rafalense a4e9947d42 - Added swipe left/right to change between tabs
- Added option to enable/disable infinite swipe between tabs
- Added new menu Plus and moved there all additional Plus features
- Added option to show/hide direct share button in any chat
- Added switch to use direct share without quoting sender
- Added date indicator toast in chat
- Added current download/upload size in chat screen
- Added sort options (default/unread) to all tabs
- Added different options in groups/supergroups for admins when user avatar is clicked in chat screen: ‘Show profile’, ‘Delete from group’ and ‘Set as admin’
- Added option to remove from admin list if user is already an admin
- Added ‘Mark as read’ for individual chats and ‘Mark all as read’ for every tab
- Added option in Plus settings to show username instead of mobile number in menu
- Bug fixes
2016-02-25 10:36:58 +01:00

2643 lines
84 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/row.h"
#include <string.h> // For memcpy and memset.
#include "libyuv/basic_types.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// llvm x86 is poor at ternary operator, so use branchless min/max.
#define USE_BRANCHLESS 1
#if USE_BRANCHLESS
static __inline int32 clamp0(int32 v) {
return ((-(v) >> 31) & (v));
}
static __inline int32 clamp255(int32 v) {
return (((255 - (v)) >> 31) | (v)) & 255;
}
static __inline uint32 Clamp(int32 val) {
int v = clamp0(val);
return (uint32)(clamp255(v));
}
static __inline uint32 Abs(int32 v) {
int m = v >> 31;
return (v + m) ^ m;
}
#else // USE_BRANCHLESS
static __inline int32 clamp0(int32 v) {
return (v < 0) ? 0 : v;
}
static __inline int32 clamp255(int32 v) {
return (v > 255) ? 255 : v;
}
static __inline uint32 Clamp(int32 val) {
int v = clamp0(val);
return (uint32)(clamp255(v));
}
static __inline uint32 Abs(int32 v) {
return (v < 0) ? -v : v;
}
#endif // USE_BRANCHLESS
#ifdef LIBYUV_LITTLE_ENDIAN
#define WRITEWORD(p, v) *(uint32*)(p) = v
#else
static inline void WRITEWORD(uint8* p, uint32 v) {
p[0] = (uint8)(v & 255);
p[1] = (uint8)((v >> 8) & 255);
p[2] = (uint8)((v >> 16) & 255);
p[3] = (uint8)((v >> 24) & 255);
}
#endif
void RGB24ToARGBRow_C(const uint8* src_rgb24, uint8* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_rgb24[0];
uint8 g = src_rgb24[1];
uint8 r = src_rgb24[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_rgb24 += 3;
}
}
void RAWToARGBRow_C(const uint8* src_raw, uint8* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 r = src_raw[0];
uint8 g = src_raw[1];
uint8 b = src_raw[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_raw += 3;
}
}
void RAWToRGB24Row_C(const uint8* src_raw, uint8* dst_rgb24, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 r = src_raw[0];
uint8 g = src_raw[1];
uint8 b = src_raw[2];
dst_rgb24[0] = b;
dst_rgb24[1] = g;
dst_rgb24[2] = r;
dst_rgb24 += 3;
src_raw += 3;
}
}
void RGB565ToARGBRow_C(const uint8* src_rgb565, uint8* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_rgb565[0] & 0x1f;
uint8 g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8 r = src_rgb565[1] >> 3;
dst_argb[0] = (b << 3) | (b >> 2);
dst_argb[1] = (g << 2) | (g >> 4);
dst_argb[2] = (r << 3) | (r >> 2);
dst_argb[3] = 255u;
dst_argb += 4;
src_rgb565 += 2;
}
}
void ARGB1555ToARGBRow_C(const uint8* src_argb1555, uint8* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_argb1555[0] & 0x1f;
uint8 g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8 r = (src_argb1555[1] & 0x7c) >> 2;
uint8 a = src_argb1555[1] >> 7;
dst_argb[0] = (b << 3) | (b >> 2);
dst_argb[1] = (g << 3) | (g >> 2);
dst_argb[2] = (r << 3) | (r >> 2);
dst_argb[3] = -a;
dst_argb += 4;
src_argb1555 += 2;
}
}
void ARGB4444ToARGBRow_C(const uint8* src_argb4444, uint8* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_argb4444[0] & 0x0f;
uint8 g = src_argb4444[0] >> 4;
uint8 r = src_argb4444[1] & 0x0f;
uint8 a = src_argb4444[1] >> 4;
dst_argb[0] = (b << 4) | b;
dst_argb[1] = (g << 4) | g;
dst_argb[2] = (r << 4) | r;
dst_argb[3] = (a << 4) | a;
dst_argb += 4;
src_argb4444 += 2;
}
}
void ARGBToRGB24Row_C(const uint8* src_argb, uint8* dst_rgb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_argb[0];
uint8 g = src_argb[1];
uint8 r = src_argb[2];
dst_rgb[0] = b;
dst_rgb[1] = g;
dst_rgb[2] = r;
dst_rgb += 3;
src_argb += 4;
}
}
void ARGBToRAWRow_C(const uint8* src_argb, uint8* dst_rgb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_argb[0];
uint8 g = src_argb[1];
uint8 r = src_argb[2];
dst_rgb[0] = r;
dst_rgb[1] = g;
dst_rgb[2] = b;
dst_rgb += 3;
src_argb += 4;
}
}
void ARGBToRGB565Row_C(const uint8* src_argb, uint8* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 b0 = src_argb[0] >> 3;
uint8 g0 = src_argb[1] >> 2;
uint8 r0 = src_argb[2] >> 3;
uint8 b1 = src_argb[4] >> 3;
uint8 g1 = src_argb[5] >> 2;
uint8 r1 = src_argb[6] >> 3;
WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) |
(b1 << 16) | (g1 << 21) | (r1 << 27));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8 b0 = src_argb[0] >> 3;
uint8 g0 = src_argb[1] >> 2;
uint8 r0 = src_argb[2] >> 3;
*(uint16*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11);
}
}
// dither4 is a row of 4 values from 4x4 dither matrix.
// The 4x4 matrix contains values to increase RGB. When converting to
// fewer bits (565) this provides an ordered dither.
// The order in the 4x4 matrix in first byte is upper left.
// The 4 values are passed as an int, then referenced as an array, so
// endian will not affect order of the original matrix. But the dither4
// will containing the first pixel in the lower byte for little endian
// or the upper byte for big endian.
void ARGBToRGB565DitherRow_C(const uint8* src_argb, uint8* dst_rgb,
const uint32 dither4, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
int dither0 = ((const unsigned char*)(&dither4))[x & 3];
int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3];
uint8 b0 = clamp255(src_argb[0] + dither0) >> 3;
uint8 g0 = clamp255(src_argb[1] + dither0) >> 2;
uint8 r0 = clamp255(src_argb[2] + dither0) >> 3;
uint8 b1 = clamp255(src_argb[4] + dither1) >> 3;
uint8 g1 = clamp255(src_argb[5] + dither1) >> 2;
uint8 r1 = clamp255(src_argb[6] + dither1) >> 3;
WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) |
(b1 << 16) | (g1 << 21) | (r1 << 27));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3];
uint8 b0 = clamp255(src_argb[0] + dither0) >> 3;
uint8 g0 = clamp255(src_argb[1] + dither0) >> 2;
uint8 r0 = clamp255(src_argb[2] + dither0) >> 3;
*(uint16*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11);
}
}
void ARGBToARGB1555Row_C(const uint8* src_argb, uint8* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 b0 = src_argb[0] >> 3;
uint8 g0 = src_argb[1] >> 3;
uint8 r0 = src_argb[2] >> 3;
uint8 a0 = src_argb[3] >> 7;
uint8 b1 = src_argb[4] >> 3;
uint8 g1 = src_argb[5] >> 3;
uint8 r1 = src_argb[6] >> 3;
uint8 a1 = src_argb[7] >> 7;
*(uint32*)(dst_rgb) =
b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) |
(b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31);
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8 b0 = src_argb[0] >> 3;
uint8 g0 = src_argb[1] >> 3;
uint8 r0 = src_argb[2] >> 3;
uint8 a0 = src_argb[3] >> 7;
*(uint16*)(dst_rgb) =
b0 | (g0 << 5) | (r0 << 10) | (a0 << 15);
}
}
void ARGBToARGB4444Row_C(const uint8* src_argb, uint8* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 b0 = src_argb[0] >> 4;
uint8 g0 = src_argb[1] >> 4;
uint8 r0 = src_argb[2] >> 4;
uint8 a0 = src_argb[3] >> 4;
uint8 b1 = src_argb[4] >> 4;
uint8 g1 = src_argb[5] >> 4;
uint8 r1 = src_argb[6] >> 4;
uint8 a1 = src_argb[7] >> 4;
*(uint32*)(dst_rgb) =
b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) |
(b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28);
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8 b0 = src_argb[0] >> 4;
uint8 g0 = src_argb[1] >> 4;
uint8 r0 = src_argb[2] >> 4;
uint8 a0 = src_argb[3] >> 4;
*(uint16*)(dst_rgb) =
b0 | (g0 << 4) | (r0 << 8) | (a0 << 12);
}
}
static __inline int RGBToY(uint8 r, uint8 g, uint8 b) {
return (66 * r + 129 * g + 25 * b + 0x1080) >> 8;
}
static __inline int RGBToU(uint8 r, uint8 g, uint8 b) {
return (112 * b - 74 * g - 38 * r + 0x8080) >> 8;
}
static __inline int RGBToV(uint8 r, uint8 g, uint8 b) {
return (112 * r - 94 * g - 18 * b + 0x8080) >> 8;
}
#define MAKEROWY(NAME, R, G, B, BPP) \
void NAME ## ToYRow_C(const uint8* src_argb0, uint8* dst_y, int width) { \
int x; \
for (x = 0; x < width; ++x) { \
dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \
src_argb0 += BPP; \
dst_y += 1; \
} \
} \
void NAME ## ToUVRow_C(const uint8* src_rgb0, int src_stride_rgb, \
uint8* dst_u, uint8* dst_v, int width) { \
const uint8* src_rgb1 = src_rgb0 + src_stride_rgb; \
int x; \
for (x = 0; x < width - 1; x += 2) { \
uint8 ab = (src_rgb0[B] + src_rgb0[B + BPP] + \
src_rgb1[B] + src_rgb1[B + BPP]) >> 2; \
uint8 ag = (src_rgb0[G] + src_rgb0[G + BPP] + \
src_rgb1[G] + src_rgb1[G + BPP]) >> 2; \
uint8 ar = (src_rgb0[R] + src_rgb0[R + BPP] + \
src_rgb1[R] + src_rgb1[R + BPP]) >> 2; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
src_rgb0 += BPP * 2; \
src_rgb1 += BPP * 2; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint8 ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \
uint8 ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \
uint8 ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
} \
}
MAKEROWY(ARGB, 2, 1, 0, 4)
MAKEROWY(BGRA, 1, 2, 3, 4)
MAKEROWY(ABGR, 0, 1, 2, 4)
MAKEROWY(RGBA, 3, 2, 1, 4)
MAKEROWY(RGB24, 2, 1, 0, 3)
MAKEROWY(RAW, 0, 1, 2, 3)
#undef MAKEROWY
// JPeg uses a variation on BT.601-1 full range
// y = 0.29900 * r + 0.58700 * g + 0.11400 * b
// u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center
// v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center
// BT.601 Mpeg range uses:
// b 0.1016 * 255 = 25.908 = 25
// g 0.5078 * 255 = 129.489 = 129
// r 0.2578 * 255 = 65.739 = 66
// JPeg 8 bit Y (not used):
// b 0.11400 * 256 = 29.184 = 29
// g 0.58700 * 256 = 150.272 = 150
// r 0.29900 * 256 = 76.544 = 77
// JPeg 7 bit Y:
// b 0.11400 * 128 = 14.592 = 15
// g 0.58700 * 128 = 75.136 = 75
// r 0.29900 * 128 = 38.272 = 38
// JPeg 8 bit U:
// b 0.50000 * 255 = 127.5 = 127
// g -0.33126 * 255 = -84.4713 = -84
// r -0.16874 * 255 = -43.0287 = -43
// JPeg 8 bit V:
// b -0.08131 * 255 = -20.73405 = -20
// g -0.41869 * 255 = -106.76595 = -107
// r 0.50000 * 255 = 127.5 = 127
static __inline int RGBToYJ(uint8 r, uint8 g, uint8 b) {
return (38 * r + 75 * g + 15 * b + 64) >> 7;
}
static __inline int RGBToUJ(uint8 r, uint8 g, uint8 b) {
return (127 * b - 84 * g - 43 * r + 0x8080) >> 8;
}
static __inline int RGBToVJ(uint8 r, uint8 g, uint8 b) {
return (127 * r - 107 * g - 20 * b + 0x8080) >> 8;
}
#define AVGB(a, b) (((a) + (b) + 1) >> 1)
#define MAKEROWYJ(NAME, R, G, B, BPP) \
void NAME ## ToYJRow_C(const uint8* src_argb0, uint8* dst_y, int width) { \
int x; \
for (x = 0; x < width; ++x) { \
dst_y[0] = RGBToYJ(src_argb0[R], src_argb0[G], src_argb0[B]); \
src_argb0 += BPP; \
dst_y += 1; \
} \
} \
void NAME ## ToUVJRow_C(const uint8* src_rgb0, int src_stride_rgb, \
uint8* dst_u, uint8* dst_v, int width) { \
const uint8* src_rgb1 = src_rgb0 + src_stride_rgb; \
int x; \
for (x = 0; x < width - 1; x += 2) { \
uint8 ab = AVGB(AVGB(src_rgb0[B], src_rgb1[B]), \
AVGB(src_rgb0[B + BPP], src_rgb1[B + BPP])); \
uint8 ag = AVGB(AVGB(src_rgb0[G], src_rgb1[G]), \
AVGB(src_rgb0[G + BPP], src_rgb1[G + BPP])); \
uint8 ar = AVGB(AVGB(src_rgb0[R], src_rgb1[R]), \
AVGB(src_rgb0[R + BPP], src_rgb1[R + BPP])); \
dst_u[0] = RGBToUJ(ar, ag, ab); \
dst_v[0] = RGBToVJ(ar, ag, ab); \
src_rgb0 += BPP * 2; \
src_rgb1 += BPP * 2; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint8 ab = AVGB(src_rgb0[B], src_rgb1[B]); \
uint8 ag = AVGB(src_rgb0[G], src_rgb1[G]); \
uint8 ar = AVGB(src_rgb0[R], src_rgb1[R]); \
dst_u[0] = RGBToUJ(ar, ag, ab); \
dst_v[0] = RGBToVJ(ar, ag, ab); \
} \
}
MAKEROWYJ(ARGB, 2, 1, 0, 4)
#undef MAKEROWYJ
void ARGBToUVJ422Row_C(const uint8* src_argb,
uint8* dst_u, uint8* dst_v, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 ab = (src_argb[0] + src_argb[4]) >> 1;
uint8 ag = (src_argb[1] + src_argb[5]) >> 1;
uint8 ar = (src_argb[2] + src_argb[6]) >> 1;
dst_u[0] = RGBToUJ(ar, ag, ab);
dst_v[0] = RGBToVJ(ar, ag, ab);
src_argb += 8;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8 ab = src_argb[0];
uint8 ag = src_argb[1];
uint8 ar = src_argb[2];
dst_u[0] = RGBToUJ(ar, ag, ab);
dst_v[0] = RGBToVJ(ar, ag, ab);
}
}
void RGB565ToYRow_C(const uint8* src_rgb565, uint8* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_rgb565[0] & 0x1f;
uint8 g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8 r = src_rgb565[1] >> 3;
b = (b << 3) | (b >> 2);
g = (g << 2) | (g >> 4);
r = (r << 3) | (r >> 2);
dst_y[0] = RGBToY(r, g, b);
src_rgb565 += 2;
dst_y += 1;
}
}
void ARGB1555ToYRow_C(const uint8* src_argb1555, uint8* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_argb1555[0] & 0x1f;
uint8 g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8 r = (src_argb1555[1] & 0x7c) >> 2;
b = (b << 3) | (b >> 2);
g = (g << 3) | (g >> 2);
r = (r << 3) | (r >> 2);
dst_y[0] = RGBToY(r, g, b);
src_argb1555 += 2;
dst_y += 1;
}
}
void ARGB4444ToYRow_C(const uint8* src_argb4444, uint8* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 b = src_argb4444[0] & 0x0f;
uint8 g = src_argb4444[0] >> 4;
uint8 r = src_argb4444[1] & 0x0f;
b = (b << 4) | b;
g = (g << 4) | g;
r = (r << 4) | r;
dst_y[0] = RGBToY(r, g, b);
src_argb4444 += 2;
dst_y += 1;
}
}
void RGB565ToUVRow_C(const uint8* src_rgb565, int src_stride_rgb565,
uint8* dst_u, uint8* dst_v, int width) {
const uint8* next_rgb565 = src_rgb565 + src_stride_rgb565;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 b0 = src_rgb565[0] & 0x1f;
uint8 g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8 r0 = src_rgb565[1] >> 3;
uint8 b1 = src_rgb565[2] & 0x1f;
uint8 g1 = (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3);
uint8 r1 = src_rgb565[3] >> 3;
uint8 b2 = next_rgb565[0] & 0x1f;
uint8 g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3);
uint8 r2 = next_rgb565[1] >> 3;
uint8 b3 = next_rgb565[2] & 0x1f;
uint8 g3 = (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3);
uint8 r3 = next_rgb565[3] >> 3;
uint8 b = (b0 + b1 + b2 + b3); // 565 * 4 = 787.
uint8 g = (g0 + g1 + g2 + g3);
uint8 r = (r0 + r1 + r2 + r3);
b = (b << 1) | (b >> 6); // 787 -> 888.
r = (r << 1) | (r >> 6);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_rgb565 += 4;
next_rgb565 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8 b0 = src_rgb565[0] & 0x1f;
uint8 g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8 r0 = src_rgb565[1] >> 3;
uint8 b2 = next_rgb565[0] & 0x1f;
uint8 g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3);
uint8 r2 = next_rgb565[1] >> 3;
uint8 b = (b0 + b2); // 565 * 2 = 676.
uint8 g = (g0 + g2);
uint8 r = (r0 + r2);
b = (b << 2) | (b >> 4); // 676 -> 888
g = (g << 1) | (g >> 6);
r = (r << 2) | (r >> 4);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
}
}
void ARGB1555ToUVRow_C(const uint8* src_argb1555, int src_stride_argb1555,
uint8* dst_u, uint8* dst_v, int width) {
const uint8* next_argb1555 = src_argb1555 + src_stride_argb1555;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 b0 = src_argb1555[0] & 0x1f;
uint8 g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8 r0 = (src_argb1555[1] & 0x7c) >> 2;
uint8 b1 = src_argb1555[2] & 0x1f;
uint8 g1 = (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3);
uint8 r1 = (src_argb1555[3] & 0x7c) >> 2;
uint8 b2 = next_argb1555[0] & 0x1f;
uint8 g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3);
uint8 r2 = (next_argb1555[1] & 0x7c) >> 2;
uint8 b3 = next_argb1555[2] & 0x1f;
uint8 g3 = (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3);
uint8 r3 = (next_argb1555[3] & 0x7c) >> 2;
uint8 b = (b0 + b1 + b2 + b3); // 555 * 4 = 777.
uint8 g = (g0 + g1 + g2 + g3);
uint8 r = (r0 + r1 + r2 + r3);
b = (b << 1) | (b >> 6); // 777 -> 888.
g = (g << 1) | (g >> 6);
r = (r << 1) | (r >> 6);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_argb1555 += 4;
next_argb1555 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8 b0 = src_argb1555[0] & 0x1f;
uint8 g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8 r0 = (src_argb1555[1] & 0x7c) >> 2;
uint8 b2 = next_argb1555[0] & 0x1f;
uint8 g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3);
uint8 r2 = next_argb1555[1] >> 3;
uint8 b = (b0 + b2); // 555 * 2 = 666.
uint8 g = (g0 + g2);
uint8 r = (r0 + r2);
b = (b << 2) | (b >> 4); // 666 -> 888.
g = (g << 2) | (g >> 4);
r = (r << 2) | (r >> 4);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
}
}
void ARGB4444ToUVRow_C(const uint8* src_argb4444, int src_stride_argb4444,
uint8* dst_u, uint8* dst_v, int width) {
const uint8* next_argb4444 = src_argb4444 + src_stride_argb4444;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 b0 = src_argb4444[0] & 0x0f;
uint8 g0 = src_argb4444[0] >> 4;
uint8 r0 = src_argb4444[1] & 0x0f;
uint8 b1 = src_argb4444[2] & 0x0f;
uint8 g1 = src_argb4444[2] >> 4;
uint8 r1 = src_argb4444[3] & 0x0f;
uint8 b2 = next_argb4444[0] & 0x0f;
uint8 g2 = next_argb4444[0] >> 4;
uint8 r2 = next_argb4444[1] & 0x0f;
uint8 b3 = next_argb4444[2] & 0x0f;
uint8 g3 = next_argb4444[2] >> 4;
uint8 r3 = next_argb4444[3] & 0x0f;
uint8 b = (b0 + b1 + b2 + b3); // 444 * 4 = 666.
uint8 g = (g0 + g1 + g2 + g3);
uint8 r = (r0 + r1 + r2 + r3);
b = (b << 2) | (b >> 4); // 666 -> 888.
g = (g << 2) | (g >> 4);
r = (r << 2) | (r >> 4);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_argb4444 += 4;
next_argb4444 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8 b0 = src_argb4444[0] & 0x0f;
uint8 g0 = src_argb4444[0] >> 4;
uint8 r0 = src_argb4444[1] & 0x0f;
uint8 b2 = next_argb4444[0] & 0x0f;
uint8 g2 = next_argb4444[0] >> 4;
uint8 r2 = next_argb4444[1] & 0x0f;
uint8 b = (b0 + b2); // 444 * 2 = 555.
uint8 g = (g0 + g2);
uint8 r = (r0 + r2);
b = (b << 3) | (b >> 2); // 555 -> 888.
g = (g << 3) | (g >> 2);
r = (r << 3) | (r >> 2);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
}
}
void ARGBToUV444Row_C(const uint8* src_argb,
uint8* dst_u, uint8* dst_v, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 ab = src_argb[0];
uint8 ag = src_argb[1];
uint8 ar = src_argb[2];
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
src_argb += 4;
dst_u += 1;
dst_v += 1;
}
}
void ARGBToUV422Row_C(const uint8* src_argb,
uint8* dst_u, uint8* dst_v, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 ab = (src_argb[0] + src_argb[4]) >> 1;
uint8 ag = (src_argb[1] + src_argb[5]) >> 1;
uint8 ar = (src_argb[2] + src_argb[6]) >> 1;
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
src_argb += 8;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8 ab = src_argb[0];
uint8 ag = src_argb[1];
uint8 ar = src_argb[2];
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
}
}
void ARGBToUV411Row_C(const uint8* src_argb,
uint8* dst_u, uint8* dst_v, int width) {
int x;
for (x = 0; x < width - 3; x += 4) {
uint8 ab = (src_argb[0] + src_argb[4] + src_argb[8] + src_argb[12]) >> 2;
uint8 ag = (src_argb[1] + src_argb[5] + src_argb[9] + src_argb[13]) >> 2;
uint8 ar = (src_argb[2] + src_argb[6] + src_argb[10] + src_argb[14]) >> 2;
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
src_argb += 16;
dst_u += 1;
dst_v += 1;
}
// Odd width handling mimics 'any' function which replicates last pixel.
if ((width & 3) == 3) {
uint8 ab = (src_argb[0] + src_argb[4] + src_argb[8] + src_argb[8]) >> 2;
uint8 ag = (src_argb[1] + src_argb[5] + src_argb[9] + src_argb[9]) >> 2;
uint8 ar = (src_argb[2] + src_argb[6] + src_argb[10] + src_argb[10]) >> 2;
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
} else if ((width & 3) == 2) {
uint8 ab = (src_argb[0] + src_argb[4]) >> 1;
uint8 ag = (src_argb[1] + src_argb[5]) >> 1;
uint8 ar = (src_argb[2] + src_argb[6]) >> 1;
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
} else if ((width & 3) == 1) {
uint8 ab = src_argb[0];
uint8 ag = src_argb[1];
uint8 ar = src_argb[2];
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
}
}
void ARGBGrayRow_C(const uint8* src_argb, uint8* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8 y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]);
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = src_argb[3];
dst_argb += 4;
src_argb += 4;
}
}
// Convert a row of image to Sepia tone.
void ARGBSepiaRow_C(uint8* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
int sb = (b * 17 + g * 68 + r * 35) >> 7;
int sg = (b * 22 + g * 88 + r * 45) >> 7;
int sr = (b * 24 + g * 98 + r * 50) >> 7;
// b does not over flow. a is preserved from original.
dst_argb[0] = sb;
dst_argb[1] = clamp255(sg);
dst_argb[2] = clamp255(sr);
dst_argb += 4;
}
}
// Apply color matrix to a row of image. Matrix is signed.
// TODO(fbarchard): Consider adding rounding (+32).
void ARGBColorMatrixRow_C(const uint8* src_argb, uint8* dst_argb,
const int8* matrix_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = src_argb[0];
int g = src_argb[1];
int r = src_argb[2];
int a = src_argb[3];
int sb = (b * matrix_argb[0] + g * matrix_argb[1] +
r * matrix_argb[2] + a * matrix_argb[3]) >> 6;
int sg = (b * matrix_argb[4] + g * matrix_argb[5] +
r * matrix_argb[6] + a * matrix_argb[7]) >> 6;
int sr = (b * matrix_argb[8] + g * matrix_argb[9] +
r * matrix_argb[10] + a * matrix_argb[11]) >> 6;
int sa = (b * matrix_argb[12] + g * matrix_argb[13] +
r * matrix_argb[14] + a * matrix_argb[15]) >> 6;
dst_argb[0] = Clamp(sb);
dst_argb[1] = Clamp(sg);
dst_argb[2] = Clamp(sr);
dst_argb[3] = Clamp(sa);
src_argb += 4;
dst_argb += 4;
}
}
// Apply color table to a row of image.
void ARGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
int a = dst_argb[3];
dst_argb[0] = table_argb[b * 4 + 0];
dst_argb[1] = table_argb[g * 4 + 1];
dst_argb[2] = table_argb[r * 4 + 2];
dst_argb[3] = table_argb[a * 4 + 3];
dst_argb += 4;
}
}
// Apply color table to a row of image.
void RGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
dst_argb[0] = table_argb[b * 4 + 0];
dst_argb[1] = table_argb[g * 4 + 1];
dst_argb[2] = table_argb[r * 4 + 2];
dst_argb += 4;
}
}
void ARGBQuantizeRow_C(uint8* dst_argb, int scale, int interval_size,
int interval_offset, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset;
dst_argb[1] = (g * scale >> 16) * interval_size + interval_offset;
dst_argb[2] = (r * scale >> 16) * interval_size + interval_offset;
dst_argb += 4;
}
}
#define REPEAT8(v) (v) | ((v) << 8)
#define SHADE(f, v) v * f >> 24
void ARGBShadeRow_C(const uint8* src_argb, uint8* dst_argb, int width,
uint32 value) {
const uint32 b_scale = REPEAT8(value & 0xff);
const uint32 g_scale = REPEAT8((value >> 8) & 0xff);
const uint32 r_scale = REPEAT8((value >> 16) & 0xff);
const uint32 a_scale = REPEAT8(value >> 24);
int i;
for (i = 0; i < width; ++i) {
const uint32 b = REPEAT8(src_argb[0]);
const uint32 g = REPEAT8(src_argb[1]);
const uint32 r = REPEAT8(src_argb[2]);
const uint32 a = REPEAT8(src_argb[3]);
dst_argb[0] = SHADE(b, b_scale);
dst_argb[1] = SHADE(g, g_scale);
dst_argb[2] = SHADE(r, r_scale);
dst_argb[3] = SHADE(a, a_scale);
src_argb += 4;
dst_argb += 4;
}
}
#undef REPEAT8
#undef SHADE
#define REPEAT8(v) (v) | ((v) << 8)
#define SHADE(f, v) v * f >> 16
void ARGBMultiplyRow_C(const uint8* src_argb0, const uint8* src_argb1,
uint8* dst_argb, int width) {
int i;
for (i = 0; i < width; ++i) {
const uint32 b = REPEAT8(src_argb0[0]);
const uint32 g = REPEAT8(src_argb0[1]);
const uint32 r = REPEAT8(src_argb0[2]);
const uint32 a = REPEAT8(src_argb0[3]);
const uint32 b_scale = src_argb1[0];
const uint32 g_scale = src_argb1[1];
const uint32 r_scale = src_argb1[2];
const uint32 a_scale = src_argb1[3];
dst_argb[0] = SHADE(b, b_scale);
dst_argb[1] = SHADE(g, g_scale);
dst_argb[2] = SHADE(r, r_scale);
dst_argb[3] = SHADE(a, a_scale);
src_argb0 += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef REPEAT8
#undef SHADE
#define SHADE(f, v) clamp255(v + f)
void ARGBAddRow_C(const uint8* src_argb0, const uint8* src_argb1,
uint8* dst_argb, int width) {
int i;
for (i = 0; i < width; ++i) {
const int b = src_argb0[0];
const int g = src_argb0[1];
const int r = src_argb0[2];
const int a = src_argb0[3];
const int b_add = src_argb1[0];
const int g_add = src_argb1[1];
const int r_add = src_argb1[2];
const int a_add = src_argb1[3];
dst_argb[0] = SHADE(b, b_add);
dst_argb[1] = SHADE(g, g_add);
dst_argb[2] = SHADE(r, r_add);
dst_argb[3] = SHADE(a, a_add);
src_argb0 += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef SHADE
#define SHADE(f, v) clamp0(f - v)
void ARGBSubtractRow_C(const uint8* src_argb0, const uint8* src_argb1,
uint8* dst_argb, int width) {
int i;
for (i = 0; i < width; ++i) {
const int b = src_argb0[0];
const int g = src_argb0[1];
const int r = src_argb0[2];
const int a = src_argb0[3];
const int b_sub = src_argb1[0];
const int g_sub = src_argb1[1];
const int r_sub = src_argb1[2];
const int a_sub = src_argb1[3];
dst_argb[0] = SHADE(b, b_sub);
dst_argb[1] = SHADE(g, g_sub);
dst_argb[2] = SHADE(r, r_sub);
dst_argb[3] = SHADE(a, a_sub);
src_argb0 += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef SHADE
// Sobel functions which mimics SSSE3.
void SobelXRow_C(const uint8* src_y0, const uint8* src_y1, const uint8* src_y2,
uint8* dst_sobelx, int width) {
int i;
for (i = 0; i < width; ++i) {
int a = src_y0[i];
int b = src_y1[i];
int c = src_y2[i];
int a_sub = src_y0[i + 2];
int b_sub = src_y1[i + 2];
int c_sub = src_y2[i + 2];
int a_diff = a - a_sub;
int b_diff = b - b_sub;
int c_diff = c - c_sub;
int sobel = Abs(a_diff + b_diff * 2 + c_diff);
dst_sobelx[i] = (uint8)(clamp255(sobel));
}
}
void SobelYRow_C(const uint8* src_y0, const uint8* src_y1,
uint8* dst_sobely, int width) {
int i;
for (i = 0; i < width; ++i) {
int a = src_y0[i + 0];
int b = src_y0[i + 1];
int c = src_y0[i + 2];
int a_sub = src_y1[i + 0];
int b_sub = src_y1[i + 1];
int c_sub = src_y1[i + 2];
int a_diff = a - a_sub;
int b_diff = b - b_sub;
int c_diff = c - c_sub;
int sobel = Abs(a_diff + b_diff * 2 + c_diff);
dst_sobely[i] = (uint8)(clamp255(sobel));
}
}
void SobelRow_C(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_argb, int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int s = clamp255(r + b);
dst_argb[0] = (uint8)(s);
dst_argb[1] = (uint8)(s);
dst_argb[2] = (uint8)(s);
dst_argb[3] = (uint8)(255u);
dst_argb += 4;
}
}
void SobelToPlaneRow_C(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_y, int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int s = clamp255(r + b);
dst_y[i] = (uint8)(s);
}
}
void SobelXYRow_C(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_argb, int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int g = clamp255(r + b);
dst_argb[0] = (uint8)(b);
dst_argb[1] = (uint8)(g);
dst_argb[2] = (uint8)(r);
dst_argb[3] = (uint8)(255u);
dst_argb += 4;
}
}
void J400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width) {
// Copy a Y to RGB.
int x;
for (x = 0; x < width; ++x) {
uint8 y = src_y[0];
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = 255u;
dst_argb += 4;
++src_y;
}
}
// TODO(fbarchard): Unify these structures to be platform independent.
// TODO(fbarchard): Generate SIMD structures from float matrix.
// BT.601 YUV to RGB reference
// R = (Y - 16) * 1.164 - V * -1.596
// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813
// B = (Y - 16) * 1.164 - U * -2.018
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
// U and V contributions to R,G,B.
#define UB -128 /* max(-128, round(-2.018 * 64)) */
#define UG 25 /* round(0.391 * 64) */
#define VG 52 /* round(0.813 * 64) */
#define VR -102 /* round(-1.596 * 64) */
// Bias values to subtract 16 from Y and 128 from U and V.
#define BB (UB * 128 + YGB)
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__)
const YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ UG, VG, UG, VG, UG, VG, UG, VG },
{ UG, VG, UG, VG, UG, VG, UG, VG },
{ BB, BG, BR, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
const YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{ -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB },
{ -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB },
{ VG, UG, VG, UG, VG, UG, VG, UG },
{ VG, UG, VG, UG, VG, UG, VG, UG },
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#elif defined(__arm__)
const YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{ -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 },
{ UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 },
{ BB, BG, BR, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
const YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{ -VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0 },
{ VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0 },
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#else
const YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{ UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0 },
{ UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG },
{ 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR },
{ BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB },
{ BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG },
{ BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR },
{ YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG }
};
const YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{ VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0 },
{ VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG },
{ 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB },
{ BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR },
{ BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG },
{ BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB },
{ YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG }
};
#endif
#undef BB
#undef BG
#undef BR
#undef YGB
#undef UB
#undef UG
#undef VG
#undef VR
#undef YG
// JPEG YUV to RGB reference
// * R = Y - V * -1.40200
// * G = Y - U * 0.34414 - V * 0.71414
// * B = Y - U * -1.77200
// Y contribution to R,G,B. Scale and bias.
#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */
#define YGB 32 /* 64 / 2 */
// U and V contributions to R,G,B.
#define UB -113 /* round(-1.77200 * 64) */
#define UG 22 /* round(0.34414 * 64) */
#define VG 46 /* round(0.71414 * 64) */
#define VR -90 /* round(-1.40200 * 64) */
// Bias values to round, and subtract 128 from U and V.
#define BB (UB * 128 + YGB)
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__)
const YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ UG, VG, UG, VG, UG, VG, UG, VG },
{ UG, VG, UG, VG, UG, VG, UG, VG },
{ BB, BG, BR, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
const YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
{ -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB },
{ -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB },
{ VG, UG, VG, UG, VG, UG, VG, UG },
{ VG, UG, VG, UG, VG, UG, VG, UG },
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#elif defined(__arm__)
const YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
{ -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 },
{ UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 },
{ BB, BG, BR, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
const YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
{ -VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0 },
{ VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0 },
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#else
const YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
{ UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0 },
{ UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG },
{ 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR },
{ BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB },
{ BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG },
{ BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR },
{ YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG }
};
const YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
{ VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0 },
{ VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG },
{ 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB },
{ BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR },
{ BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG },
{ BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB },
{ YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG }
};
#endif
#undef BB
#undef BG
#undef BR
#undef YGB
#undef UB
#undef UG
#undef VG
#undef VR
#undef YG
// BT.709 YUV to RGB reference
// * R = Y - V * -1.28033
// * G = Y - U * 0.21482 - V * 0.38059
// * B = Y - U * -2.12798
// Y contribution to R,G,B. Scale and bias.
#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */
#define YGB 32 /* 64 / 2 */
// TODO(fbarchard): Find way to express 2.12 instead of 2.0.
// U and V contributions to R,G,B.
#define UB -128 /* max(-128, round(-2.12798 * 64)) */
#define UG 14 /* round(0.21482 * 64) */
#define VG 24 /* round(0.38059 * 64) */
#define VR -82 /* round(-1.28033 * 64) */
// Bias values to round, and subtract 128 from U and V.
#define BB (UB * 128 + YGB)
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__)
const YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ UG, VG, UG, VG, UG, VG, UG, VG },
{ UG, VG, UG, VG, UG, VG, UG, VG },
{ BB, BG, BR, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
const YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
{ -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB },
{ -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB },
{ VG, UG, VG, UG, VG, UG, VG, UG },
{ VG, UG, VG, UG, VG, UG, VG, UG },
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#elif defined(__arm__)
const YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
{ -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 },
{ UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 },
{ BB, BG, BR, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
const YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
{ -VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0 },
{ VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0 },
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#else
const YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
{ UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0 },
{ UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG },
{ 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR },
{ BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB },
{ BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG },
{ BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR },
{ YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG }
};
const YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
{ VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0 },
{ VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG },
{ 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB },
{ BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR },
{ BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG },
{ BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB },
{ YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG }
};
#endif
#undef BB
#undef BG
#undef BR
#undef YGB
#undef UB
#undef UG
#undef VG
#undef VR
#undef YG
// C reference code that mimics the YUV assembly.
static __inline void YuvPixel(uint8 y, uint8 u, uint8 v,
uint8* b, uint8* g, uint8* r,
const struct YuvConstants* yuvconstants) {
#if defined(__aarch64__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = -yuvconstants->kUVToRB[1];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#elif defined(__arm__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[4];
int vr = -yuvconstants->kUVToRB[4];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#else
int ub = yuvconstants->kUVToB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = yuvconstants->kUVToR[1];
int bb = yuvconstants->kUVBiasB[0];
int bg = yuvconstants->kUVBiasG[0];
int br = yuvconstants->kUVBiasR[0];
int yg = yuvconstants->kYToRgb[0];
#endif
uint32 y1 = (uint32)(y * 0x0101 * yg) >> 16;
*b = Clamp((int32)(-(u * ub ) + y1 + bb) >> 6);
*g = Clamp((int32)(-(u * ug + v * vg) + y1 + bg) >> 6);
*r = Clamp((int32)(-( v * vr) + y1 + br) >> 6);
}
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
// C reference code that mimics the YUV assembly.
static __inline void YPixel(uint8 y, uint8* b, uint8* g, uint8* r) {
uint32 y1 = (uint32)(y * 0x0101 * YG) >> 16;
*b = Clamp((int32)(y1 + YGB) >> 6);
*g = Clamp((int32)(y1 + YGB) >> 6);
*r = Clamp((int32)(y1 + YGB) >> 6);
}
#undef YG
#undef YGB
#if !defined(LIBYUV_DISABLE_NEON) && \
(defined(__ARM_NEON__) || defined(__aarch64__) || defined(LIBYUV_NEON))
// C mimic assembly.
// TODO(fbarchard): Remove subsampling from Neon.
void I444ToARGBRow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8 u = (src_u[0] + src_u[1] + 1) >> 1;
uint8 v = (src_v[0] + src_v[1] + 1) >> 1;
YuvPixel(src_y[0], u, v, rgb_buf + 0, rgb_buf + 1, rgb_buf + 2,
yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], u, v, rgb_buf + 4, rgb_buf + 5, rgb_buf + 6,
yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 2;
src_v += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
#else
void I444ToARGBRow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
src_y += 1;
src_u += 1;
src_v += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
#endif
// Also used for 420
void I422ToARGBRow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void I422AlphaToARGBRow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
const uint8* src_a,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
YuvPixel(src_y[1], src_u[0], src_v[0],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = src_a[1];
src_y += 2;
src_u += 1;
src_v += 1;
src_a += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
}
}
void I422ToRGB24Row_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0],
rgb_buf + 3, rgb_buf + 4, rgb_buf + 5, yuvconstants);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
}
}
void I422ToARGB4444Row_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
uint8 b0;
uint8 g0;
uint8 r0;
uint8 b1;
uint8 g1;
uint8 r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 4;
g0 = g0 >> 4;
r0 = r0 >> 4;
b1 = b1 >> 4;
g1 = g1 >> 4;
r1 = r1 >> 4;
*(uint32*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) |
(b1 << 16) | (g1 << 20) | (r1 << 24) | 0xf000f000;
src_y += 2;
src_u += 1;
src_v += 1;
dst_argb4444 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 4;
g0 = g0 >> 4;
r0 = r0 >> 4;
*(uint16*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) |
0xf000;
}
}
void I422ToARGB1555Row_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
uint8 b0;
uint8 g0;
uint8 r0;
uint8 b1;
uint8 g1;
uint8 r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 3;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 3;
r1 = r1 >> 3;
*(uint32*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) |
(b1 << 16) | (g1 << 21) | (r1 << 26) | 0x80008000;
src_y += 2;
src_u += 1;
src_v += 1;
dst_argb1555 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 3;
r0 = r0 >> 3;
*(uint16*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) |
0x8000;
}
}
void I422ToRGB565Row_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
uint8 b0;
uint8 g0;
uint8 r0;
uint8 b1;
uint8 g1;
uint8 r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
*(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) |
(b1 << 16) | (g1 << 21) | (r1 << 27);
src_y += 2;
src_u += 1;
src_v += 1;
dst_rgb565 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
*(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11);
}
}
void I411ToARGBRow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 3; x += 4) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
YuvPixel(src_y[2], src_u[0], src_v[0],
rgb_buf + 8, rgb_buf + 9, rgb_buf + 10, yuvconstants);
rgb_buf[11] = 255;
YuvPixel(src_y[3], src_u[0], src_v[0],
rgb_buf + 12, rgb_buf + 13, rgb_buf + 14, yuvconstants);
rgb_buf[15] = 255;
src_y += 4;
src_u += 1;
src_v += 1;
rgb_buf += 16; // Advance 4 pixels.
}
if (width & 2) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV12ToARGBRow_C(const uint8* src_y,
const uint8* src_uv,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_uv[0], src_uv[1],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_uv += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV21ToARGBRow_C(const uint8* src_y,
const uint8* src_vu,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_vu[1], src_vu[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_vu[1], src_vu[0],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_vu += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_vu[1], src_vu[0],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV12ToRGB565Row_C(const uint8* src_y,
const uint8* src_uv,
uint8* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
uint8 b0;
uint8 g0;
uint8 r0;
uint8 b1;
uint8 g1;
uint8 r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
*(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) |
(b1 << 16) | (g1 << 21) | (r1 << 27);
src_y += 2;
src_uv += 2;
dst_rgb565 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
*(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11);
}
}
void YUY2ToARGBRow_C(const uint8* src_yuy2,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_yuy2 += 4;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void UYVYToARGBRow_C(const uint8* src_uyvy,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2],
rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_uyvy += 4;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2],
rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void I422ToRGBARow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 1, rgb_buf + 2, rgb_buf + 3, yuvconstants);
rgb_buf[0] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0],
rgb_buf + 5, rgb_buf + 6, rgb_buf + 7, yuvconstants);
rgb_buf[4] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0],
rgb_buf + 1, rgb_buf + 2, rgb_buf + 3, yuvconstants);
rgb_buf[0] = 255;
}
}
void I400ToARGBRow_C(const uint8* src_y, uint8* rgb_buf, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2);
rgb_buf[3] = 255;
YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6);
rgb_buf[7] = 255;
src_y += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2);
rgb_buf[3] = 255;
}
}
void MirrorRow_C(const uint8* src, uint8* dst, int width) {
int x;
src += width - 1;
for (x = 0; x < width - 1; x += 2) {
dst[x] = src[0];
dst[x + 1] = src[-1];
src -= 2;
}
if (width & 1) {
dst[width - 1] = src[0];
}
}
void MirrorUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) {
int x;
src_uv += (width - 1) << 1;
for (x = 0; x < width - 1; x += 2) {
dst_u[x] = src_uv[0];
dst_u[x + 1] = src_uv[-2];
dst_v[x] = src_uv[1];
dst_v[x + 1] = src_uv[-2 + 1];
src_uv -= 4;
}
if (width & 1) {
dst_u[width - 1] = src_uv[0];
dst_v[width - 1] = src_uv[1];
}
}
void ARGBMirrorRow_C(const uint8* src, uint8* dst, int width) {
int x;
const uint32* src32 = (const uint32*)(src);
uint32* dst32 = (uint32*)(dst);
src32 += width - 1;
for (x = 0; x < width - 1; x += 2) {
dst32[x] = src32[0];
dst32[x + 1] = src32[-1];
src32 -= 2;
}
if (width & 1) {
dst32[width - 1] = src32[0];
}
}
void SplitUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_u[x] = src_uv[0];
dst_u[x + 1] = src_uv[2];
dst_v[x] = src_uv[1];
dst_v[x + 1] = src_uv[3];
src_uv += 4;
}
if (width & 1) {
dst_u[width - 1] = src_uv[0];
dst_v[width - 1] = src_uv[1];
}
}
void MergeUVRow_C(const uint8* src_u, const uint8* src_v, uint8* dst_uv,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_uv[0] = src_u[x];
dst_uv[1] = src_v[x];
dst_uv[2] = src_u[x + 1];
dst_uv[3] = src_v[x + 1];
dst_uv += 4;
}
if (width & 1) {
dst_uv[0] = src_u[width - 1];
dst_uv[1] = src_v[width - 1];
}
}
void CopyRow_C(const uint8* src, uint8* dst, int count) {
memcpy(dst, src, count);
}
void CopyRow_16_C(const uint16* src, uint16* dst, int count) {
memcpy(dst, src, count * 2);
}
void SetRow_C(uint8* dst, uint8 v8, int width) {
memset(dst, v8, width);
}
void ARGBSetRow_C(uint8* dst_argb, uint32 v32, int width) {
uint32* d = (uint32*)(dst_argb);
int x;
for (x = 0; x < width; ++x) {
d[x] = v32;
}
}
// Filter 2 rows of YUY2 UV's (422) into U and V (420).
void YUY2ToUVRow_C(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_u, uint8* dst_v, int width) {
// Output a row of UV values, filtering 2 rows of YUY2.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1;
dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1;
src_yuy2 += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of YUY2 UV's (422) into U and V (422).
void YUY2ToUV422Row_C(const uint8* src_yuy2,
uint8* dst_u, uint8* dst_v, int width) {
// Output a row of UV values.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = src_yuy2[1];
dst_v[0] = src_yuy2[3];
src_yuy2 += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of YUY2 Y's (422) into Y (420/422).
void YUY2ToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width) {
// Output a row of Y values.
int x;
for (x = 0; x < width - 1; x += 2) {
dst_y[x] = src_yuy2[0];
dst_y[x + 1] = src_yuy2[2];
src_yuy2 += 4;
}
if (width & 1) {
dst_y[width - 1] = src_yuy2[0];
}
}
// Filter 2 rows of UYVY UV's (422) into U and V (420).
void UYVYToUVRow_C(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_u, uint8* dst_v, int width) {
// Output a row of UV values.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1;
dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1;
src_uyvy += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of UYVY UV's (422) into U and V (422).
void UYVYToUV422Row_C(const uint8* src_uyvy,
uint8* dst_u, uint8* dst_v, int width) {
// Output a row of UV values.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = src_uyvy[0];
dst_v[0] = src_uyvy[2];
src_uyvy += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of UYVY Y's (422) into Y (420/422).
void UYVYToYRow_C(const uint8* src_uyvy, uint8* dst_y, int width) {
// Output a row of Y values.
int x;
for (x = 0; x < width - 1; x += 2) {
dst_y[x] = src_uyvy[1];
dst_y[x + 1] = src_uyvy[3];
src_uyvy += 4;
}
if (width & 1) {
dst_y[width - 1] = src_uyvy[1];
}
}
#define BLEND(f, b, a) (((256 - a) * b) >> 8) + f
// Blend src_argb0 over src_argb1 and store to dst_argb.
// dst_argb may be src_argb0 or src_argb1.
// This code mimics the SSSE3 version for better testability.
void ARGBBlendRow_C(const uint8* src_argb0, const uint8* src_argb1,
uint8* dst_argb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint32 fb = src_argb0[0];
uint32 fg = src_argb0[1];
uint32 fr = src_argb0[2];
uint32 a = src_argb0[3];
uint32 bb = src_argb1[0];
uint32 bg = src_argb1[1];
uint32 br = src_argb1[2];
dst_argb[0] = BLEND(fb, bb, a);
dst_argb[1] = BLEND(fg, bg, a);
dst_argb[2] = BLEND(fr, br, a);
dst_argb[3] = 255u;
fb = src_argb0[4 + 0];
fg = src_argb0[4 + 1];
fr = src_argb0[4 + 2];
a = src_argb0[4 + 3];
bb = src_argb1[4 + 0];
bg = src_argb1[4 + 1];
br = src_argb1[4 + 2];
dst_argb[4 + 0] = BLEND(fb, bb, a);
dst_argb[4 + 1] = BLEND(fg, bg, a);
dst_argb[4 + 2] = BLEND(fr, br, a);
dst_argb[4 + 3] = 255u;
src_argb0 += 8;
src_argb1 += 8;
dst_argb += 8;
}
if (width & 1) {
uint32 fb = src_argb0[0];
uint32 fg = src_argb0[1];
uint32 fr = src_argb0[2];
uint32 a = src_argb0[3];
uint32 bb = src_argb1[0];
uint32 bg = src_argb1[1];
uint32 br = src_argb1[2];
dst_argb[0] = BLEND(fb, bb, a);
dst_argb[1] = BLEND(fg, bg, a);
dst_argb[2] = BLEND(fr, br, a);
dst_argb[3] = 255u;
}
}
#undef BLEND
#define UBLEND(f, b, a) (((a) * f) + ((255 - a) * b) + 255) >> 8
void BlendPlaneRow_C(const uint8* src0, const uint8* src1,
const uint8* alpha, uint8* dst, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst[0] = UBLEND(src0[0], src1[0], alpha[0]);
dst[1] = UBLEND(src0[1], src1[1], alpha[1]);
src0 += 2;
src1 += 2;
alpha += 2;
dst += 2;
}
if (width & 1) {
dst[0] = UBLEND(src0[0], src1[0], alpha[0]);
}
}
#undef UBLEND
#define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24
// Multiply source RGB by alpha and store to destination.
// This code mimics the SSSE3 version for better testability.
void ARGBAttenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
uint32 b = src_argb[0];
uint32 g = src_argb[1];
uint32 r = src_argb[2];
uint32 a = src_argb[3];
dst_argb[0] = ATTENUATE(b, a);
dst_argb[1] = ATTENUATE(g, a);
dst_argb[2] = ATTENUATE(r, a);
dst_argb[3] = a;
b = src_argb[4];
g = src_argb[5];
r = src_argb[6];
a = src_argb[7];
dst_argb[4] = ATTENUATE(b, a);
dst_argb[5] = ATTENUATE(g, a);
dst_argb[6] = ATTENUATE(r, a);
dst_argb[7] = a;
src_argb += 8;
dst_argb += 8;
}
if (width & 1) {
const uint32 b = src_argb[0];
const uint32 g = src_argb[1];
const uint32 r = src_argb[2];
const uint32 a = src_argb[3];
dst_argb[0] = ATTENUATE(b, a);
dst_argb[1] = ATTENUATE(g, a);
dst_argb[2] = ATTENUATE(r, a);
dst_argb[3] = a;
}
}
#undef ATTENUATE
// Divide source RGB by alpha and store to destination.
// b = (b * 255 + (a / 2)) / a;
// g = (g * 255 + (a / 2)) / a;
// r = (r * 255 + (a / 2)) / a;
// Reciprocal method is off by 1 on some values. ie 125
// 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower.
#define T(a) 0x01000000 + (0x10000 / a)
const uint32 fixed_invtbl8[256] = {
0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06), T(0x07),
T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d), T(0x0e), T(0x0f),
T(0x10), T(0x11), T(0x12), T(0x13), T(0x14), T(0x15), T(0x16), T(0x17),
T(0x18), T(0x19), T(0x1a), T(0x1b), T(0x1c), T(0x1d), T(0x1e), T(0x1f),
T(0x20), T(0x21), T(0x22), T(0x23), T(0x24), T(0x25), T(0x26), T(0x27),
T(0x28), T(0x29), T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f),
T(0x30), T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37),
T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e), T(0x3f),
T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45), T(0x46), T(0x47),
T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c), T(0x4d), T(0x4e), T(0x4f),
T(0x50), T(0x51), T(0x52), T(0x53), T(0x54), T(0x55), T(0x56), T(0x57),
T(0x58), T(0x59), T(0x5a), T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f),
T(0x60), T(0x61), T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67),
T(0x68), T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f),
T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76), T(0x77),
T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d), T(0x7e), T(0x7f),
T(0x80), T(0x81), T(0x82), T(0x83), T(0x84), T(0x85), T(0x86), T(0x87),
T(0x88), T(0x89), T(0x8a), T(0x8b), T(0x8c), T(0x8d), T(0x8e), T(0x8f),
T(0x90), T(0x91), T(0x92), T(0x93), T(0x94), T(0x95), T(0x96), T(0x97),
T(0x98), T(0x99), T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f),
T(0xa0), T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7),
T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae), T(0xaf),
T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5), T(0xb6), T(0xb7),
T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc), T(0xbd), T(0xbe), T(0xbf),
T(0xc0), T(0xc1), T(0xc2), T(0xc3), T(0xc4), T(0xc5), T(0xc6), T(0xc7),
T(0xc8), T(0xc9), T(0xca), T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf),
T(0xd0), T(0xd1), T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7),
T(0xd8), T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf),
T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6), T(0xe7),
T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed), T(0xee), T(0xef),
T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4), T(0xf5), T(0xf6), T(0xf7),
T(0xf8), T(0xf9), T(0xfa), T(0xfb), T(0xfc), T(0xfd), T(0xfe), 0x01000100 };
#undef T
void ARGBUnattenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) {
int i;
for (i = 0; i < width; ++i) {
uint32 b = src_argb[0];
uint32 g = src_argb[1];
uint32 r = src_argb[2];
const uint32 a = src_argb[3];
const uint32 ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point
b = (b * ia) >> 8;
g = (g * ia) >> 8;
r = (r * ia) >> 8;
// Clamping should not be necessary but is free in assembly.
dst_argb[0] = clamp255(b);
dst_argb[1] = clamp255(g);
dst_argb[2] = clamp255(r);
dst_argb[3] = a;
src_argb += 4;
dst_argb += 4;
}
}
void ComputeCumulativeSumRow_C(const uint8* row, int32* cumsum,
const int32* previous_cumsum, int width) {
int32 row_sum[4] = {0, 0, 0, 0};
int x;
for (x = 0; x < width; ++x) {
row_sum[0] += row[x * 4 + 0];
row_sum[1] += row[x * 4 + 1];
row_sum[2] += row[x * 4 + 2];
row_sum[3] += row[x * 4 + 3];
cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0];
cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1];
cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2];
cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3];
}
}
void CumulativeSumToAverageRow_C(const int32* tl, const int32* bl,
int w, int area, uint8* dst, int count) {
float ooa = 1.0f / area;
int i;
for (i = 0; i < count; ++i) {
dst[0] = (uint8)((bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * ooa);
dst[1] = (uint8)((bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * ooa);
dst[2] = (uint8)((bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) * ooa);
dst[3] = (uint8)((bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) * ooa);
dst += 4;
tl += 4;
bl += 4;
}
}
// Copy pixels from rotated source to destination row with a slope.
LIBYUV_API
void ARGBAffineRow_C(const uint8* src_argb, int src_argb_stride,
uint8* dst_argb, const float* uv_dudv, int width) {
int i;
// Render a row of pixels from source into a buffer.
float uv[2];
uv[0] = uv_dudv[0];
uv[1] = uv_dudv[1];
for (i = 0; i < width; ++i) {
int x = (int)(uv[0]);
int y = (int)(uv[1]);
*(uint32*)(dst_argb) =
*(const uint32*)(src_argb + y * src_argb_stride +
x * 4);
dst_argb += 4;
uv[0] += uv_dudv[2];
uv[1] += uv_dudv[3];
}
}
// Blend 2 rows into 1.
static void HalfRow_C(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int width) {
int x;
for (x = 0; x < width; ++x) {
dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
}
}
static void HalfRow_16_C(const uint16* src_uv, int src_uv_stride,
uint16* dst_uv, int width) {
int x;
for (x = 0; x < width; ++x) {
dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
}
}
// C version 2x2 -> 2x1.
void InterpolateRow_C(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride,
int width, int source_y_fraction) {
int y1_fraction = source_y_fraction ;
int y0_fraction = 256 - y1_fraction;
const uint8* src_ptr1 = src_ptr + src_stride;
int x;
if (y1_fraction == 0) {
memcpy(dst_ptr, src_ptr, width);
return;
}
if (y1_fraction == 128) {
HalfRow_C(src_ptr, (int)(src_stride), dst_ptr, width);
return;
}
for (x = 0; x < width - 1; x += 2) {
dst_ptr[0] =
(src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8;
dst_ptr[1] =
(src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction + 128) >> 8;
src_ptr += 2;
src_ptr1 += 2;
dst_ptr += 2;
}
if (width & 1) {
dst_ptr[0] =
(src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8;
}
}
void InterpolateRow_16_C(uint16* dst_ptr, const uint16* src_ptr,
ptrdiff_t src_stride,
int width, int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint16* src_ptr1 = src_ptr + src_stride;
int x;
if (source_y_fraction == 0) {
memcpy(dst_ptr, src_ptr, width * 2);
return;
}
if (source_y_fraction == 128) {
HalfRow_16_C(src_ptr, (int)(src_stride), dst_ptr, width);
return;
}
for (x = 0; x < width - 1; x += 2) {
dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8;
dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8;
src_ptr += 2;
src_ptr1 += 2;
dst_ptr += 2;
}
if (width & 1) {
dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8;
}
}
// Use first 4 shuffler values to reorder ARGB channels.
void ARGBShuffleRow_C(const uint8* src_argb, uint8* dst_argb,
const uint8* shuffler, int width) {
int index0 = shuffler[0];
int index1 = shuffler[1];
int index2 = shuffler[2];
int index3 = shuffler[3];
// Shuffle a row of ARGB.
int x;
for (x = 0; x < width; ++x) {
// To support in-place conversion.
uint8 b = src_argb[index0];
uint8 g = src_argb[index1];
uint8 r = src_argb[index2];
uint8 a = src_argb[index3];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
src_argb += 4;
dst_argb += 4;
}
}
void I422ToYUY2Row_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_frame, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_frame[0] = src_y[0];
dst_frame[1] = src_u[0];
dst_frame[2] = src_y[1];
dst_frame[3] = src_v[0];
dst_frame += 4;
src_y += 2;
src_u += 1;
src_v += 1;
}
if (width & 1) {
dst_frame[0] = src_y[0];
dst_frame[1] = src_u[0];
dst_frame[2] = 0;
dst_frame[3] = src_v[0];
}
}
void I422ToUYVYRow_C(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_frame, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_frame[0] = src_u[0];
dst_frame[1] = src_y[0];
dst_frame[2] = src_v[0];
dst_frame[3] = src_y[1];
dst_frame += 4;
src_y += 2;
src_u += 1;
src_v += 1;
}
if (width & 1) {
dst_frame[0] = src_u[0];
dst_frame[1] = src_y[0];
dst_frame[2] = src_v[0];
dst_frame[3] = 0;
}
}
void ARGBPolynomialRow_C(const uint8* src_argb,
uint8* dst_argb,
const float* poly,
int width) {
int i;
for (i = 0; i < width; ++i) {
float b = (float)(src_argb[0]);
float g = (float)(src_argb[1]);
float r = (float)(src_argb[2]);
float a = (float)(src_argb[3]);
float b2 = b * b;
float g2 = g * g;
float r2 = r * r;
float a2 = a * a;
float db = poly[0] + poly[4] * b;
float dg = poly[1] + poly[5] * g;
float dr = poly[2] + poly[6] * r;
float da = poly[3] + poly[7] * a;
float b3 = b2 * b;
float g3 = g2 * g;
float r3 = r2 * r;
float a3 = a2 * a;
db += poly[8] * b2;
dg += poly[9] * g2;
dr += poly[10] * r2;
da += poly[11] * a2;
db += poly[12] * b3;
dg += poly[13] * g3;
dr += poly[14] * r3;
da += poly[15] * a3;
dst_argb[0] = Clamp((int32)(db));
dst_argb[1] = Clamp((int32)(dg));
dst_argb[2] = Clamp((int32)(dr));
dst_argb[3] = Clamp((int32)(da));
src_argb += 4;
dst_argb += 4;
}
}
void ARGBLumaColorTableRow_C(const uint8* src_argb, uint8* dst_argb, int width,
const uint8* luma, uint32 lumacoeff) {
uint32 bc = lumacoeff & 0xff;
uint32 gc = (lumacoeff >> 8) & 0xff;
uint32 rc = (lumacoeff >> 16) & 0xff;
int i;
for (i = 0; i < width - 1; i += 2) {
// Luminance in rows, color values in columns.
const uint8* luma0 = ((src_argb[0] * bc + src_argb[1] * gc +
src_argb[2] * rc) & 0x7F00u) + luma;
const uint8* luma1;
dst_argb[0] = luma0[src_argb[0]];
dst_argb[1] = luma0[src_argb[1]];
dst_argb[2] = luma0[src_argb[2]];
dst_argb[3] = src_argb[3];
luma1 = ((src_argb[4] * bc + src_argb[5] * gc +
src_argb[6] * rc) & 0x7F00u) + luma;
dst_argb[4] = luma1[src_argb[4]];
dst_argb[5] = luma1[src_argb[5]];
dst_argb[6] = luma1[src_argb[6]];
dst_argb[7] = src_argb[7];
src_argb += 8;
dst_argb += 8;
}
if (width & 1) {
// Luminance in rows, color values in columns.
const uint8* luma0 = ((src_argb[0] * bc + src_argb[1] * gc +
src_argb[2] * rc) & 0x7F00u) + luma;
dst_argb[0] = luma0[src_argb[0]];
dst_argb[1] = luma0[src_argb[1]];
dst_argb[2] = luma0[src_argb[2]];
dst_argb[3] = src_argb[3];
}
}
void ARGBCopyAlphaRow_C(const uint8* src, uint8* dst, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
dst[3] = src[3];
dst[7] = src[7];
dst += 8;
src += 8;
}
if (width & 1) {
dst[3] = src[3];
}
}
void ARGBCopyYToAlphaRow_C(const uint8* src, uint8* dst, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
dst[3] = src[0];
dst[7] = src[1];
dst += 8;
src += 2;
}
if (width & 1) {
dst[3] = src[0];
}
}
// Maximum temporary width for wrappers to process at a time, in pixels.
#define MAXTWIDTH 2048
#if !(defined(_MSC_VER) && defined(_M_IX86)) && \
defined(HAS_I422TORGB565ROW_SSSE3)
// row_win.cc has asm version, but GCC uses 2 step wrapper.
void I422ToRGB565Row_SSSE3(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB1555ROW_SSSE3)
void I422ToARGB1555Row_SSSE3(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb1555 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB4444ROW_SSSE3)
void I422ToARGB4444Row_SSSE3(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb4444 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_NV12TORGB565ROW_SSSE3)
void NV12ToRGB565Row_SSSE3(const uint8* src_y,
const uint8* src_uv,
uint8* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth);
ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
src_y += twidth;
src_uv += twidth;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TORGB565ROW_AVX2)
void I422ToRGB565Row_AVX2(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB1555ROW_AVX2)
void I422ToARGB1555Row_AVX2(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb1555 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB4444ROW_AVX2)
void I422ToARGB4444Row_AVX2(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb4444 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TORGB24ROW_AVX2)
void I422ToRGB24Row_AVX2(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
// TODO(fbarchard): ARGBToRGB24Row_AVX2
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_NV12TORGB565ROW_AVX2)
void NV12ToRGB565Row_AVX2(const uint8* src_y,
const uint8* src_uv,
uint8* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth);
ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth);
src_y += twidth;
src_uv += twidth;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif