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I422 to RGBA.
LIBYUV_API
int I422ToRGBA(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_rgba, int dst_stride_rgba,
int width, int height) {
return I422ToRGBAMatrix(src_y, src_stride_y,
src_u, src_stride_u,
src_v, src_stride_v,
dst_rgba, dst_stride_rgba,
&kYuvI601Constants,
width, height);
}
// Convert I422 to BGRA.
LIBYUV_API
int I422ToBGRA(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_bgra, int dst_stride_bgra,
int width, int height) {
return I422ToRGBAMatrix(src_y, src_stride_y,
src_v, src_stride_v, // Swap U and V
src_u, src_stride_u,
dst_bgra, dst_stride_bgra,
&kYvuI601Constants, // Use Yvu matrix
width, height);
}
// Convert NV12 to RGB565.
LIBYUV_API
int NV12ToRGB565(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_rgb565, int dst_stride_rgb565,
int width, int height) {
int y;
void (*NV12ToRGB565Row)(const uint8* y_buf,
const uint8* uv_buf,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) = NV12ToRGB565Row_C;
if (!src_y || !src_uv || !dst_rgb565 ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565;
dst_stride_rgb565 = -dst_stride_rgb565;
}
#if defined(HAS_NV12TORGB565ROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
NV12ToRGB565Row = NV12ToRGB565Row_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
NV12ToRGB565Row = NV12ToRGB565Row_SSSE3;
}
}
#endif
#if defined(HAS_NV12TORGB565ROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
NV12ToRGB565Row = NV12ToRGB565Row_Any_AVX2;
if (IS_ALIGNED(width, 16)) {
NV12ToRGB565Row = NV12ToRGB565Row_AVX2;
}
}
#endif
#if defined(HAS_NV12TORGB565ROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
NV12ToRGB565Row = NV12ToRGB565Row_Any_NEON;
if (IS_ALIGNED(width, 8)) {
NV12ToRGB565Row = NV12ToRGB565Row_NEON;
}
}
#endif
for (y = 0; y < height; ++y) {
NV12ToRGB565Row(src_y, src_uv, dst_rgb565, &kYuvI601Constants, width);
dst_rgb565 += dst_stride_rgb565;
src_y += src_stride_y;
if (y & 1) {
src_uv += src_stride_uv;
}
}
return 0;
}
// Convert RAW to RGB24.
LIBYUV_API
int RAWToRGB24(const uint8* src_raw, int src_stride_raw,
uint8* dst_rgb24, int dst_stride_rgb24,
int width, int height) {
int y;
void (*RAWToRGB24Row)(const uint8* src_rgb, uint8* dst_rgb24, int width) =
RAWToRGB24Row_C;
if (!src_raw || !dst_rgb24 ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_raw = src_raw + (height - 1) * src_stride_raw;
src_stride_raw = -src_stride_raw;
}
// Coalesce rows.
if (src_stride_raw == width * 3 &&
dst_stride_rgb24 == width * 3) {
width *= height;
height = 1;
src_stride_raw = dst_stride_rgb24 = 0;
}
#if defined(HAS_RAWTORGB24ROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
RAWToRGB24Row = RAWToRGB24Row_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
RAWToRGB24Row = RAWToRGB24Row_SSSE3;
}
}
#endif
#if defined(HAS_RAWTORGB24ROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
RAWToRGB24Row = RAWToRGB24Row_Any_NEON;
if (IS_ALIGNED(width, 8)) {
RAWToRGB24Row = RAWToRGB24Row_NEON;
}
}
#endif
for (y = 0; y < height; ++y) {
RAWToRGB24Row(src_raw, dst_rgb24, width);
src_raw += src_stride_raw;
dst_rgb24 += dst_stride_rgb24;
}
return 0;
}
LIBYUV_API
void SetPlane(uint8* dst_y, int dst_stride_y,
int width, int height,
uint32 value) {
int y;
void (*SetRow)(uint8* dst, uint8 value, int width) = SetRow_C;
if (height < 0) {
height = -height;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_stride_y = -dst_stride_y;
}
// Coalesce rows.
if (dst_stride_y == width) {
width *= height;
height = 1;
dst_stride_y = 0;
}
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SetRow = SetRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
SetRow = SetRow_NEON;
}
}
#endif
#if defined(HAS_SETROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
SetRow = SetRow_Any_X86;
if (IS_ALIGNED(width, 4)) {
SetRow = SetRow_X86;
}
}
#endif
#if defined(HAS_SETROW_ERMS)
if (TestCpuFlag(kCpuHasERMS)) {
SetRow = SetRow_ERMS;
}
#endif
// Set plane
for (y = 0; y < height; ++y) {
SetRow(dst_y, value, width);
dst_y += dst_stride_y;
}
}
// Draw a rectangle into I420
LIBYUV_API
int I420Rect(uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int x, int y,
int width, int height,
int value_y, int value_u, int value_v) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
uint8* start_y = dst_y + y * dst_stride_y + x;
uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
if (!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0 ||
x < 0 || y < 0 ||
value_y < 0 || value_y > 255 ||
value_u < 0 || value_u > 255 ||
value_v < 0 || value_v > 255) {
return -1;
}
SetPlane(start_y, dst_stride_y, width, height, value_y);
SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
return 0;
}
// Draw a rectangle into ARGB
LIBYUV_API
int ARGBRect(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height,
uint32 value) {
int y;
void (*ARGBSetRow)(uint8* dst_argb, uint32 value, int width) = ARGBSetRow_C;
if (!dst_argb ||
width <= 0 || height == 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
dst_argb += dst_y * dst_stride_argb + dst_x * 4;
// Coalesce rows.
if (dst_stride_argb == width * 4) {
width *= height;
height = 1;
dst_stride_argb = 0;
}
#if defined(HAS_ARGBSETROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBSetRow = ARGBSetRow_Any_NEON;
if (IS_ALIGNED(width, 4)) {
ARGBSetRow = ARGBSetRow_NEON;
}
}
#endif
#if defined(HAS_ARGBSETROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
ARGBSetRow = ARGBSetRow_X86;
}
#endif
// Set plane
for (y = 0; y < height; ++y) {
ARGBSetRow(dst_argb, value, width);
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert unattentuated ARGB to preattenuated ARGB.
// An unattenutated ARGB alpha blend uses the formula
// p = a * f + (1 - a) * b
// where
// p is output pixel
// f is foreground pixel
// b is background pixel
// a is alpha value from foreground pixel
// An preattenutated ARGB alpha blend uses the formula
// p = f + (1 - a) * b
// where
// f is foreground pixel premultiplied by alpha
LIBYUV_API
int ARGBAttenuate(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBAttenuateRow_C;
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBATTENUATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3;
if (IS_ALIGNED(width, 4)) {
ARGBAttenuateRow = ARGBAttenuateRow_SSSE3;
}
}
#endif
#if defined(HAS_ARGBATTENUATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBAttenuateRow = ARGBAttenuateRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBATTENUATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBAttenuateRow = ARGBAttenuateRow_NEON;
}
}
#endif
for (y = 0; y < height; ++y) {
ARGBAttenuateRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert preattentuated ARGB to unattenuated ARGB.
LIBYUV_API
int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBUnattenuateRow_C;
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBUNATTENUATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBUNATTENUATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2;
}
}
#endif
// TODO(fbarchard): Neon version.
for (y = 0; y < height; ++y) {
ARGBUnattenuateRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB to Grayed ARGB.
LIBYUV_API
int ARGBGrayTo(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBGrayRow_C;
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBGRAYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
ARGBGrayRow = ARGBGrayRow_SSSE3;
}
#endif
#if defined(HAS_ARGBGRAYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBGrayRow = ARGBGrayRow_NEON;
}
#endif
for (y = 0; y < height; ++y) {
ARGBGrayRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Make a rectangle of ARGB gray scale.
LIBYUV_API
int ARGBGray(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height) {
int y;
void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBGrayRow_C;
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce rows.
if (dst_stride_argb == width * 4) {
width *= height;
height = 1;
dst_stride_argb = 0;
}
#if defined(HAS_ARGBGRAYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
ARGBGrayRow = ARGBGrayRow_SSSE3;
}
#endif
#if defined(HAS_ARGBGRAYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBGrayRow = ARGBGrayRow_NEON;
}
#endif
for (y = 0; y < height; ++y) {
ARGBGrayRow(dst, dst, width);
dst += dst_stride_argb;
}
return 0;
}
// Make a rectangle of ARGB Sepia tone.
LIBYUV_API
int ARGBSepia(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y, int width, int height) {
int y;
void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C;
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce rows.
if (dst_stride_argb == width * 4) {
width *= height;
height = 1;
dst_stride_argb = 0;
}
#if defined(HAS_ARGBSEPIAROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
ARGBSepiaRow = ARGBSepiaRow_SSSE3;
}
#endif
#if defined(HAS_ARGBSEPIAROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBSepiaRow = ARGBSepiaRow_NEON;
}
#endif
for (y = 0; y < height; ++y) {
ARGBSepiaRow(dst, width);
dst += dst_stride_argb;
}
return 0;
}
// Apply a 4x4 matrix to each ARGB pixel.
// Note: Normally for shading, but can be used to swizzle or invert.
LIBYUV_API
int ARGBColorMatrix(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
const int8* matrix_argb,
int width, int height) {
int y;
void (*ARGBColorMatrixRow)(const uint8* src_argb, uint8* dst_argb,
const int8* matrix_argb, int width) = ARGBColorMatrixRow_C;
if (!src_argb || !dst_argb || !matrix_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBCOLORMATRIXROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3;
}
#endif
#if defined(HAS_ARGBCOLORMATRIXROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBColorMatrixRow = ARGBColorMatrixRow_NEON;
}
#endif
for (y = 0; y < height; ++y) {
ARGBColorMatrixRow(src_argb, dst_argb, matrix_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Apply a 4x3 matrix to each ARGB pixel.
// Deprecated.
LIBYUV_API
int RGBColorMatrix(uint8* dst_argb, int dst_stride_argb,
const int8* matrix_rgb,
int dst_x, int dst_y, int width, int height) {
SIMD_ALIGNED(int8 matrix_argb[16]);
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
if (!dst_argb || !matrix_rgb || width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
// Convert 4x3 7 bit matrix to 4x4 6 bit matrix.
matrix_argb[0] = matrix_rgb[0] / 2;
matrix_argb[1] = matrix_rgb[1] / 2;
matrix_argb[2] = matrix_rgb[2] / 2;
matrix_argb[3] = matrix_rgb[3] / 2;
matrix_argb[4] = matrix_rgb[4] / 2;
matrix_argb[5] = matrix_rgb[5] / 2;
matrix_argb[6] = matrix_rgb[6] / 2;
matrix_argb[7] = matrix_rgb[7] / 2;
matrix_argb[8] = matrix_rgb[8] / 2;
matrix_argb[9] = matrix_rgb[9] / 2;
matrix_argb[10] = matrix_rgb[10] / 2;
matrix_argb[11] = matrix_rgb[11] / 2;
matrix_argb[14] = matrix_argb[13] = matrix_argb[12] = 0;
matrix_argb[15] = 64; // 1.0
return ARGBColorMatrix((const uint8*)(dst), dst_stride_argb,
dst, dst_stride_argb,
&matrix_argb[0], width, height);
}
// Apply a color table each ARGB pixel.
// Table contains 256 ARGB values.
LIBYUV_API
int ARGBColorTable(uint8* dst_argb, int dst_stride_argb,
const uint8* table_argb,
int dst_x, int dst_y, int width, int height) {
int y;
void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb,
int width) = ARGBColorTableRow_C;
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
if (!dst_argb || !table_argb || width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce rows.
if (dst_stride_argb == width * 4) {
width *= height;
height = 1;
dst_stride_argb = 0;
}
#if defined(HAS_ARGBCOLORTABLEROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
ARGBColorTableRow = ARGBColorTableRow_X86;
}
#endif
for (y = 0; y < height; ++y) {
ARGBColorTableRow(dst, table_argb, width);
dst += dst_stride_argb;
}
return 0;
}
// Apply a color table each ARGB pixel but preserve destination alpha.
// Table contains 256 ARGB values.
LIBYUV_API
int RGBColorTable(uint8* dst_argb, int dst_stride_argb,
const uint8* table_argb,
int dst_x, int dst_y, int width, int height) {
int y;
void (*RGBColorTableRow)(uint8* dst_argb, const uint8* table_argb,
int width) = RGBColorTableRow_C;
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
if (!dst_argb || !table_argb || width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce rows.
if (dst_stride_argb == width * 4) {
width *= height;
height = 1;
dst_stride_argb = 0;
}
#if defined(HAS_RGBCOLORTABLEROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
RGBColorTableRow = RGBColorTableRow_X86;
}
#endif
for (y = 0; y < height; ++y) {
RGBColorTableRow(dst, table_argb, width);
dst += dst_stride_argb;
}
return 0;
}
// ARGBQuantize is used to posterize art.
// e.g. rgb / qvalue * qvalue + qvalue / 2
// But the low levels implement efficiently with 3 parameters, and could be
// used for other high level operations.
// dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset;
// where scale is 1 / interval_size as a fixed point value.
// The divide is replaces with a multiply by reciprocal fixed point multiply.
// Caveat - although SSE2 saturates, the C function does not and should be used
// with care if doing anything but quantization.
LIBYUV_API
int ARGBQuantize(uint8* dst_argb, int dst_stride_argb,
int scale, int interval_size, int interval_offset,
int dst_x, int dst_y, int width, int height) {
int y;
void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size,
int interval_offset, int width) = ARGBQuantizeRow_C;
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 ||
interval_size < 1 || interval_size > 255) {
return -1;
}
// Coalesce rows.
if (dst_stride_argb == width * 4) {
width *= height;
height = 1;
dst_stride_argb = 0;
}
#if defined(HAS_ARGBQUANTIZEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
ARGBQuantizeRow = ARGBQuantizeRow_SSE2;
}
#endif
#if defined(HAS_ARGBQUANTIZEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBQuantizeRow = ARGBQuantizeRow_NEON;
}
#endif
for (y = 0; y < height; ++y) {
ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width);
dst += dst_stride_argb;
}
return 0;
}
// Computes table of cumulative sum for image where the value is the sum
// of all values above and to the left of the entry. Used by ARGBBlur.
LIBYUV_API
int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb,
int32* dst_cumsum, int dst_stride32_cumsum,
int width, int height) {
int y;
void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum,
const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
int32* previous_cumsum = dst_cumsum;
if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) {
return -1;
}
#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
}
#endif
memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel.
for (y = 0; y < height; ++y) {
ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width);
previous_cumsum = dst_cumsum;
dst_cumsum += dst_stride32_cumsum;
src_argb += src_stride_argb;
}
return 0;
}
// Blur ARGB image.
// Caller should allocate CumulativeSum table of width * height * 16 bytes
// aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory
// as the buffer is treated as circular.
LIBYUV_API
int ARGBBlur(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int32* dst_cumsum, int dst_stride32_cumsum,
int width, int height, int radius) {
int y;
void (*ComputeCumulativeSumRow)(const uint8 *row, int32 *cumsum,
const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
void (*CumulativeSumToAverageRow)(const int32* topleft, const int32* botleft,
int width, int area, uint8* dst, int count) = CumulativeSumToAverageRow_C;
int32* cumsum_bot_row;
int32* max_cumsum_bot_row;
int32* cumsum_top_row;
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
if (radius > height) {
radius = height;
}
if (radius > (width / 2 - 1)) {
radius = width / 2 - 1;
}
if (radius <= 0) {
return -1;
}
#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
CumulativeSumToAverageRow = CumulativeSumToAverageRow_SSE2;
}
#endif
// Compute enough CumulativeSum for first row to be blurred. After this
// one row of CumulativeSum is updated at a time.
ARGBComputeCumulativeSum(src_argb, src_stride_argb,
dst_cumsum, dst_stride32_cumsum,
width, radius);
src_argb = src_argb + radius * src_stride_argb;
cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum];
max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum];
cumsum_top_row = &dst_cumsum[0];
for (y = 0; y < height; ++y) {
int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0;
int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1);
int area = radius * (bot_y - top_y);
int boxwidth = radius * 4;
int x;
int n;
// Increment cumsum_top_row pointer with circular buffer wrap around.
if (top_y) {
cumsum_top_row += dst_stride32_cumsum;
if (cumsum_top_row >= max_cumsum_bot_row) {
cumsum_top_row = dst_cumsum;
}
}
// Increment cumsum_bot_row pointer with circular buffer wrap around and
// then fill in a row of CumulativeSum.
if ((y + radius) < height) {
const int32* prev_cumsum_bot_row = cumsum_bot_row;
cumsum_bot_row += dst_stride32_cumsum;
if (cumsum_bot_row >= max_cumsum_bot_row) {
cumsum_bot_row = dst_cumsum;
}
ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row,
width);
src_argb += src_stride_argb;
}
// Left clipped.
for (x = 0; x < radius + 1; ++x) {
CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row,
boxwidth, area, &dst_argb[x * 4], 1);
area += (bot_y - top_y);
boxwidth += 4;
}
// Middle unclipped.
n = (width - 1) - radius - x + 1;
CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row,
boxwidth, area, &dst_argb[x * 4], n);
// Right clipped.
for (x += n; x <= width - 1; ++x) {
area -= (bot_y - top_y);
boxwidth -= 4;
CumulativeSumToAverageRow(cumsum_top_row + (x - radius - 1) * 4,
cumsum_bot_row + (x - radius - 1) * 4,
boxwidth, area, &dst_argb[x * 4], 1);
}
dst_argb += dst_stride_argb;
}
return 0;
}
// Multiply ARGB image by a specified ARGB value.
LIBYUV_API
int ARGBShade(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height, uint32 value) {
int y;
void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb,
int width, uint32 value) = ARGBShadeRow_C;
if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBSHADEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
ARGBShadeRow = ARGBShadeRow_SSE2;
}
#endif
#if defined(HAS_ARGBSHADEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBShadeRow = ARGBShadeRow_NEON;
}
#endif
for (y = 0; y < height; ++y) {
ARGBShadeRow(src_argb, dst_argb, width, value);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Interpolate 2 planes by specified amount (0 to 255).
LIBYUV_API
int InterpolatePlane(const uint8* src0, int src_stride0,
const uint8* src1, int src_stride1,
uint8* dst, int dst_stride,
int width, int height, int interpolation) {
int y;
void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
if (!src0 || !src1 || !dst || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst = dst + (height - 1) * dst_stride;
dst_stride = -dst_stride;
}
// Coalesce rows.
if (src_stride0 == width &&
src_stride1 == width &&
dst_stride == width) {
width *= height;
height = 1;
src_stride0 = src_stride1 = dst_stride = 0;
}
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) &&
IS_ALIGNED(src0, 4) && IS_ALIGNED(src_stride0, 4) &&
IS_ALIGNED(src1, 4) && IS_ALIGNED(src_stride1, 4) &&
IS_ALIGNED(dst, 4) && IS_ALIGNED(dst_stride, 4) &&
IS_ALIGNED(width, 4)) {
InterpolateRow = InterpolateRow_MIPS_DSPR2;
}
#endif
for (y = 0; y < height; ++y) {
InterpolateRow(dst, src0, src1 - src0,
width, interpolation);
src0 += src_stride0;
src1 += src_stride1;
dst += dst_stride;
}
return 0;
}
// Interpolate 2 ARGB images by specified amount (0 to 255).
LIBYUV_API
int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height, int interpolation) {
return InterpolatePlane(src_argb0, src_stride_argb0,
src_argb1, src_stride_argb1,
dst_argb, dst_stride_argb,
width * 4, height, interpolation);
}
// Interpolate 2 YUV images by specified amount (0 to 255).
LIBYUV_API
int I420Interpolate(const uint8* src0_y, int src0_stride_y,
const uint8* src0_u, int src0_stride_u,
const uint8* src0_v, int src0_stride_v,
const uint8* src1_y, int src1_stride_y,
const uint8* src1_u, int src1_stride_u,
const uint8* src1_v, int src1_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height, int interpolation) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (!src0_y || !src0_u || !src0_v ||
!src1_y || !src1_u || !src1_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
InterpolatePlane(src0_y, src0_stride_y,
src1_y, src1_stride_y,
dst_y, dst_stride_y,
width, height, interpolation);
InterpolatePlane(src0_u, src0_stride_u,
src1_u, src1_stride_u,
dst_u, dst_stride_u,
halfwidth, halfheight, interpolation);
InterpolatePlane(src0_v, src0_stride_v,
src1_v, src1_stride_v,
dst_v, dst_stride_v,
halfwidth, halfheight, interpolation);
return 0;
}
// Shuffle ARGB channel order. e.g. BGRA to ARGB.
LIBYUV_API
int ARGBShuffle(const uint8* src_bgra, int src_stride_bgra,
uint8* dst_argb, int dst_stride_argb,
const uint8* shuffler, int width, int height) {
int y;
void (*ARGBShuffleRow)(const uint8* src_bgra, uint8* dst_argb,
const uint8* shuffler, int width) = ARGBShuffleRow_C;
if (!src_bgra || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
src_stride_bgra = -src_stride_bgra;
}
// Coalesce rows.
if (src_stride_bgra == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_bgra = dst_stride_argb = 0;
}
#if defined(HAS_ARGBSHUFFLEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBShuffleRow = ARGBShuffleRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBShuffleRow = ARGBShuffleRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBSHUFFLEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
ARGBShuffleRow = ARGBShuffleRow_SSSE3;
}
}
#endif
#if defined(HAS_ARGBSHUFFLEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBShuffleRow = ARGBShuffleRow_Any_AVX2;
if (IS_ALIGNED(width, 16)) {
ARGBShuffleRow = ARGBShuffleRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBSHUFFLEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBShuffleRow = ARGBShuffleRow_Any_NEON;
if (IS_ALIGNED(width, 4)) {
ARGBShuffleRow = ARGBShuffleRow_NEON;
}
}
#endif
for (y = 0; y < height; ++y) {
ARGBShuffleRow(src_bgra, dst_argb, shuffler, width);
src_bgra += src_stride_bgra;
dst_argb += dst_stride_argb;
}
return 0;
}
// Sobel ARGB effect.
static int ARGBSobelize(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height,
void (*SobelRow)(const uint8* src_sobelx,
const uint8* src_sobely,
uint8* dst, int width)) {
int y;
void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_g, int width) =
ARGBToYJRow_C;
void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1,
uint8* dst_sobely, int width) = SobelYRow_C;
void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1,
const uint8* src_y2, uint8* dst_sobely, int width) =
SobelXRow_C;
const int kEdge = 16; // Extra pixels at start of row for extrude/align.
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
#if defined(HAS_ARGBTOYJROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ARGBToYJRow = ARGBToYJRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
ARGBToYJRow = ARGBToYJRow_SSSE3;
}
}
#endif
#if defined(HAS_ARGBTOYJROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBToYJRow = ARGBToYJRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
ARGBToYJRow = ARGBToYJRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBTOYJROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBToYJRow = ARGBToYJRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBToYJRow = ARGBToYJRow_NEON;
}
}
#endif
#if defined(HAS_SOBELYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SobelYRow = SobelYRow_SSE2;
}
#endif
#if defined(HAS_SOBELYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelYRow = SobelYRow_NEON;
}
#endif
#if defined(HAS_SOBELXROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SobelXRow = SobelXRow_SSE2;
}
#endif
#if defined(HAS_SOBELXROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelXRow = SobelXRow_NEON;
}
#endif
{
// 3 rows with edges before/after.
const int kRowSize = (width + kEdge + 31) & ~31;
align_buffer_64(rows, kRowSize * 2 + (kEdge + kRowSize * 3 + kEdge));
uint8* row_sobelx = rows;
uint8* row_sobely = rows + kRowSize;
uint8* row_y = rows + kRowSize * 2;
// Convert first row.
uint8* row_y0 = row_y + kEdge;
uint8* row_y1 = row_y0 + kRowSize;
uint8* row_y2 = row_y1 + kRowSize;
ARGBToYJRow(src_argb, row_y0, width);
row_y0[-1] = row_y0[0];
memset(row_y0 + width, row_y0[width - 1], 16); // Extrude 16 for valgrind.
ARGBToYJRow(src_argb, row_y1, width);
row_y1[-1] = row_y1[0];
memset(row_y1 + width, row_y1[width - 1], 16);
memset(row_y2 + width, 0, 16);
for (y = 0; y < height; ++y) {
// Convert next row of ARGB to G.
if (y < (height - 1)) {
src_argb += src_stride_argb;
}
ARGBToYJRow(src_argb, row_y2, width);
row_y2[-1] = row_y2[0];
row_y2[width] = row_y2[width - 1];
SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width);
SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width);
SobelRow(row_sobelx, row_sobely, dst_argb, width);
// Cycle thru circular queue of 3 row_y buffers.
{
uint8* row_yt = row_y0;
row_y0 = row_y1;
row_y1 = row_y2;
row_y2 = row_yt;
}
dst_argb += dst_stride_argb;
}
free_aligned_buffer_64(rows);
}
return 0;
}
// Sobel ARGB effect.
LIBYUV_API
int ARGBSobel(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_argb, int width) = SobelRow_C;
#if defined(HAS_SOBELROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SobelRow = SobelRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
SobelRow = SobelRow_SSE2;
}
}
#endif
#if defined(HAS_SOBELROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelRow = SobelRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
SobelRow = SobelRow_NEON;
}
}
#endif
return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
width, height, SobelRow);
}
// Sobel ARGB effect with planar output.
LIBYUV_API
int ARGBSobelToPlane(const uint8* src_argb, int src_stride_argb,
uint8* dst_y, int dst_stride_y,
int width, int height) {
void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_, int width) = SobelToPlaneRow_C;
#if defined(HAS_SOBELTOPLANEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SobelToPlaneRow = SobelToPlaneRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
SobelToPlaneRow = SobelToPlaneRow_SSE2;
}
}
#endif
#if defined(HAS_SOBELTOPLANEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelToPlaneRow = SobelToPlaneRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
SobelToPlaneRow = SobelToPlaneRow_NEON;
}
}
#endif
return ARGBSobelize(src_argb, src_stride_argb, dst_y, dst_stride_y,
width, height, SobelToPlaneRow);
}
// SobelXY ARGB effect.
// Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel.
LIBYUV_API
int ARGBSobelXY(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_argb, int width) = SobelXYRow_C;
#if defined(HAS_SOBELXYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SobelXYRow = SobelXYRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
SobelXYRow = SobelXYRow_SSE2;
}
}
#endif
#if defined(HAS_SOBELXYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelXYRow = SobelXYRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
SobelXYRow = SobelXYRow_NEON;
}
}
#endif
return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
width, height, SobelXYRow);
}
// Apply a 4x4 polynomial to each ARGB pixel.
LIBYUV_API
int ARGBPolynomial(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
const float* poly,
int width, int height) {
int y;
void (*ARGBPolynomialRow)(const uint8* src_argb,
uint8* dst_argb, const float* poly,
int width) = ARGBPolynomialRow_C;
if (!src_argb || !dst_argb || !poly || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBPOLYNOMIALROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 2)) {
ARGBPolynomialRow = ARGBPolynomialRow_SSE2;
}
#endif
#if defined(HAS_ARGBPOLYNOMIALROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasFMA3) &&
IS_ALIGNED(width, 2)) {
ARGBPolynomialRow = ARGBPolynomialRow_AVX2;
}
#endif
for (y = 0; y < height; ++y) {
ARGBPolynomialRow(src_argb, dst_argb, poly, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Apply a lumacolortable to each ARGB pixel.
LIBYUV_API
int ARGBLumaColorTable(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
const uint8* luma,
int width, int height) {
int y;
void (*ARGBLumaColorTableRow)(const uint8* src_argb, uint8* dst_argb,
int width, const uint8* luma, const uint32 lumacoeff) =
ARGBLumaColorTableRow_C;
if (!src_argb || !dst_argb || !luma || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBLUMACOLORTABLEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4)) {
ARGBLumaColorTableRow = ARGBLumaColorTableRow_SSSE3;
}
#endif
for (y = 0; y < height; ++y) {
ARGBLumaColorTableRow(src_argb, dst_argb, width, luma, 0x00264b0f);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Copy Alpha from one ARGB image to another.
LIBYUV_API
int ARGBCopyAlpha(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBCopyAlphaRow)(const uint8* src_argb, uint8* dst_argb, int width) =
ARGBCopyAlphaRow_C;
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_argb = dst_stride_argb = 0;
}
#if defined(HAS_ARGBCOPYALPHAROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_SSE2;
if (IS_ALIGNED(width, 8)) {
ARGBCopyAlphaRow = ARGBCopyAlphaRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBCOPYALPHAROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_AVX2;
if (IS_ALIGNED(width, 16)) {
ARGBCopyAlphaRow = ARGBCopyAlphaRow_AVX2;
}
}
#endif
for (y = 0; y < height; ++y) {
ARGBCopyAlphaRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Copy a planar Y channel to the alpha channel of a destination ARGB image.
LIBYUV_API
int ARGBCopyYToAlpha(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
int y;
void (*ARGBCopyYToAlphaRow)(const uint8* src_y, uint8* dst_argb, int width) =
ARGBCopyYToAlphaRow_C;
if (!src_y || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
// Coalesce rows.
if (src_stride_y == width &&
dst_stride_argb == width * 4) {
width *= height;
height = 1;
src_stride_y = dst_stride_argb = 0;
}
#if defined(HAS_ARGBCOPYYTOALPHAROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_SSE2;
if (IS_ALIGNED(width, 8)) {
ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBCOPYYTOALPHAROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_AVX2;
if (IS_ALIGNED(width, 16)) {
ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_AVX2;
}
}
#endif
for (y = 0; y < height; ++y) {
ARGBCopyYToAlphaRow(src_y, dst_argb, width);
src_y += src_stride_y;
dst_argb += dst_stride_argb;
}
return 0;
}
LIBYUV_API
int YUY2ToNV12(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_uv, int dst_stride_uv,
int width, int height) {
int y;
int halfwidth = (width + 1) >> 1;
void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v,
int width) = SplitUVRow_C;
void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
if (!src_yuy2 ||
!dst_y || !dst_uv ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
#if defined(HAS_SPLITUVROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SplitUVRow = SplitUVRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_SSE2;
}
}
#endif
#if defined(HAS_SPLITUVROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
SplitUVRow = SplitUVRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
SplitUVRow = SplitUVRow_AVX2;
}
}
#endif
#if defined(HAS_SPLITUVROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SplitUVRow = SplitUVRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
{
int awidth = halfwidth * 2;
// 2 rows of uv
align_buffer_64(rows, awidth * 2);
for (y = 0; y < height - 1; y += 2) {
// Split Y from UV.
SplitUVRow(src_yuy2, dst_y, rows, awidth);
SplitUVRow(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y,
rows + awidth, awidth);
InterpolateRow(dst_uv, rows, awidth, awidth, 128);
src_yuy2 += src_stride_yuy2 * 2;
dst_y += dst_stride_y * 2;
dst_uv += dst_stride_uv;
}
if (height & 1) {
// Split Y from UV.
SplitUVRow(src_yuy2, dst_y, dst_uv, awidth);
}
free_aligned_buffer_64(rows);
}
return 0;
}
LIBYUV_API
int UYVYToNV12(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_y, int dst_stride_y,
uint8* dst_uv, int dst_stride_uv,
int width, int height) {
int y;
int halfwidth = (width + 1) >> 1;
void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v,
int width) = SplitUVRow_C;
void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
if (!src_uyvy ||
!dst_y || !dst_uv ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
src_stride_uyvy = -src_stride_uyvy;
}
#if defined(HAS_SPLITUVROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SplitUVRow = SplitUVRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_SSE2;
}
}
#endif
#if defined(HAS_SPLITUVROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
SplitUVRow = SplitUVRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
SplitUVRow = SplitUVRow_AVX2;
}
}
#endif
#if defined(HAS_SPLITUVROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SplitUVRow = SplitUVRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
{
int awidth = halfwidth * 2;
// 2 rows of uv
align_buffer_64(rows, awidth * 2);
for (y = 0; y < height - 1; y += 2) {
// Split Y from UV.
SplitUVRow(src_uyvy, rows, dst_y, awidth);
SplitUVRow(src_uyvy + src_stride_uyvy, rows + awidth,
dst_y + dst_stride_y, awidth);
InterpolateRow(dst_uv, rows, awidth, awidth, 128);
src_uyvy += src_stride_uyvy * 2;
dst_y += dst_stride_y * 2;
dst_uv += dst_stride_uv;
}
if (height & 1) {
// Split Y from UV.
SplitUVRow(src_uyvy, dst_uv, dst_y, awidth);
}
free_aligned_buffer_64(rows);
}
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif