Improved notifications settings, 3x emoji, libjpeg, code refactoring, bug fixes
https://github.com/DrKLO/Telegram/pull/418
@ -3,7 +3,7 @@ buildscript {
|
||||
mavenCentral()
|
||||
}
|
||||
dependencies {
|
||||
classpath 'com.android.tools.build:gradle:0.9.+'
|
||||
classpath 'com.android.tools.build:gradle:0.10.+'
|
||||
}
|
||||
}
|
||||
apply plugin: 'android'
|
||||
@ -25,7 +25,7 @@ dependencies {
|
||||
|
||||
android {
|
||||
compileSdkVersion 19
|
||||
buildToolsVersion '19.0.3'
|
||||
buildToolsVersion '19.1.0'
|
||||
|
||||
aaptOptions.useAaptPngCruncher = true
|
||||
|
||||
@ -82,7 +82,7 @@ android {
|
||||
defaultConfig {
|
||||
minSdkVersion 8
|
||||
targetSdkVersion 19
|
||||
versionCode 230
|
||||
versionCode 231
|
||||
versionName "1.4.13"
|
||||
}
|
||||
}
|
||||
|
@ -4,8 +4,9 @@ include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := tmessages
|
||||
LOCAL_CFLAGS := -w -std=gnu99 -O3 -DNULL=0 -DSOCKLEN_T=socklen_t -DLOCALE_NOT_USED -D_LARGEFILE_SOURCE=1 -D_FILE_OFFSET_BITS=64
|
||||
LOCAL_CFLAGS += -Drestrict='' -D__EMX__ -DOPUS_BUILD -DFIXED_POINT -DUSE_ALLOCA -DHAVE_LRINT -DHAVE_LRINTF -fno-math-errno
|
||||
LOCAL_CFLAGS += -DANDROID_NDK -DDISABLE_IMPORTGL -fno-strict-aliasing -fprefetch-loop-arrays -DAVOID_TABLES -DANDROID_TILE_BASED_DECODE -DANDROID_ARMV6_IDCT
|
||||
LOCAL_CPPFLAGS := -DBSD=1 -ffast-math -O3 -funroll-loops
|
||||
LOCAL_LDLIBS := -llog -lm
|
||||
LOCAL_LDLIBS := -llog -lm -ljnigraphics
|
||||
|
||||
LOCAL_SRC_FILES := \
|
||||
./opus/src/opus.c \
|
||||
@ -174,6 +175,55 @@ LOCAL_C_INCLUDES := \
|
||||
./opus/ \
|
||||
./opus/opusfile
|
||||
|
||||
LOCAL_SRC_FILES += \
|
||||
./libjpeg/jcapimin.c \
|
||||
./libjpeg/jcapistd.c \
|
||||
./libjpeg/armv6_idct.S \
|
||||
./libjpeg/jccoefct.c \
|
||||
./libjpeg/jccolor.c \
|
||||
./libjpeg/jcdctmgr.c \
|
||||
./libjpeg/jchuff.c \
|
||||
./libjpeg/jcinit.c \
|
||||
./libjpeg/jcmainct.c \
|
||||
./libjpeg/jcmarker.c \
|
||||
./libjpeg/jcmaster.c \
|
||||
./libjpeg/jcomapi.c \
|
||||
./libjpeg/jcparam.c \
|
||||
./libjpeg/jcphuff.c \
|
||||
./libjpeg/jcprepct.c \
|
||||
./libjpeg/jcsample.c \
|
||||
./libjpeg/jctrans.c \
|
||||
./libjpeg/jdapimin.c \
|
||||
./libjpeg/jdapistd.c \
|
||||
./libjpeg/jdatadst.c \
|
||||
./libjpeg/jdatasrc.c \
|
||||
./libjpeg/jdcoefct.c \
|
||||
./libjpeg/jdcolor.c \
|
||||
./libjpeg/jddctmgr.c \
|
||||
./libjpeg/jdhuff.c \
|
||||
./libjpeg/jdinput.c \
|
||||
./libjpeg/jdmainct.c \
|
||||
./libjpeg/jdmarker.c \
|
||||
./libjpeg/jdmaster.c \
|
||||
./libjpeg/jdmerge.c \
|
||||
./libjpeg/jdphuff.c \
|
||||
./libjpeg/jdpostct.c \
|
||||
./libjpeg/jdsample.c \
|
||||
./libjpeg/jdtrans.c \
|
||||
./libjpeg/jerror.c \
|
||||
./libjpeg/jfdctflt.c \
|
||||
./libjpeg/jfdctfst.c \
|
||||
./libjpeg/jfdctint.c \
|
||||
./libjpeg/jidctflt.c \
|
||||
./libjpeg/jidctfst.c \
|
||||
./libjpeg/jidctint.c \
|
||||
./libjpeg/jidctred.c \
|
||||
./libjpeg/jmemmgr.c \
|
||||
./libjpeg/jmemnobs.c \
|
||||
./libjpeg/jquant1.c \
|
||||
./libjpeg/jquant2.c \
|
||||
./libjpeg/jutils.c
|
||||
|
||||
LOCAL_SRC_FILES += \
|
||||
./jni.c \
|
||||
./sqlite_cursor.c \
|
||||
@ -181,6 +231,8 @@ LOCAL_SRC_FILES += \
|
||||
./sqlite_statement.c \
|
||||
./sqlite.c \
|
||||
./audio.c \
|
||||
./gif.c
|
||||
./gif.c \
|
||||
./utils.c \
|
||||
./image.c
|
||||
|
||||
include $(BUILD_SHARED_LIBRARY)
|
104
TMessagesProj/jni/image.c
Normal file
@ -0,0 +1,104 @@
|
||||
#include <jni.h>
|
||||
#include <stdio.h>
|
||||
#include <setjmp.h>
|
||||
#include <android/bitmap.h>
|
||||
#include <libjpeg/jpeglib.h>
|
||||
#include "utils.h"
|
||||
|
||||
typedef struct my_error_mgr {
|
||||
struct jpeg_error_mgr pub;
|
||||
jmp_buf setjmp_buffer;
|
||||
} *my_error_ptr;
|
||||
|
||||
|
||||
METHODDEF(void) my_error_exit(j_common_ptr cinfo) {
|
||||
my_error_ptr myerr = (my_error_ptr) cinfo->err;
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
longjmp(myerr->setjmp_buffer, 1);
|
||||
}
|
||||
|
||||
JNIEXPORT void Java_org_telegram_messenger_Utilities_loadBitmap(JNIEnv *env, jclass class, jstring path, jobject bitmap, int scale) {
|
||||
|
||||
AndroidBitmapInfo info;
|
||||
int i;
|
||||
|
||||
if ((i = AndroidBitmap_getInfo(env, bitmap, &info)) >= 0) {
|
||||
char *fileName = (*env)->GetStringUTFChars(env, path, NULL);
|
||||
FILE *infile;
|
||||
|
||||
if ((infile = fopen(fileName, "rb"))) {
|
||||
struct my_error_mgr jerr;
|
||||
struct jpeg_decompress_struct cinfo;
|
||||
|
||||
cinfo.err = jpeg_std_error(&jerr.pub);
|
||||
jerr.pub.error_exit = my_error_exit;
|
||||
|
||||
if (!setjmp(jerr.setjmp_buffer)) {
|
||||
jpeg_create_decompress(&cinfo);
|
||||
jpeg_stdio_src(&cinfo, infile);
|
||||
|
||||
jpeg_read_header(&cinfo, TRUE);
|
||||
|
||||
cinfo.scale_denom = scale;
|
||||
cinfo.scale_num = 1;
|
||||
|
||||
jpeg_start_decompress(&cinfo);
|
||||
int row_stride = cinfo.output_width * cinfo.output_components;
|
||||
JSAMPARRAY buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
|
||||
|
||||
unsigned char *pixels;
|
||||
if ((i = AndroidBitmap_lockPixels(env, bitmap, &pixels)) >= 0) {
|
||||
|
||||
int rowCount = min(cinfo.output_height, info.height);
|
||||
int colCount = min(cinfo.output_width, info.width);
|
||||
|
||||
while (cinfo.output_scanline < rowCount) {
|
||||
jpeg_read_scanlines(&cinfo, buffer, 1);
|
||||
|
||||
if (info.format == ANDROID_BITMAP_FORMAT_RGBA_8888) {
|
||||
if (cinfo.out_color_space == JCS_GRAYSCALE) {
|
||||
for (i = 0; i < colCount; i++) {
|
||||
float alpha = buffer[0][i] / 255.0f;
|
||||
pixels[i * 4] *= alpha;
|
||||
pixels[i * 4 + 1] *= alpha;
|
||||
pixels[i * 4 + 2] *= alpha;
|
||||
pixels[i * 4 + 3] = buffer[0][i];
|
||||
}
|
||||
} else {
|
||||
int c = 0;
|
||||
for (i = 0; i < colCount; i++) {
|
||||
pixels[i * 4] = buffer[0][i * 3];
|
||||
pixels[i * 4 + 1] = buffer[0][i * 3 + 1];
|
||||
pixels[i * 4 + 2] = buffer[0][i * 3 + 2];
|
||||
pixels[i * 4 + 3] = 255;
|
||||
c += 4;
|
||||
}
|
||||
}
|
||||
} else if (info.format == ANDROID_BITMAP_FORMAT_RGB_565) {
|
||||
|
||||
}
|
||||
|
||||
pixels += info.stride;
|
||||
}
|
||||
|
||||
AndroidBitmap_unlockPixels(env, bitmap);
|
||||
} else {
|
||||
throwException(env, "AndroidBitmap_lockPixels() failed ! error=%d", i);
|
||||
}
|
||||
|
||||
jpeg_finish_decompress(&cinfo);
|
||||
} else {
|
||||
throwException(env, "the JPEG code has signaled an error");
|
||||
}
|
||||
|
||||
jpeg_destroy_decompress(&cinfo);
|
||||
fclose(infile);
|
||||
} else {
|
||||
throwException(env, "can't open %s\n", fileName);
|
||||
}
|
||||
|
||||
(*env)->ReleaseStringUTFChars(env, path, fileName);
|
||||
} else {
|
||||
throwException(env, "AndroidBitmap_getInfo() failed ! error=%d", i);
|
||||
}
|
||||
}
|
366
TMessagesProj/jni/libjpeg/armv6_idct.S
Executable file
@ -0,0 +1,366 @@
|
||||
/*
|
||||
* Copyright (C) 2010 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is a fast-and-accurate implementation of inverse Discrete Cosine
|
||||
* Transform (IDCT) for ARMv6+. It also performs dequantization of the input
|
||||
* coefficients just like other methods.
|
||||
*
|
||||
* This implementation is based on the scaled 1-D DCT algorithm proposed by
|
||||
* Arai, Agui, and Nakajima. The following code is based on the figure 4-8
|
||||
* on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients
|
||||
* are (almost) directly mapped into registers.
|
||||
*
|
||||
* The accuracy is achieved by using SMULWy and SMLAWy instructions. Both
|
||||
* multiply 32 bits by 16 bits and store the top 32 bits of the result. It
|
||||
* makes 32-bit fixed-point arithmetic possible without overflow. That is
|
||||
* why jpeg_idct_ifast(), which is written in C, cannot be improved.
|
||||
*
|
||||
* More tricks are used to gain more speed. First of all, we use as many
|
||||
* registers as possible. ARM processor has 16 registers including sp (r13)
|
||||
* and pc (r15), so only 14 registers can be used without limitations. In
|
||||
* general, we let r0 to r7 hold the coefficients; r10 and r11 hold four
|
||||
* 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold
|
||||
* intermediate value. In the second pass, r9 is the loop counter. In the
|
||||
* first pass, r8 to r11 are used to hold quantization values, so the loop
|
||||
* counter is held by sp. Yes, the stack pointer. Since it must be aligned
|
||||
* to 4-byte boundary all the time, we align it to 32-byte boundary and use
|
||||
* bit 3 to bit 5. As the result, we actually use 14.1 registers. :-)
|
||||
*
|
||||
* Second, we rearrange quantization values to access them sequentially. The
|
||||
* table is first transposed, and the new columns are placed in the order of
|
||||
* 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a
|
||||
* time. Rearranging coefficients also helps, but that requires to change a
|
||||
* dozen of files, which seems not worth it. In addition, we choose to scale
|
||||
* up quantization values by 13 bits, so the coefficients are scaled up by
|
||||
* 16 bits after both passes. Then we can pack and saturate them two at a
|
||||
* time using PKHTB and USAT16 instructions.
|
||||
*
|
||||
* Third, we reorder the instructions to avoid bubbles in the pipeline. This
|
||||
* is done by hand accroding to the cycle timings and the interlock behavior
|
||||
* described in the technical reference manual of ARM1136JF-S. We also take
|
||||
* advantage of dual issue processors by interleaving instructions with
|
||||
* dependencies. It has been benchmarked on four devices and all the results
|
||||
* showed distinguishable improvements. Note that PLD instructions actually
|
||||
* slow things down, so they are removed at the last minute. In the future,
|
||||
* this might be futher improved using a system profiler.
|
||||
*/
|
||||
|
||||
#ifdef __arm__
|
||||
#include <machine/cpu-features.h>
|
||||
#endif
|
||||
|
||||
#if __ARM_ARCH__ >= 6
|
||||
|
||||
// void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col)
|
||||
.arm
|
||||
.text
|
||||
.align
|
||||
.global armv6_idct
|
||||
.func armv6_idct
|
||||
|
||||
armv6_idct:
|
||||
// Push everything except sp (r13) and pc (r15).
|
||||
stmdb sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
|
||||
|
||||
// r12 = quans, r14 = coefs.
|
||||
sub r4, sp, #236
|
||||
bic sp, r4, #31
|
||||
add r5, sp, #224
|
||||
add r12, r1, #256
|
||||
stm r5, {r2, r3, r4}
|
||||
add r14, r0, #16
|
||||
|
||||
pass1_head:
|
||||
// Load quantization values. (q[0, 2, 4, 6])
|
||||
ldmdb r12!, {r8, r9, r10, r11}
|
||||
|
||||
// Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7])
|
||||
ldrsh r4, [r14, #-2] !
|
||||
ldrsh r1, [r14, #16]
|
||||
ldrsh r2, [r14, #32]
|
||||
ldrsh r3, [r14, #48]
|
||||
ldrsh r0, [r14, #64]
|
||||
ldrsh r5, [r14, #80]
|
||||
ldrsh r6, [r14, #96]
|
||||
ldrsh r7, [r14, #112]
|
||||
|
||||
// r4 = q[0] * c[0];
|
||||
mul r4, r8, r4
|
||||
|
||||
// Check if ACs are all zero.
|
||||
cmp r0, #0
|
||||
orreqs r8, r1, r2
|
||||
orreqs r8, r3, r5
|
||||
orreqs r8, r6, r7
|
||||
beq pass1_zero
|
||||
|
||||
// Step 1: Dequantizations.
|
||||
|
||||
// r2 = q[2] * c[2];
|
||||
// r0 = q[4] * c[4] + r4;
|
||||
// r6 = q[6] * c[6] + r2;
|
||||
mul r2, r9, r2
|
||||
mla r0, r10, r0, r4
|
||||
mla r6, r11, r6, r2
|
||||
|
||||
// Load quantization values. (q[7, 5, 1, 3])
|
||||
ldmdb r12!, {r8, r9, r10, r11}
|
||||
|
||||
// r4 = r4 * 2 - r0 = -(r0 - r4 * 2);
|
||||
// r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
|
||||
rsb r4, r0, r4, lsl #1
|
||||
rsb r2, r6, r2, lsl #1
|
||||
|
||||
// r7 = q[7] * c[7];
|
||||
// r5 = q[5] * c[5];
|
||||
// r1 = q[1] * c[1] + r7;
|
||||
// r3 = q[3] * c[3] + r5;
|
||||
mul r7, r8, r7
|
||||
mul r5, r9, r5
|
||||
mla r1, r10, r1, r7
|
||||
mla r3, r11, r3, r5
|
||||
|
||||
// Load constants.
|
||||
ldrd r10, constants
|
||||
|
||||
// Step 2: Rotations and Butterflies.
|
||||
|
||||
// r7 = r1 - r7 * 2;
|
||||
// r1 = r1 - r3;
|
||||
// r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
|
||||
// r3 = r1 + r3 * 2;
|
||||
// r8 = r5 + r7;
|
||||
sub r7, r1, r7, lsl #1
|
||||
sub r1, r1, r3
|
||||
rsb r5, r3, r5, lsl #1
|
||||
add r3, r1, r3, lsl #1
|
||||
add r8, r5, r7
|
||||
|
||||
// r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
|
||||
// r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
|
||||
// r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
|
||||
smlawt r2, r2, r10, r2
|
||||
smulwb r8, r8, r10
|
||||
smlawt r1, r1, r10, r1
|
||||
|
||||
// r0 = r0 + r6;
|
||||
// r2 = r2 - r6;
|
||||
// r6 = r0 - r6 * 2;
|
||||
add r0, r0, r6
|
||||
sub r2, r2, r6
|
||||
sub r6, r0, r6, lsl #1
|
||||
|
||||
// r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
|
||||
// r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
|
||||
smlawt r5, r5, r11, r8
|
||||
smlawb r8, r7, r11, r8
|
||||
|
||||
// r4 = r4 + r2;
|
||||
// r0 = r0 + r3;
|
||||
// r2 = r4 - r2 * 2;
|
||||
add r4, r4, r2
|
||||
add r0, r0, r3
|
||||
sub r2, r4, r2, lsl #1
|
||||
|
||||
// r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
|
||||
// r3 = r0 - r3 * 2;
|
||||
// r1 = r1 - r7;
|
||||
// r4 = r4 + r7;
|
||||
// r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
|
||||
// r7 = r4 - r7 * 2;
|
||||
rsb r7, r3, r5, lsl #3
|
||||
sub r3, r0, r3, lsl #1
|
||||
sub r1, r1, r7
|
||||
add r4, r4, r7
|
||||
rsb r5, r1, r8, lsl #3
|
||||
sub r7, r4, r7, lsl #1
|
||||
|
||||
// r2 = r2 + r1;
|
||||
// r6 = r6 + r5;
|
||||
// r1 = r2 - r1 * 2;
|
||||
// r5 = r6 - r5 * 2;
|
||||
add r2, r2, r1
|
||||
add r6, r6, r5
|
||||
sub r1, r2, r1, lsl #1
|
||||
sub r5, r6, r5, lsl #1
|
||||
|
||||
// Step 3: Reorder and Save.
|
||||
|
||||
str r0, [sp, #-4] !
|
||||
str r4, [sp, #32]
|
||||
str r2, [sp, #64]
|
||||
str r6, [sp, #96]
|
||||
str r5, [sp, #128]
|
||||
str r1, [sp, #160]
|
||||
str r7, [sp, #192]
|
||||
str r3, [sp, #224]
|
||||
b pass1_tail
|
||||
|
||||
// Precomputed 16-bit constants: 27146, 15137, -21407, -8867.
|
||||
// Put them in the middle since LDRD only accepts offsets from -255 to 255.
|
||||
.align 3
|
||||
constants:
|
||||
.word 0x6a0a3b21
|
||||
.word 0xac61dd5d
|
||||
|
||||
pass1_zero:
|
||||
str r4, [sp, #-4] !
|
||||
str r4, [sp, #32]
|
||||
str r4, [sp, #64]
|
||||
str r4, [sp, #96]
|
||||
str r4, [sp, #128]
|
||||
str r4, [sp, #160]
|
||||
str r4, [sp, #192]
|
||||
str r4, [sp, #224]
|
||||
sub r12, r12, #16
|
||||
|
||||
pass1_tail:
|
||||
ands r9, sp, #31
|
||||
bne pass1_head
|
||||
|
||||
// r12 = rows, r14 = col.
|
||||
ldr r12, [sp, #256]
|
||||
ldr r14, [sp, #260]
|
||||
|
||||
// Load constants.
|
||||
ldrd r10, constants
|
||||
|
||||
pass2_head:
|
||||
// Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7])
|
||||
ldmia sp!, {r0, r1, r2, r3, r4, r5, r6, r7}
|
||||
|
||||
// r0 = r0 + 0x00808000;
|
||||
add r0, r0, #0x00800000
|
||||
add r0, r0, #0x00008000
|
||||
|
||||
// Step 1: Analog to the first pass.
|
||||
|
||||
// r0 = r0 + r4;
|
||||
// r6 = r6 + r2;
|
||||
add r0, r0, r4
|
||||
add r6, r6, r2
|
||||
|
||||
// r4 = r0 - r4 * 2;
|
||||
// r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
|
||||
sub r4, r0, r4, lsl #1
|
||||
rsb r2, r6, r2, lsl #1
|
||||
|
||||
// r1 = r1 + r7;
|
||||
// r3 = r3 + r5;
|
||||
add r1, r1, r7
|
||||
add r3, r3, r5
|
||||
|
||||
// Step 2: Rotations and Butterflies.
|
||||
|
||||
// r7 = r1 - r7 * 2;
|
||||
// r1 = r1 - r3;
|
||||
// r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
|
||||
// r3 = r1 + r3 * 2;
|
||||
// r8 = r5 + r7;
|
||||
sub r7, r1, r7, lsl #1
|
||||
sub r1, r1, r3
|
||||
rsb r5, r3, r5, lsl #1
|
||||
add r3, r1, r3, lsl #1
|
||||
add r8, r5, r7
|
||||
|
||||
// r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
|
||||
// r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
|
||||
// r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
|
||||
smlawt r2, r2, r10, r2
|
||||
smulwb r8, r8, r10
|
||||
smlawt r1, r1, r10, r1
|
||||
|
||||
// r0 = r0 + r6;
|
||||
// r2 = r2 - r6;
|
||||
// r6 = r0 - r6 * 2;
|
||||
add r0, r0, r6
|
||||
sub r2, r2, r6
|
||||
sub r6, r0, r6, lsl #1
|
||||
|
||||
// r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
|
||||
// r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
|
||||
smlawt r5, r5, r11, r8
|
||||
smlawb r8, r7, r11, r8
|
||||
|
||||
// r4 = r4 + r2;
|
||||
// r0 = r0 + r3;
|
||||
// r2 = r4 - r2 * 2;
|
||||
add r4, r4, r2
|
||||
add r0, r0, r3
|
||||
sub r2, r4, r2, lsl #1
|
||||
|
||||
// r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
|
||||
// r3 = r0 - r3 * 2;
|
||||
// r1 = r1 - r7;
|
||||
// r4 = r4 + r7;
|
||||
// r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
|
||||
// r7 = r4 - r7 * 2;
|
||||
rsb r7, r3, r5, lsl #3
|
||||
sub r3, r0, r3, lsl #1
|
||||
sub r1, r1, r7
|
||||
add r4, r4, r7
|
||||
rsb r5, r1, r8, lsl #3
|
||||
sub r7, r4, r7, lsl #1
|
||||
|
||||
// r2 = r2 + r1;
|
||||
// r6 = r6 + r5;
|
||||
// r1 = r2 - r1 * 2;
|
||||
// r5 = r6 - r5 * 2;
|
||||
add r2, r2, r1
|
||||
add r6, r6, r5
|
||||
sub r1, r2, r1, lsl #1
|
||||
sub r5, r6, r5, lsl #1
|
||||
|
||||
// Step 3: Reorder and Save.
|
||||
|
||||
// Load output pointer.
|
||||
ldr r8, [r12], #4
|
||||
|
||||
// For little endian: r6, r2, r4, r0, r3, r7, r1, r5.
|
||||
pkhtb r6, r6, r4, asr #16
|
||||
pkhtb r2, r2, r0, asr #16
|
||||
pkhtb r3, r3, r1, asr #16
|
||||
pkhtb r7, r7, r5, asr #16
|
||||
usat16 r6, #8, r6
|
||||
usat16 r2, #8, r2
|
||||
usat16 r3, #8, r3
|
||||
usat16 r7, #8, r7
|
||||
orr r0, r2, r6, lsl #8
|
||||
orr r1, r7, r3, lsl #8
|
||||
|
||||
#ifdef __ARMEB__
|
||||
// Reverse bytes for big endian.
|
||||
rev r0, r0
|
||||
rev r1, r1
|
||||
#endif
|
||||
|
||||
// Use STR instead of STRD to support unaligned access.
|
||||
str r0, [r8, r14] !
|
||||
str r1, [r8, #4]
|
||||
|
||||
pass2_tail:
|
||||
adds r9, r9, #0x10000000
|
||||
bpl pass2_head
|
||||
|
||||
ldr sp, [sp, #8]
|
||||
add sp, sp, #236
|
||||
|
||||
ldmia sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
|
||||
bx lr
|
||||
.endfunc
|
||||
|
||||
#endif
|
280
TMessagesProj/jni/libjpeg/jcapimin.c
Executable file
@ -0,0 +1,280 @@
|
||||
/*
|
||||
* jcapimin.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-compression case or the transcoding-only
|
||||
* case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jcapistd.c. But also see jcparam.c for
|
||||
* parameter-setup helper routines, jcomapi.c for routines shared by
|
||||
* compression and decompression, and jctrans.c for the transcoding case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != SIZEOF(struct jpeg_compress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = FALSE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->dest = NULL;
|
||||
|
||||
cinfo->comp_info = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
cinfo->script_space = NULL;
|
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables.
|
||||
* Marks all currently defined tables as already written (if suppress)
|
||||
* or not written (if !suppress). This will control whether they get emitted
|
||||
* by a subsequent jpeg_start_compress call.
|
||||
*
|
||||
* This routine is exported for use by applications that want to produce
|
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
|
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise
|
||||
* jcparam.o would be linked whether the application used it or not.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
|
||||
{
|
||||
int i;
|
||||
JQUANT_TBL * qtbl;
|
||||
JHUFF_TBL * htbl;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
|
||||
qtbl->sent_table = suppress;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression.
|
||||
*
|
||||
* If a multipass operating mode was selected, this may do a great deal of
|
||||
* work including most of the actual output.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_finish_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
JDIMENSION iMCU_row;
|
||||
|
||||
if (cinfo->global_state == CSTATE_SCANNING ||
|
||||
cinfo->global_state == CSTATE_RAW_OK) {
|
||||
/* Terminate first pass */
|
||||
if (cinfo->next_scanline < cinfo->image_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
} else if (cinfo->global_state != CSTATE_WRCOEFS)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any remaining passes */
|
||||
while (! cinfo->master->is_last_pass) {
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) iMCU_row;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer.
|
||||
*/
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
}
|
||||
/* Write EOI, do final cleanup */
|
||||
(*cinfo->marker->write_file_trailer) (cinfo);
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write a special marker.
|
||||
* This is only recommended for writing COM or APPn markers.
|
||||
* Must be called after jpeg_start_compress() and before
|
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_marker (j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen)
|
||||
{
|
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
|
||||
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
|
||||
while (datalen--) {
|
||||
(*write_marker_byte) (cinfo, *dataptr);
|
||||
dataptr++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Same, but piecemeal. */
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
{
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
|
||||
{
|
||||
(*cinfo->marker->write_marker_byte) (cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* To produce a pair of files containing abbreviated tables and abbreviated
|
||||
* image data, one would proceed as follows:
|
||||
*
|
||||
* initialize JPEG object
|
||||
* set JPEG parameters
|
||||
* set destination to table file
|
||||
* jpeg_write_tables(cinfo);
|
||||
* set destination to image file
|
||||
* jpeg_start_compress(cinfo, FALSE);
|
||||
* write data...
|
||||
* jpeg_finish_compress(cinfo);
|
||||
*
|
||||
* jpeg_write_tables has the side effect of marking all tables written
|
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
|
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_tables (j_compress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Initialize the marker writer ... bit of a crock to do it here. */
|
||||
jinit_marker_writer(cinfo);
|
||||
/* Write them tables! */
|
||||
(*cinfo->marker->write_tables_only) (cinfo);
|
||||
/* And clean up. */
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/*
|
||||
* In library releases up through v6a, we called jpeg_abort() here to free
|
||||
* any working memory allocated by the destination manager and marker
|
||||
* writer. Some applications had a problem with that: they allocated space
|
||||
* of their own from the library memory manager, and didn't want it to go
|
||||
* away during write_tables. So now we do nothing. This will cause a
|
||||
* memory leak if an app calls write_tables repeatedly without doing a full
|
||||
* compression cycle or otherwise resetting the JPEG object. However, that
|
||||
* seems less bad than unexpectedly freeing memory in the normal case.
|
||||
* An app that prefers the old behavior can call jpeg_abort for itself after
|
||||
* each call to jpeg_write_tables().
|
||||
*/
|
||||
}
|
161
TMessagesProj/jni/libjpeg/jcapistd.c
Executable file
@ -0,0 +1,161 @@
|
||||
/*
|
||||
* jcapistd.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-compression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_compress, it will end up linking in the entire compressor.
|
||||
* We thus must separate this file from jcapimin.c to avoid linking the
|
||||
* whole compression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* We require a write_all_tables parameter as a failsafe check when writing
|
||||
* multiple datastreams from the same compression object. Since prior runs
|
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
||||
* would emit an abbreviated stream (no tables) by default. This may be what
|
||||
* is wanted, but for safety's sake it should not be the default behavior:
|
||||
* programmers should have to make a deliberate choice to emit abbreviated
|
||||
* images. Therefore the documentation and examples should encourage people
|
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
||||
* wrong thing.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (write_all_tables)
|
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
jinit_compress_master(cinfo);
|
||||
/* Set up for the first pass */
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||
* or jpeg_write_raw_data.
|
||||
*/
|
||||
cinfo->next_scanline = 0;
|
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor.
|
||||
*
|
||||
* The return value will be the number of lines actually written.
|
||||
* This should be less than the supplied num_lines only in case that
|
||||
* the data destination module has requested suspension of the compressor,
|
||||
* or if more than image_height scanlines are passed in.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_write_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* excess scanlines passed in the last valid call are *silently* ignored,
|
||||
* so that the application need not adjust num_lines for end-of-image
|
||||
* when using a multiple-scanline buffer.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION row_ctr, rows_left;
|
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height)
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_scanlines. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_scanlines.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */
|
||||
rows_left = cinfo->image_height - cinfo->next_scanline;
|
||||
if (num_lines > rows_left)
|
||||
num_lines = rows_left;
|
||||
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
||||
cinfo->next_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_raw_data. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_raw_data.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Verify that at least one iMCU row has been passed. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
if (num_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Directly compress the row. */
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
|
||||
/* If compressor did not consume the whole row, suspend processing. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->next_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
449
TMessagesProj/jni/libjpeg/jccoefct.c
Executable file
@ -0,0 +1,449 @@
|
||||
/*
|
||||
* jccoefct.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for compression.
|
||||
* This controller is the top level of the JPEG compressor proper.
|
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
||||
* step is run during the first pass, and subsequent passes need only read
|
||||
* the buffered coefficients.
|
||||
*/
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#else
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). We allocate a
|
||||
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
||||
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
||||
* it's not really very big; this is to keep the module interfaces unchanged
|
||||
* when a large coefficient buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) compress_data
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
METHODDEF(boolean) compress_first_pass
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
METHODDEF(boolean) compress_output
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (coef->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_data;
|
||||
break;
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_first_pass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_output;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, bi, ci, yindex, yoffset, blockcnt;
|
||||
JDIMENSION ypos, xpos;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Loop to write as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks
|
||||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
||||
* sequentially. Dummy blocks at the right or bottom edge are filled in
|
||||
* specially. The data in them does not matter for image reconstruction,
|
||||
* so we fill them with values that will encode to the smallest amount of
|
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
||||
*/
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
xpos = MCU_col_num * compptr->MCU_sample_width;
|
||||
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yoffset+yindex < compptr->last_row_height) {
|
||||
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
||||
input_buf[compptr->component_index],
|
||||
coef->MCU_buffer[blkn],
|
||||
ypos, xpos, (JDIMENSION) blockcnt);
|
||||
if (blockcnt < compptr->MCU_width) {
|
||||
/* Create some dummy blocks at the right edge of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
||||
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
||||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Create a row of dummy blocks at the bottom of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
||||
compptr->MCU_width * SIZEOF(JBLOCK));
|
||||
for (bi = 0; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
ypos += DCTSIZE;
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
||||
*/
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* This amount of data is read from the source buffer, DCT'd and quantized,
|
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
||||
* as needed at the right and lower edges. (The dummy blocks are constructed
|
||||
* in the virtual arrays, which have been padded appropriately.) This makes
|
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
||||
*
|
||||
* We must also emit the data to the entropy encoder. This is conveniently
|
||||
* done by calling compress_output() after we've loaded the current strip
|
||||
* of the virtual arrays.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image. All
|
||||
* components are DCT'd and loaded into the virtual arrays in this pass.
|
||||
* However, it may be that only a subset of the components are emitted to
|
||||
* the entropy encoder during this first pass; be careful about looking
|
||||
* at the scan-dependent variables (MCU dimensions, etc).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
||||
JCOEF lastDC;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW thisblockrow, lastblockrow;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (coef->iMCU_row_num < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here, since may not be set! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
blocks_across = compptr->width_in_blocks;
|
||||
h_samp_factor = compptr->h_samp_factor;
|
||||
/* Count number of dummy blocks to be added at the right margin. */
|
||||
ndummy = (int) (blocks_across % h_samp_factor);
|
||||
if (ndummy > 0)
|
||||
ndummy = h_samp_factor - ndummy;
|
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
||||
*/
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
||||
input_buf[ci], thisblockrow,
|
||||
(JDIMENSION) (block_row * DCTSIZE),
|
||||
(JDIMENSION) 0, blocks_across);
|
||||
if (ndummy > 0) {
|
||||
/* Create dummy blocks at the right edge of the image. */
|
||||
thisblockrow += blocks_across; /* => first dummy block */
|
||||
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
||||
lastDC = thisblockrow[-1][0];
|
||||
for (bi = 0; bi < ndummy; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values
|
||||
* of the dummy blocks to match the last real block's DC value.
|
||||
* This squeezes a few more bytes out of the resulting file...
|
||||
*/
|
||||
if (coef->iMCU_row_num == last_iMCU_row) {
|
||||
blocks_across += ndummy; /* include lower right corner */
|
||||
MCUs_across = blocks_across / h_samp_factor;
|
||||
for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
||||
block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
lastblockrow = buffer[block_row-1];
|
||||
jzero_far((void FAR *) thisblockrow,
|
||||
(size_t) (blocks_across * SIZEOF(JBLOCK)));
|
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
||||
lastDC = lastblockrow[h_samp_factor-1][0];
|
||||
for (bi = 0; bi < h_samp_factor; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
||||
lastblockrow += h_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||
* A suspension return will result in redoing all the work above next time.
|
||||
*/
|
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
||||
return compress_output(cinfo, input_buf);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will
|
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor),
|
||||
(JDIMENSION) compptr->v_samp_factor);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
527
TMessagesProj/jni/libjpeg/jccolor.c
Executable file
@ -0,0 +1,527 @@
|
||||
/*
|
||||
* jccolor.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
// this enables unrolling null_convert's loop, and reading/write ints for speed
|
||||
#define ENABLE_ANDROID_NULL_CONVERT
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_converter pub; /* public fields */
|
||||
|
||||
/* Private state for RGB->YCC conversion */
|
||||
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
|
||||
} my_color_converter;
|
||||
|
||||
typedef my_color_converter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
|
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
|
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
|
||||
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
|
||||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
|
||||
* were not represented exactly. Now we sacrifice exact representation of
|
||||
* maximum red and maximum blue in order to get exact grayscales.
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times R,G,B for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
|
||||
* in the tables to save adding them separately in the inner loop.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base
|
||||
* address, which can be held in a register in the inner loops on many
|
||||
* machines (more than can hold all eight addresses, anyway).
|
||||
*/
|
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
|
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
|
||||
#define R_CB_OFF (3*(MAXJSAMPLE+1))
|
||||
#define G_CB_OFF (4*(MAXJSAMPLE+1))
|
||||
#define B_CB_OFF (5*(MAXJSAMPLE+1))
|
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
|
||||
#define G_CR_OFF (6*(MAXJSAMPLE+1))
|
||||
#define B_CR_OFF (7*(MAXJSAMPLE+1))
|
||||
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_start (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
INT32 * rgb_ycc_tab;
|
||||
INT32 i;
|
||||
|
||||
/* Allocate and fill in the conversion tables. */
|
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(TABLE_SIZE * SIZEOF(INT32)));
|
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
|
||||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
|
||||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
|
||||
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
|
||||
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
|
||||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||
* This ensures that the maximum output will round to MAXJSAMPLE
|
||||
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
|
||||
*/
|
||||
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
|
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
|
||||
*/
|
||||
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
|
||||
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*
|
||||
* Note that we change from the application's interleaved-pixel format
|
||||
* to our internal noninterleaved, one-plane-per-component format.
|
||||
* The input buffer is therefore three times as wide as the output buffer.
|
||||
*
|
||||
* A starting row offset is provided only for the output buffer. The caller
|
||||
* can easily adjust the passed input_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles RGB->grayscale conversion, which is the same
|
||||
* as the RGB->Y portion of RGB->YCbCr.
|
||||
* We assume rgb_ycc_start has been called (we only use the Y tables).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_gray_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* Y */
|
||||
outptr[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles Adobe-style CMYK->YCCK conversion,
|
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume rgb_ycc_start has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
cmyk_ycck_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
outptr3 = output_buf[3][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
|
||||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
|
||||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
|
||||
/* K passes through as-is */
|
||||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
|
||||
inptr += 4;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles grayscale output with no conversion.
|
||||
* The source can be either plain grayscale or YCbCr (since Y == gray).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
int instride = cinfo->input_components;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
|
||||
inptr += instride;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef ENABLE_ANDROID_NULL_CONVERT
|
||||
|
||||
typedef unsigned long UINT32;
|
||||
|
||||
#define B0(n) ((n) & 0xFF)
|
||||
#define B1(n) (((n) >> 8) & 0xFF)
|
||||
#define B2(n) (((n) >> 16) & 0xFF)
|
||||
#define B3(n) ((n) >> 24)
|
||||
|
||||
#define PACK(a, b, c, d) ((a) | ((b) << 8) | ((c) << 16) | ((d) << 24))
|
||||
|
||||
static int ptr_is_quad(const void* p)
|
||||
{
|
||||
return (((const char*)p - (const char*)0) & 3) == 0;
|
||||
}
|
||||
|
||||
static void copyquads(const UINT32 in[], UINT32 out0[], UINT32 out1[], UINT32 out2[], int col4)
|
||||
{
|
||||
do {
|
||||
UINT32 src0 = *in++;
|
||||
UINT32 src1 = *in++;
|
||||
UINT32 src2 = *in++;
|
||||
// LEndian
|
||||
*out0++ = PACK(B0(src0), B3(src0), B2(src1), B1(src2));
|
||||
*out1++ = PACK(B1(src0), B0(src1), B3(src1), B2(src2));
|
||||
*out2++ = PACK(B2(src0), B1(src1), B0(src2), B3(src2));
|
||||
} while (--col4 != 0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles multi-component colorspaces without conversion.
|
||||
* We assume input_components == num_components.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
register int ci;
|
||||
int nc = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
#ifdef ENABLE_ANDROID_NULL_CONVERT
|
||||
if (1 == num_rows && 3 == nc && num_cols > 0) {
|
||||
JSAMPROW inptr = *input_buf;
|
||||
JSAMPROW outptr0 = output_buf[0][output_row];
|
||||
JSAMPROW outptr1 = output_buf[1][output_row];
|
||||
JSAMPROW outptr2 = output_buf[2][output_row];
|
||||
|
||||
int col = num_cols;
|
||||
int col4 = col >> 2;
|
||||
if (col4 > 0 && ptr_is_quad(inptr) && ptr_is_quad(outptr0) &&
|
||||
ptr_is_quad(outptr1) && ptr_is_quad(outptr2)) {
|
||||
|
||||
const UINT32* in = (const UINT32*)inptr;
|
||||
UINT32* out0 = (UINT32*)outptr0;
|
||||
UINT32* out1 = (UINT32*)outptr1;
|
||||
UINT32* out2 = (UINT32*)outptr2;
|
||||
copyquads(in, out0, out1, out2, col4);
|
||||
col &= 3;
|
||||
if (0 == col)
|
||||
return;
|
||||
col4 <<= 2;
|
||||
inptr += col4 * 3; /* we read this 3 times per in copyquads */
|
||||
outptr0 += col4;
|
||||
outptr1 += col4;
|
||||
outptr2 += col4;
|
||||
/* fall through to while-loop */
|
||||
}
|
||||
do {
|
||||
*outptr0++ = *inptr++;
|
||||
*outptr1++ = *inptr++;
|
||||
*outptr2++ = *inptr++;
|
||||
} while (--col != 0);
|
||||
return;
|
||||
}
|
||||
SLOW:
|
||||
#endif
|
||||
while (--num_rows >= 0) {
|
||||
/* It seems fastest to make a separate pass for each component. */
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
inptr = *input_buf;
|
||||
outptr = output_buf[ci][output_row];
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
|
||||
inptr += nc;
|
||||
}
|
||||
}
|
||||
input_buf++;
|
||||
output_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_method (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for input colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_color_converter (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_converter));
|
||||
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
|
||||
/* set start_pass to null method until we find out differently */
|
||||
cconvert->pub.start_pass = null_method;
|
||||
|
||||
/* Make sure input_components agrees with in_color_space */
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->input_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
if (cinfo->input_components != RGB_PIXELSIZE)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->input_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->input_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->input_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check num_components, set conversion method based on requested space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_GRAYSCALE)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_gray_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_ycc_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = cmyk_ycck_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCCK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */
|
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
|
||||
cinfo->num_components != cinfo->input_components)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
break;
|
||||
}
|
||||
}
|
387
TMessagesProj/jni/libjpeg/jcdctmgr.c
Executable file
@ -0,0 +1,387 @@
|
||||
/*
|
||||
* jcdctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the forward-DCT management logic.
|
||||
* This code selects a particular DCT implementation to be used,
|
||||
* and it performs related housekeeping chores including coefficient
|
||||
* quantization.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_forward_dct pub; /* public fields */
|
||||
|
||||
/* Pointer to the DCT routine actually in use */
|
||||
forward_DCT_method_ptr do_dct;
|
||||
|
||||
/* The actual post-DCT divisors --- not identical to the quant table
|
||||
* entries, because of scaling (especially for an unnormalized DCT).
|
||||
* Each table is given in normal array order.
|
||||
*/
|
||||
DCTELEM * divisors[NUM_QUANT_TBLS];
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
/* Same as above for the floating-point case. */
|
||||
float_DCT_method_ptr do_float_dct;
|
||||
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
||||
#endif
|
||||
} my_fdct_controller;
|
||||
|
||||
typedef my_fdct_controller * my_fdct_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
* Verify that all referenced Q-tables are present, and set up
|
||||
* the divisor table for each one.
|
||||
* In the current implementation, DCT of all components is done during
|
||||
* the first pass, even if only some components will be output in the
|
||||
* first scan. Hence all components should be examined here.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_fdctmgr (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
int ci, qtblno, i;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtbl;
|
||||
DCTELEM * dtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
/* Make sure specified quantization table is present */
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||
/* Compute divisors for this quant table */
|
||||
/* We may do this more than once for same table, but it's not a big deal */
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling).
|
||||
*/
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
*/
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = (DCTELEM)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-3);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
* What's actually stored is 1/divisor so that the inner loop can
|
||||
* use a multiplication rather than a division.
|
||||
*/
|
||||
FAST_FLOAT * fdtbl;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
if (fdct->float_divisors[qtblno] == NULL) {
|
||||
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
||||
}
|
||||
fdtbl = fdct->float_divisors[qtblno];
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fdtbl[i] = (FAST_FLOAT)
|
||||
(1.0 / (((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component.
|
||||
*
|
||||
* The input samples are taken from the sample_data[] array starting at
|
||||
* position start_row/start_col, and moving to the right for any additional
|
||||
* blocks. The quantized coefficients are returned in coef_blocks[].
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for integer DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
forward_DCT_method_ptr do_dct = fdct->do_dct;
|
||||
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
||||
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||||
/* Load data into workspace, applying unsigned->signed conversion */
|
||||
{ register DCTELEM *workspaceptr;
|
||||
register JSAMPROW elemptr;
|
||||
register int elemr;
|
||||
|
||||
workspaceptr = workspace;
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = sample_data[elemr] + start_col;
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
#else
|
||||
{ register int elemc;
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register DCTELEM temp, qval;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
qval = divisors[i];
|
||||
temp = workspace[i];
|
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
*
|
||||
* In most files, at least half of the output values will be zero
|
||||
* (at default quantization settings, more like three-quarters...)
|
||||
* so we should ensure that this case is fast. On many machines,
|
||||
* a comparison is enough cheaper than a divide to make a special test
|
||||
* a win. Since both inputs will be nonnegative, we need only test
|
||||
* for a < b to discover whether a/b is 0.
|
||||
* If your machine's division is fast enough, define FAST_DIVIDE.
|
||||
*/
|
||||
#ifdef FAST_DIVIDE
|
||||
#define DIVIDE_BY(a,b) a /= b
|
||||
#else
|
||||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
||||
#endif
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
temp = -temp;
|
||||
} else {
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
}
|
||||
output_ptr[i] = (JCOEF) temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for floating-point DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
||||
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||||
/* Load data into workspace, applying unsigned->signed conversion */
|
||||
{ register FAST_FLOAT *workspaceptr;
|
||||
register JSAMPROW elemptr;
|
||||
register int elemr;
|
||||
|
||||
workspaceptr = workspace;
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = sample_data[elemr] + start_col;
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
#else
|
||||
{ register int elemc;
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
||||
*workspaceptr++ = (FAST_FLOAT)
|
||||
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register FAST_FLOAT temp;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* Apply the quantization and scaling factor */
|
||||
temp = workspace[i] * divisors[i];
|
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||||
* code should work for either 16-bit or 32-bit ints.
|
||||
*/
|
||||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_forward_dct (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct;
|
||||
int i;
|
||||
|
||||
fdct = (my_fdct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_fdct_controller));
|
||||
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
||||
fdct->pub.start_pass = start_pass_fdctmgr;
|
||||
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
fdct->pub.forward_DCT = forward_DCT;
|
||||
fdct->do_dct = jpeg_fdct_islow;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
fdct->pub.forward_DCT = forward_DCT;
|
||||
fdct->do_dct = jpeg_fdct_ifast;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
fdct->pub.forward_DCT = forward_DCT_float;
|
||||
fdct->do_float_dct = jpeg_fdct_float;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Mark divisor tables unallocated */
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
fdct->divisors[i] = NULL;
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fdct->float_divisors[i] = NULL;
|
||||
#endif
|
||||
}
|
||||
}
|
909
TMessagesProj/jni/libjpeg/jchuff.c
Executable file
@ -0,0 +1,909 @@
|
||||
/*
|
||||
* jchuff.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains Huffman entropy encoding routines.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting output suspension.
|
||||
* If the data destination module demands suspension, we want to be able to
|
||||
* back up to the start of the current MCU. To do this, we copy state
|
||||
* variables into local working storage, and update them back to the
|
||||
* permanent JPEG objects only upon successful completion of an MCU.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jchuff.h" /* Declarations shared with jcphuff.c */
|
||||
|
||||
|
||||
/* Expanded entropy encoder object for Huffman encoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
INT32 put_buffer; /* current bit-accumulation buffer */
|
||||
int put_bits; /* # of bits now in it */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have
|
||||
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
||||
*/
|
||||
|
||||
#ifndef NO_STRUCT_ASSIGN
|
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
||||
#else
|
||||
#if MAX_COMPS_IN_SCAN == 4
|
||||
#define ASSIGN_STATE(dest,src) \
|
||||
((dest).put_buffer = (src).put_buffer, \
|
||||
(dest).put_bits = (src).put_bits, \
|
||||
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_encoder pub; /* public fields */
|
||||
|
||||
savable_state saved; /* Bit buffer & DC state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
int next_restart_num; /* next restart number to write (0-7) */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
||||
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
|
||||
long * dc_count_ptrs[NUM_HUFF_TBLS];
|
||||
long * ac_count_ptrs[NUM_HUFF_TBLS];
|
||||
#endif
|
||||
} huff_entropy_encoder;
|
||||
|
||||
typedef huff_entropy_encoder * huff_entropy_ptr;
|
||||
|
||||
/* Working state while writing an MCU.
|
||||
* This struct contains all the fields that are needed by subroutines.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
||||
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
||||
savable_state cur; /* Current bit buffer & DC state */
|
||||
j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
||||
} working_state;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
* If gather_statistics is TRUE, we do not output anything during the scan,
|
||||
* just count the Huffman symbols used and generate Huffman code tables.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int ci, dctbl, actbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (gather_statistics) {
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
entropy->pub.encode_mcu = encode_mcu_gather;
|
||||
entropy->pub.finish_pass = finish_pass_gather;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
entropy->pub.encode_mcu = encode_mcu_huff;
|
||||
entropy->pub.finish_pass = finish_pass_huff;
|
||||
}
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
dctbl = compptr->dc_tbl_no;
|
||||
actbl = compptr->ac_tbl_no;
|
||||
if (gather_statistics) {
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
/* Check for invalid table indexes */
|
||||
/* (make_c_derived_tbl does this in the other path) */
|
||||
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
||||
if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
||||
/* Allocate and zero the statistics tables */
|
||||
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
||||
if (entropy->dc_count_ptrs[dctbl] == NULL)
|
||||
entropy->dc_count_ptrs[dctbl] = (long *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
257 * SIZEOF(long));
|
||||
MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
|
||||
if (entropy->ac_count_ptrs[actbl] == NULL)
|
||||
entropy->ac_count_ptrs[actbl] = (long *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
257 * SIZEOF(long));
|
||||
MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
|
||||
#endif
|
||||
} else {
|
||||
/* Compute derived values for Huffman tables */
|
||||
/* We may do this more than once for a table, but it's not expensive */
|
||||
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
|
||||
& entropy->dc_derived_tbls[dctbl]);
|
||||
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
|
||||
& entropy->ac_derived_tbls[actbl]);
|
||||
}
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
}
|
||||
|
||||
/* Initialize bit buffer to empty */
|
||||
entropy->saved.put_buffer = 0;
|
||||
entropy->saved.put_bits = 0;
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute the derived values for a Huffman table.
|
||||
* This routine also performs some validation checks on the table.
|
||||
*
|
||||
* Note this is also used by jcphuff.c.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
||||
c_derived_tbl ** pdtbl)
|
||||
{
|
||||
JHUFF_TBL *htbl;
|
||||
c_derived_tbl *dtbl;
|
||||
int p, i, l, lastp, si, maxsymbol;
|
||||
char huffsize[257];
|
||||
unsigned int huffcode[257];
|
||||
unsigned int code;
|
||||
|
||||
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
||||
* paralleling the order of the symbols themselves in htbl->huffval[].
|
||||
*/
|
||||
|
||||
/* Find the input Huffman table */
|
||||
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||
htbl =
|
||||
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||
|
||||
/* Allocate a workspace if we haven't already done so. */
|
||||
if (*pdtbl == NULL)
|
||||
*pdtbl = (c_derived_tbl *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(c_derived_tbl));
|
||||
dtbl = *pdtbl;
|
||||
|
||||
/* Figure C.1: make table of Huffman code length for each symbol */
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= 16; l++) {
|
||||
i = (int) htbl->bits[l];
|
||||
if (i < 0 || p + i > 256) /* protect against table overrun */
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
while (i--)
|
||||
huffsize[p++] = (char) l;
|
||||
}
|
||||
huffsize[p] = 0;
|
||||
lastp = p;
|
||||
|
||||
/* Figure C.2: generate the codes themselves */
|
||||
/* We also validate that the counts represent a legal Huffman code tree. */
|
||||
|
||||
code = 0;
|
||||
si = huffsize[0];
|
||||
p = 0;
|
||||
while (huffsize[p]) {
|
||||
while (((int) huffsize[p]) == si) {
|
||||
huffcode[p++] = code;
|
||||
code++;
|
||||
}
|
||||
/* code is now 1 more than the last code used for codelength si; but
|
||||
* it must still fit in si bits, since no code is allowed to be all ones.
|
||||
*/
|
||||
if (((INT32) code) >= (((INT32) 1) << si))
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
code <<= 1;
|
||||
si++;
|
||||
}
|
||||
|
||||
/* Figure C.3: generate encoding tables */
|
||||
/* These are code and size indexed by symbol value */
|
||||
|
||||
/* Set all codeless symbols to have code length 0;
|
||||
* this lets us detect duplicate VAL entries here, and later
|
||||
* allows emit_bits to detect any attempt to emit such symbols.
|
||||
*/
|
||||
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
||||
|
||||
/* This is also a convenient place to check for out-of-range
|
||||
* and duplicated VAL entries. We allow 0..255 for AC symbols
|
||||
* but only 0..15 for DC. (We could constrain them further
|
||||
* based on data depth and mode, but this seems enough.)
|
||||
*/
|
||||
maxsymbol = isDC ? 15 : 255;
|
||||
|
||||
for (p = 0; p < lastp; p++) {
|
||||
i = htbl->huffval[p];
|
||||
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
dtbl->ehufco[i] = huffcode[p];
|
||||
dtbl->ehufsi[i] = huffsize[p];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Outputting bytes to the file */
|
||||
|
||||
/* Emit a byte, taking 'action' if must suspend. */
|
||||
#define emit_byte(state,val,action) \
|
||||
{ *(state)->next_output_byte++ = (JOCTET) (val); \
|
||||
if (--(state)->free_in_buffer == 0) \
|
||||
if (! dump_buffer(state)) \
|
||||
{ action; } }
|
||||
|
||||
|
||||
LOCAL(boolean)
|
||||
dump_buffer (working_state * state)
|
||||
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
||||
|
||||
if (! (*dest->empty_output_buffer) (state->cinfo))
|
||||
return FALSE;
|
||||
/* After a successful buffer dump, must reset buffer pointers */
|
||||
state->next_output_byte = dest->next_output_byte;
|
||||
state->free_in_buffer = dest->free_in_buffer;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/* Outputting bits to the file */
|
||||
|
||||
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
||||
* left-justified in this part. At most 16 bits can be passed to emit_bits
|
||||
* in one call, and we never retain more than 7 bits in put_buffer
|
||||
* between calls, so 24 bits are sufficient.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(boolean)
|
||||
emit_bits (working_state * state, unsigned int code, int size)
|
||||
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding tightly. */
|
||||
register INT32 put_buffer = (INT32) code;
|
||||
register int put_bits = state->cur.put_bits;
|
||||
|
||||
/* if size is 0, caller used an invalid Huffman table entry */
|
||||
if (size == 0)
|
||||
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
||||
|
||||
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
||||
|
||||
put_bits += size; /* new number of bits in buffer */
|
||||
|
||||
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
||||
|
||||
put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
||||
|
||||
while (put_bits >= 8) {
|
||||
int c = (int) ((put_buffer >> 16) & 0xFF);
|
||||
|
||||
emit_byte(state, c, return FALSE);
|
||||
if (c == 0xFF) { /* need to stuff a zero byte? */
|
||||
emit_byte(state, 0, return FALSE);
|
||||
}
|
||||
put_buffer <<= 8;
|
||||
put_bits -= 8;
|
||||
}
|
||||
|
||||
state->cur.put_buffer = put_buffer; /* update state variables */
|
||||
state->cur.put_bits = put_bits;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(boolean)
|
||||
flush_bits (working_state * state)
|
||||
{
|
||||
if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
|
||||
return FALSE;
|
||||
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
||||
state->cur.put_bits = 0;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/* Encode a single block's worth of coefficients */
|
||||
|
||||
LOCAL(boolean)
|
||||
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
||||
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
||||
{
|
||||
register int temp, temp2;
|
||||
register int nbits;
|
||||
register int k, r, i;
|
||||
|
||||
/* Encode the DC coefficient difference per section F.1.2.1 */
|
||||
|
||||
temp = temp2 = block[0] - last_dc_val;
|
||||
|
||||
if (temp < 0) {
|
||||
temp = -temp; /* temp is abs value of input */
|
||||
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
||||
/* This code assumes we are on a two's complement machine */
|
||||
temp2--;
|
||||
}
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = 0;
|
||||
while (temp) {
|
||||
nbits++;
|
||||
temp >>= 1;
|
||||
}
|
||||
/* Check for out-of-range coefficient values.
|
||||
* Since we're encoding a difference, the range limit is twice as much.
|
||||
*/
|
||||
if (nbits > MAX_COEF_BITS+1)
|
||||
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
||||
|
||||
/* Emit the Huffman-coded symbol for the number of bits */
|
||||
if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
||||
return FALSE;
|
||||
|
||||
/* Emit that number of bits of the value, if positive, */
|
||||
/* or the complement of its magnitude, if negative. */
|
||||
if (nbits) /* emit_bits rejects calls with size 0 */
|
||||
if (! emit_bits(state, (unsigned int) temp2, nbits))
|
||||
return FALSE;
|
||||
|
||||
/* Encode the AC coefficients per section F.1.2.2 */
|
||||
|
||||
r = 0; /* r = run length of zeros */
|
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
||||
r++;
|
||||
} else {
|
||||
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
||||
while (r > 15) {
|
||||
if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
||||
return FALSE;
|
||||
r -= 16;
|
||||
}
|
||||
|
||||
temp2 = temp;
|
||||
if (temp < 0) {
|
||||
temp = -temp; /* temp is abs value of input */
|
||||
/* This code assumes we are on a two's complement machine */
|
||||
temp2--;
|
||||
}
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = 1; /* there must be at least one 1 bit */
|
||||
while ((temp >>= 1))
|
||||
nbits++;
|
||||
/* Check for out-of-range coefficient values */
|
||||
if (nbits > MAX_COEF_BITS)
|
||||
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
||||
|
||||
/* Emit Huffman symbol for run length / number of bits */
|
||||
i = (r << 4) + nbits;
|
||||
if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
||||
return FALSE;
|
||||
|
||||
/* Emit that number of bits of the value, if positive, */
|
||||
/* or the complement of its magnitude, if negative. */
|
||||
if (! emit_bits(state, (unsigned int) temp2, nbits))
|
||||
return FALSE;
|
||||
|
||||
r = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the last coef(s) were zero, emit an end-of-block code */
|
||||
if (r > 0)
|
||||
if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
||||
return FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
emit_restart (working_state * state, int restart_num)
|
||||
{
|
||||
int ci;
|
||||
|
||||
if (! flush_bits(state))
|
||||
return FALSE;
|
||||
|
||||
emit_byte(state, 0xFF, return FALSE);
|
||||
emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
|
||||
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
||||
state->cur.last_dc_val[ci] = 0;
|
||||
|
||||
/* The restart counter is not updated until we successfully write the MCU. */
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of Huffman-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
working_state state;
|
||||
int blkn, ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Load up working state */
|
||||
state.next_output_byte = cinfo->dest->next_output_byte;
|
||||
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
ASSIGN_STATE(state.cur, entropy->saved);
|
||||
state.cinfo = cinfo;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! emit_restart(&state, entropy->next_restart_num))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
if (! encode_one_block(&state,
|
||||
MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
||||
entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
||||
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
||||
return FALSE;
|
||||
/* Update last_dc_val */
|
||||
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
cinfo->dest->next_output_byte = state.next_output_byte;
|
||||
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
||||
ASSIGN_STATE(entropy->saved, state.cur);
|
||||
|
||||
/* Update restart-interval state too */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_huff (j_compress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
working_state state;
|
||||
|
||||
/* Load up working state ... flush_bits needs it */
|
||||
state.next_output_byte = cinfo->dest->next_output_byte;
|
||||
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
ASSIGN_STATE(state.cur, entropy->saved);
|
||||
state.cinfo = cinfo;
|
||||
|
||||
/* Flush out the last data */
|
||||
if (! flush_bits(&state))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
|
||||
/* Update state */
|
||||
cinfo->dest->next_output_byte = state.next_output_byte;
|
||||
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
||||
ASSIGN_STATE(entropy->saved, state.cur);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman coding optimization.
|
||||
*
|
||||
* We first scan the supplied data and count the number of uses of each symbol
|
||||
* that is to be Huffman-coded. (This process MUST agree with the code above.)
|
||||
* Then we build a Huffman coding tree for the observed counts.
|
||||
* Symbols which are not needed at all for the particular image are not
|
||||
* assigned any code, which saves space in the DHT marker as well as in
|
||||
* the compressed data.
|
||||
*/
|
||||
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
|
||||
|
||||
/* Process a single block's worth of coefficients */
|
||||
|
||||
LOCAL(void)
|
||||
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
||||
long dc_counts[], long ac_counts[])
|
||||
{
|
||||
register int temp;
|
||||
register int nbits;
|
||||
register int k, r;
|
||||
|
||||
/* Encode the DC coefficient difference per section F.1.2.1 */
|
||||
|
||||
temp = block[0] - last_dc_val;
|
||||
if (temp < 0)
|
||||
temp = -temp;
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = 0;
|
||||
while (temp) {
|
||||
nbits++;
|
||||
temp >>= 1;
|
||||
}
|
||||
/* Check for out-of-range coefficient values.
|
||||
* Since we're encoding a difference, the range limit is twice as much.
|
||||
*/
|
||||
if (nbits > MAX_COEF_BITS+1)
|
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
||||
|
||||
/* Count the Huffman symbol for the number of bits */
|
||||
dc_counts[nbits]++;
|
||||
|
||||
/* Encode the AC coefficients per section F.1.2.2 */
|
||||
|
||||
r = 0; /* r = run length of zeros */
|
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
||||
r++;
|
||||
} else {
|
||||
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
||||
while (r > 15) {
|
||||
ac_counts[0xF0]++;
|
||||
r -= 16;
|
||||
}
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
if (temp < 0)
|
||||
temp = -temp;
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = 1; /* there must be at least one 1 bit */
|
||||
while ((temp >>= 1))
|
||||
nbits++;
|
||||
/* Check for out-of-range coefficient values */
|
||||
if (nbits > MAX_COEF_BITS)
|
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
||||
|
||||
/* Count Huffman symbol for run length / number of bits */
|
||||
ac_counts[(r << 4) + nbits]++;
|
||||
|
||||
r = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the last coef(s) were zero, emit an end-of-block code */
|
||||
if (r > 0)
|
||||
ac_counts[0]++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
||||
* No data is actually output, so no suspension return is possible.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int blkn, ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Take care of restart intervals if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
/* Update restart state */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
||||
entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
||||
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
||||
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Generate the best Huffman code table for the given counts, fill htbl.
|
||||
* Note this is also used by jcphuff.c.
|
||||
*
|
||||
* The JPEG standard requires that no symbol be assigned a codeword of all
|
||||
* one bits (so that padding bits added at the end of a compressed segment
|
||||
* can't look like a valid code). Because of the canonical ordering of
|
||||
* codewords, this just means that there must be an unused slot in the
|
||||
* longest codeword length category. Section K.2 of the JPEG spec suggests
|
||||
* reserving such a slot by pretending that symbol 256 is a valid symbol
|
||||
* with count 1. In theory that's not optimal; giving it count zero but
|
||||
* including it in the symbol set anyway should give a better Huffman code.
|
||||
* But the theoretically better code actually seems to come out worse in
|
||||
* practice, because it produces more all-ones bytes (which incur stuffed
|
||||
* zero bytes in the final file). In any case the difference is tiny.
|
||||
*
|
||||
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
||||
* If some symbols have a very small but nonzero probability, the Huffman tree
|
||||
* must be adjusted to meet the code length restriction. We currently use
|
||||
* the adjustment method suggested in JPEG section K.2. This method is *not*
|
||||
* optimal; it may not choose the best possible limited-length code. But
|
||||
* typically only very-low-frequency symbols will be given less-than-optimal
|
||||
* lengths, so the code is almost optimal. Experimental comparisons against
|
||||
* an optimal limited-length-code algorithm indicate that the difference is
|
||||
* microscopic --- usually less than a hundredth of a percent of total size.
|
||||
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
||||
{
|
||||
#define MAX_CLEN 32 /* assumed maximum initial code length */
|
||||
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
||||
int codesize[257]; /* codesize[k] = code length of symbol k */
|
||||
int others[257]; /* next symbol in current branch of tree */
|
||||
int c1, c2;
|
||||
int p, i, j;
|
||||
long v;
|
||||
|
||||
/* This algorithm is explained in section K.2 of the JPEG standard */
|
||||
|
||||
MEMZERO(bits, SIZEOF(bits));
|
||||
MEMZERO(codesize, SIZEOF(codesize));
|
||||
for (i = 0; i < 257; i++)
|
||||
others[i] = -1; /* init links to empty */
|
||||
|
||||
freq[256] = 1; /* make sure 256 has a nonzero count */
|
||||
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
||||
* that no real symbol is given code-value of all ones, because 256
|
||||
* will be placed last in the largest codeword category.
|
||||
*/
|
||||
|
||||
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
||||
|
||||
for (;;) {
|
||||
/* Find the smallest nonzero frequency, set c1 = its symbol */
|
||||
/* In case of ties, take the larger symbol number */
|
||||
c1 = -1;
|
||||
v = 1000000000L;
|
||||
for (i = 0; i <= 256; i++) {
|
||||
if (freq[i] && freq[i] <= v) {
|
||||
v = freq[i];
|
||||
c1 = i;
|
||||
}
|
||||
}
|
||||
|
||||
/* Find the next smallest nonzero frequency, set c2 = its symbol */
|
||||
/* In case of ties, take the larger symbol number */
|
||||
c2 = -1;
|
||||
v = 1000000000L;
|
||||
for (i = 0; i <= 256; i++) {
|
||||
if (freq[i] && freq[i] <= v && i != c1) {
|
||||
v = freq[i];
|
||||
c2 = i;
|
||||
}
|
||||
}
|
||||
|
||||
/* Done if we've merged everything into one frequency */
|
||||
if (c2 < 0)
|
||||
break;
|
||||
|
||||
/* Else merge the two counts/trees */
|
||||
freq[c1] += freq[c2];
|
||||
freq[c2] = 0;
|
||||
|
||||
/* Increment the codesize of everything in c1's tree branch */
|
||||
codesize[c1]++;
|
||||
while (others[c1] >= 0) {
|
||||
c1 = others[c1];
|
||||
codesize[c1]++;
|
||||
}
|
||||
|
||||
others[c1] = c2; /* chain c2 onto c1's tree branch */
|
||||
|
||||
/* Increment the codesize of everything in c2's tree branch */
|
||||
codesize[c2]++;
|
||||
while (others[c2] >= 0) {
|
||||
c2 = others[c2];
|
||||
codesize[c2]++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now count the number of symbols of each code length */
|
||||
for (i = 0; i <= 256; i++) {
|
||||
if (codesize[i]) {
|
||||
/* The JPEG standard seems to think that this can't happen, */
|
||||
/* but I'm paranoid... */
|
||||
if (codesize[i] > MAX_CLEN)
|
||||
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
||||
|
||||
bits[codesize[i]]++;
|
||||
}
|
||||
}
|
||||
|
||||
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
||||
* Huffman procedure assigned any such lengths, we must adjust the coding.
|
||||
* Here is what the JPEG spec says about how this next bit works:
|
||||
* Since symbols are paired for the longest Huffman code, the symbols are
|
||||
* removed from this length category two at a time. The prefix for the pair
|
||||
* (which is one bit shorter) is allocated to one of the pair; then,
|
||||
* skipping the BITS entry for that prefix length, a code word from the next
|
||||
* shortest nonzero BITS entry is converted into a prefix for two code words
|
||||
* one bit longer.
|
||||
*/
|
||||
|
||||
for (i = MAX_CLEN; i > 16; i--) {
|
||||
while (bits[i] > 0) {
|
||||
j = i - 2; /* find length of new prefix to be used */
|
||||
while (bits[j] == 0)
|
||||
j--;
|
||||
|
||||
bits[i] -= 2; /* remove two symbols */
|
||||
bits[i-1]++; /* one goes in this length */
|
||||
bits[j+1] += 2; /* two new symbols in this length */
|
||||
bits[j]--; /* symbol of this length is now a prefix */
|
||||
}
|
||||
}
|
||||
|
||||
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
||||
while (bits[i] == 0) /* find largest codelength still in use */
|
||||
i--;
|
||||
bits[i]--;
|
||||
|
||||
/* Return final symbol counts (only for lengths 0..16) */
|
||||
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
||||
|
||||
/* Return a list of the symbols sorted by code length */
|
||||
/* It's not real clear to me why we don't need to consider the codelength
|
||||
* changes made above, but the JPEG spec seems to think this works.
|
||||
*/
|
||||
p = 0;
|
||||
for (i = 1; i <= MAX_CLEN; i++) {
|
||||
for (j = 0; j <= 255; j++) {
|
||||
if (codesize[j] == i) {
|
||||
htbl->huffval[p] = (UINT8) j;
|
||||
p++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set sent_table FALSE so updated table will be written to JPEG file. */
|
||||
htbl->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_gather (j_compress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int ci, dctbl, actbl;
|
||||
jpeg_component_info * compptr;
|
||||
JHUFF_TBL **htblptr;
|
||||
boolean did_dc[NUM_HUFF_TBLS];
|
||||
boolean did_ac[NUM_HUFF_TBLS];
|
||||
|
||||
/* It's important not to apply jpeg_gen_optimal_table more than once
|
||||
* per table, because it clobbers the input frequency counts!
|
||||
*/
|
||||
MEMZERO(did_dc, SIZEOF(did_dc));
|
||||
MEMZERO(did_ac, SIZEOF(did_ac));
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
dctbl = compptr->dc_tbl_no;
|
||||
actbl = compptr->ac_tbl_no;
|
||||
if (! did_dc[dctbl]) {
|
||||
htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
|
||||
did_dc[dctbl] = TRUE;
|
||||
}
|
||||
if (! did_ac[actbl]) {
|
||||
htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
|
||||
did_ac[actbl] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif /* ENTROPY_OPT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for Huffman entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_huff_encoder (j_compress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (huff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(huff_entropy_encoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass_huff;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
||||
#endif
|
||||
}
|
||||
}
|
47
TMessagesProj/jni/libjpeg/jchuff.h
Executable file
@ -0,0 +1,47 @@
|
||||
/*
|
||||
* jchuff.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains declarations for Huffman entropy encoding routines
|
||||
* that are shared between the sequential encoder (jchuff.c) and the
|
||||
* progressive encoder (jcphuff.c). No other modules need to see these.
|
||||
*/
|
||||
|
||||
/* The legal range of a DCT coefficient is
|
||||
* -1024 .. +1023 for 8-bit data;
|
||||
* -16384 .. +16383 for 12-bit data.
|
||||
* Hence the magnitude should always fit in 10 or 14 bits respectively.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MAX_COEF_BITS 10
|
||||
#else
|
||||
#define MAX_COEF_BITS 14
|
||||
#endif
|
||||
|
||||
/* Derived data constructed for each Huffman table */
|
||||
|
||||
typedef struct {
|
||||
unsigned int ehufco[256]; /* code for each symbol */
|
||||
char ehufsi[256]; /* length of code for each symbol */
|
||||
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
|
||||
} c_derived_tbl;
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_make_c_derived_tbl jMkCDerived
|
||||
#define jpeg_gen_optimal_table jGenOptTbl
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
/* Expand a Huffman table definition into the derived format */
|
||||
EXTERN(void) jpeg_make_c_derived_tbl
|
||||
JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
|
||||
c_derived_tbl ** pdtbl));
|
||||
|
||||
/* Generate an optimal table definition given the specified counts */
|
||||
EXTERN(void) jpeg_gen_optimal_table
|
||||
JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));
|
72
TMessagesProj/jni/libjpeg/jcinit.c
Executable file
@ -0,0 +1,72 @@
|
||||
/*
|
||||
* jcinit.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains initialization logic for the JPEG compressor.
|
||||
* This routine is in charge of selecting the modules to be executed and
|
||||
* making an initialization call to each one.
|
||||
*
|
||||
* Logically, this code belongs in jcmaster.c. It's split out because
|
||||
* linking this routine implies linking the entire compression library.
|
||||
* For a transcoding-only application, we want to be able to use jcmaster.c
|
||||
* without linking in the whole library.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules.
|
||||
* This is done once at the start of processing an image. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_compress_master (j_compress_ptr cinfo)
|
||||
{
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, FALSE /* full compression */);
|
||||
|
||||
/* Preprocessing */
|
||||
if (! cinfo->raw_data_in) {
|
||||
jinit_color_converter(cinfo);
|
||||
jinit_downsampler(cinfo);
|
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
}
|
||||
/* Forward DCT */
|
||||
jinit_forward_dct(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* Need a full-image coefficient buffer in any multi-pass mode. */
|
||||
jinit_c_coef_controller(cinfo,
|
||||
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
|
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
293
TMessagesProj/jni/libjpeg/jcmainct.c
Executable file
@ -0,0 +1,293 @@
|
||||
/*
|
||||
* jcmainct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for compression.
|
||||
* The main buffer lies between the pre-processor and the JPEG
|
||||
* compressor proper; it holds downsampled data in the JPEG colorspace.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Note: currently, there is no operating mode in which a full-image buffer
|
||||
* is needed at this step. If there were, that mode could not be used with
|
||||
* "raw data" input, since this module is bypassed in that case. However,
|
||||
* we've left the code here for possible use in special applications.
|
||||
*/
|
||||
#undef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_main_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
|
||||
boolean suspended; /* remember if we suspended output */
|
||||
J_BUF_MODE pass_mode; /* current operating mode */
|
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this
|
||||
* points to the currently accessible strips of the virtual arrays.
|
||||
*/
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* If using full-image storage, this array holds pointers to virtual-array
|
||||
* control blocks for each component. Unused if not full-image storage.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
METHODDEF(void) process_data_buffer_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Do nothing in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
main->cur_iMCU_row = 0; /* initialize counters */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->suspended = FALSE;
|
||||
main->pass_mode = pass_mode; /* save mode for use by process_data */
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
if (main->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
break;
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_SOURCE:
|
||||
case JBUF_CRANK_DEST:
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (main->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
main->pub.process_data = process_data_buffer_main;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles the simple pass-through mode,
|
||||
* where we have only a strip buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (main->rowgroup_ctr < DCTSIZE)
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) DCTSIZE);
|
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row
|
||||
* at the bottom of the image.
|
||||
*/
|
||||
if (main->rowgroup_ctr != DCTSIZE)
|
||||
return;
|
||||
|
||||
/* Send the completed row to the compressor */
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles all of the modes that use a full-size buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_buffer_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
|
||||
|
||||
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Realign the virtual buffers if at the start of an iMCU row. */
|
||||
if (main->rowgroup_ctr == 0) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, main->whole_image[ci],
|
||||
main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
|
||||
}
|
||||
/* In a read pass, pretend we just read some source data. */
|
||||
if (! writing) {
|
||||
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
|
||||
main->rowgroup_ctr = DCTSIZE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If a write pass, read input data until the current iMCU row is full. */
|
||||
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
|
||||
if (writing) {
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) DCTSIZE);
|
||||
/* Return to application if we need more data to fill the iMCU row. */
|
||||
if (main->rowgroup_ctr < DCTSIZE)
|
||||
return;
|
||||
}
|
||||
|
||||
/* Emit data, unless this is a sink-only pass. */
|
||||
if (main->pass_mode != JBUF_SAVE_SOURCE) {
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If get here, we are done with this iMCU row. Mark buffer empty. */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_c_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size.
|
||||
*/
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component */
|
||||
/* Note we pad the bottom to a multiple of the iMCU height */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor) * DCTSIZE,
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
main->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
#endif
|
||||
/* Allocate a strip buffer for each component */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
|
||||
}
|
||||
}
|
||||
}
|
664
TMessagesProj/jni/libjpeg/jcmarker.c
Executable file
@ -0,0 +1,664 @@
|
||||
/*
|
||||
* jcmarker.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to write JPEG datastream markers.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */
|
||||
M_SOF0 = 0xc0,
|
||||
M_SOF1 = 0xc1,
|
||||
M_SOF2 = 0xc2,
|
||||
M_SOF3 = 0xc3,
|
||||
|
||||
M_SOF5 = 0xc5,
|
||||
M_SOF6 = 0xc6,
|
||||
M_SOF7 = 0xc7,
|
||||
|
||||
M_JPG = 0xc8,
|
||||
M_SOF9 = 0xc9,
|
||||
M_SOF10 = 0xca,
|
||||
M_SOF11 = 0xcb,
|
||||
|
||||
M_SOF13 = 0xcd,
|
||||
M_SOF14 = 0xce,
|
||||
M_SOF15 = 0xcf,
|
||||
|
||||
M_DHT = 0xc4,
|
||||
|
||||
M_DAC = 0xcc,
|
||||
|
||||
M_RST0 = 0xd0,
|
||||
M_RST1 = 0xd1,
|
||||
M_RST2 = 0xd2,
|
||||
M_RST3 = 0xd3,
|
||||
M_RST4 = 0xd4,
|
||||
M_RST5 = 0xd5,
|
||||
M_RST6 = 0xd6,
|
||||
M_RST7 = 0xd7,
|
||||
|
||||
M_SOI = 0xd8,
|
||||
M_EOI = 0xd9,
|
||||
M_SOS = 0xda,
|
||||
M_DQT = 0xdb,
|
||||
M_DNL = 0xdc,
|
||||
M_DRI = 0xdd,
|
||||
M_DHP = 0xde,
|
||||
M_EXP = 0xdf,
|
||||
|
||||
M_APP0 = 0xe0,
|
||||
M_APP1 = 0xe1,
|
||||
M_APP2 = 0xe2,
|
||||
M_APP3 = 0xe3,
|
||||
M_APP4 = 0xe4,
|
||||
M_APP5 = 0xe5,
|
||||
M_APP6 = 0xe6,
|
||||
M_APP7 = 0xe7,
|
||||
M_APP8 = 0xe8,
|
||||
M_APP9 = 0xe9,
|
||||
M_APP10 = 0xea,
|
||||
M_APP11 = 0xeb,
|
||||
M_APP12 = 0xec,
|
||||
M_APP13 = 0xed,
|
||||
M_APP14 = 0xee,
|
||||
M_APP15 = 0xef,
|
||||
|
||||
M_JPG0 = 0xf0,
|
||||
M_JPG13 = 0xfd,
|
||||
M_COM = 0xfe,
|
||||
|
||||
M_TEM = 0x01,
|
||||
|
||||
M_ERROR = 0x100
|
||||
} JPEG_MARKER;
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_marker_writer pub; /* public fields */
|
||||
|
||||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
|
||||
} my_marker_writer;
|
||||
|
||||
typedef my_marker_writer * my_marker_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Basic output routines.
|
||||
*
|
||||
* Note that we do not support suspension while writing a marker.
|
||||
* Therefore, an application using suspension must ensure that there is
|
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before
|
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI
|
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
|
||||
* modes are not supported at all with suspension, so those two are the only
|
||||
* points where markers will be written.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit a byte */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0) {
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
|
||||
/* Emit a marker code */
|
||||
{
|
||||
emit_byte(cinfo, 0xFF);
|
||||
emit_byte(cinfo, (int) mark);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_2bytes (j_compress_ptr cinfo, int value)
|
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
|
||||
{
|
||||
emit_byte(cinfo, (value >> 8) & 0xFF);
|
||||
emit_byte(cinfo, value & 0xFF);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
emit_dqt (j_compress_ptr cinfo, int index)
|
||||
/* Emit a DQT marker */
|
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
|
||||
{
|
||||
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
|
||||
int prec;
|
||||
int i;
|
||||
|
||||
if (qtbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
|
||||
|
||||
prec = 0;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
if (qtbl->quantval[i] > 255)
|
||||
prec = 1;
|
||||
}
|
||||
|
||||
if (! qtbl->sent_table) {
|
||||
emit_marker(cinfo, M_DQT);
|
||||
|
||||
emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
|
||||
|
||||
emit_byte(cinfo, index + (prec<<4));
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* The table entries must be emitted in zigzag order. */
|
||||
unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
|
||||
if (prec)
|
||||
emit_byte(cinfo, (int) (qval >> 8));
|
||||
emit_byte(cinfo, (int) (qval & 0xFF));
|
||||
}
|
||||
|
||||
qtbl->sent_table = TRUE;
|
||||
}
|
||||
|
||||
return prec;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
|
||||
/* Emit a DHT marker */
|
||||
{
|
||||
JHUFF_TBL * htbl;
|
||||
int length, i;
|
||||
|
||||
if (is_ac) {
|
||||
htbl = cinfo->ac_huff_tbl_ptrs[index];
|
||||
index += 0x10; /* output index has AC bit set */
|
||||
} else {
|
||||
htbl = cinfo->dc_huff_tbl_ptrs[index];
|
||||
}
|
||||
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
|
||||
|
||||
if (! htbl->sent_table) {
|
||||
emit_marker(cinfo, M_DHT);
|
||||
|
||||
length = 0;
|
||||
for (i = 1; i <= 16; i++)
|
||||
length += htbl->bits[i];
|
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16);
|
||||
emit_byte(cinfo, index);
|
||||
|
||||
for (i = 1; i <= 16; i++)
|
||||
emit_byte(cinfo, htbl->bits[i]);
|
||||
|
||||
for (i = 0; i < length; i++)
|
||||
emit_byte(cinfo, htbl->huffval[i]);
|
||||
|
||||
htbl->sent_table = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dac (j_compress_ptr cinfo)
|
||||
/* Emit a DAC marker */
|
||||
/* Since the useful info is so small, we want to emit all the tables in */
|
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */
|
||||
{
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
char dc_in_use[NUM_ARITH_TBLS];
|
||||
char ac_in_use[NUM_ARITH_TBLS];
|
||||
int length, i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
dc_in_use[i] = ac_in_use[i] = 0;
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
dc_in_use[compptr->dc_tbl_no] = 1;
|
||||
ac_in_use[compptr->ac_tbl_no] = 1;
|
||||
}
|
||||
|
||||
length = 0;
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
length += dc_in_use[i] + ac_in_use[i];
|
||||
|
||||
emit_marker(cinfo, M_DAC);
|
||||
|
||||
emit_2bytes(cinfo, length*2 + 2);
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
if (dc_in_use[i]) {
|
||||
emit_byte(cinfo, i);
|
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
|
||||
}
|
||||
if (ac_in_use[i]) {
|
||||
emit_byte(cinfo, i + 0x10);
|
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]);
|
||||
}
|
||||
}
|
||||
#endif /* C_ARITH_CODING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dri (j_compress_ptr cinfo)
|
||||
/* Emit a DRI marker */
|
||||
{
|
||||
emit_marker(cinfo, M_DRI);
|
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */
|
||||
|
||||
emit_2bytes(cinfo, (int) cinfo->restart_interval);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
|
||||
/* Emit a SOF marker */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, code);
|
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
|
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */
|
||||
if ((long) cinfo->image_height > 65535L ||
|
||||
(long) cinfo->image_width > 65535L)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
|
||||
|
||||
emit_byte(cinfo, cinfo->data_precision);
|
||||
emit_2bytes(cinfo, (int) cinfo->image_height);
|
||||
emit_2bytes(cinfo, (int) cinfo->image_width);
|
||||
|
||||
emit_byte(cinfo, cinfo->num_components);
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
|
||||
emit_byte(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sos (j_compress_ptr cinfo)
|
||||
/* Emit a SOS marker */
|
||||
{
|
||||
int i, td, ta;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, M_SOS);
|
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
|
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan);
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
td = compptr->dc_tbl_no;
|
||||
ta = compptr->ac_tbl_no;
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Progressive mode: only DC or only AC tables are used in one scan;
|
||||
* furthermore, Huffman coding of DC refinement uses no table at all.
|
||||
* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||
* but does not seem to be specified in the standard.
|
||||
*/
|
||||
if (cinfo->Ss == 0) {
|
||||
ta = 0; /* DC scan */
|
||||
if (cinfo->Ah != 0 && !cinfo->arith_code)
|
||||
td = 0; /* no DC table either */
|
||||
} else {
|
||||
td = 0; /* AC scan */
|
||||
}
|
||||
}
|
||||
emit_byte(cinfo, (td << 4) + ta);
|
||||
}
|
||||
|
||||
emit_byte(cinfo, cinfo->Ss);
|
||||
emit_byte(cinfo, cinfo->Se);
|
||||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_jfif_app0 (j_compress_ptr cinfo)
|
||||
/* Emit a JFIF-compliant APP0 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP0 block (2 bytes)
|
||||
* Block ID (4 bytes - ASCII "JFIF")
|
||||
* Zero byte (1 byte to terminate the ID string)
|
||||
* Version Major, Minor (2 bytes - major first)
|
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
|
||||
* Xdpu (2 bytes - dots per unit horizontal)
|
||||
* Ydpu (2 bytes - dots per unit vertical)
|
||||
* Thumbnail X size (1 byte)
|
||||
* Thumbnail Y size (1 byte)
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP0);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0x49);
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0);
|
||||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
|
||||
emit_byte(cinfo, cinfo->JFIF_minor_version);
|
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
|
||||
emit_2bytes(cinfo, (int) cinfo->X_density);
|
||||
emit_2bytes(cinfo, (int) cinfo->Y_density);
|
||||
emit_byte(cinfo, 0); /* No thumbnail image */
|
||||
emit_byte(cinfo, 0);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_adobe_app14 (j_compress_ptr cinfo)
|
||||
/* Emit an Adobe APP14 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP14 block (2 bytes)
|
||||
* Block ID (5 bytes - ASCII "Adobe")
|
||||
* Version Number (2 bytes - currently 100)
|
||||
* Flags0 (2 bytes - currently 0)
|
||||
* Flags1 (2 bytes - currently 0)
|
||||
* Color transform (1 byte)
|
||||
*
|
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
|
||||
* now in circulation seem to use Version = 100, so that's what we write.
|
||||
*
|
||||
* We write the color transform byte as 1 if the JPEG color space is
|
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
|
||||
* whether the encoder performed a transformation, which is pretty useless.
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP14);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
|
||||
emit_byte(cinfo, 0x64);
|
||||
emit_byte(cinfo, 0x6F);
|
||||
emit_byte(cinfo, 0x62);
|
||||
emit_byte(cinfo, 0x65);
|
||||
emit_2bytes(cinfo, 100); /* Version */
|
||||
emit_2bytes(cinfo, 0); /* Flags0 */
|
||||
emit_2bytes(cinfo, 0); /* Flags1 */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_YCbCr:
|
||||
emit_byte(cinfo, 1); /* Color transform = 1 */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
emit_byte(cinfo, 2); /* Color transform = 2 */
|
||||
break;
|
||||
default:
|
||||
emit_byte(cinfo, 0); /* Color transform = 0 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines allow writing an arbitrary marker with parameters.
|
||||
* The only intended use is to emit COM or APPn markers after calling
|
||||
* write_file_header and before calling write_frame_header.
|
||||
* Other uses are not guaranteed to produce desirable results.
|
||||
* Counting the parameter bytes properly is the caller's responsibility.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
/* Emit an arbitrary marker header */
|
||||
{
|
||||
if (datalen > (unsigned int) 65533) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_LENGTH);
|
||||
|
||||
emit_marker(cinfo, (JPEG_MARKER) marker);
|
||||
|
||||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit one byte of marker parameters following write_marker_header */
|
||||
{
|
||||
emit_byte(cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream header.
|
||||
* This consists of an SOI and optional APPn markers.
|
||||
* We recommend use of the JFIF marker, but not the Adobe marker,
|
||||
* when using YCbCr or grayscale data. The JFIF marker should NOT
|
||||
* be used for any other JPEG colorspace. The Adobe marker is helpful
|
||||
* to distinguish RGB, CMYK, and YCCK colorspaces.
|
||||
* Note that an application can write additional header markers after
|
||||
* jpeg_start_compress returns.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_header (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */
|
||||
|
||||
/* SOI is defined to reset restart interval to 0 */
|
||||
marker->last_restart_interval = 0;
|
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
|
||||
emit_jfif_app0(cinfo);
|
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
|
||||
emit_adobe_app14(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write frame header.
|
||||
* This consists of DQT and SOFn markers.
|
||||
* Note that we do not emit the SOF until we have emitted the DQT(s).
|
||||
* This avoids compatibility problems with incorrect implementations that
|
||||
* try to error-check the quant table numbers as soon as they see the SOF.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_frame_header (j_compress_ptr cinfo)
|
||||
{
|
||||
int ci, prec;
|
||||
boolean is_baseline;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables.
|
||||
*/
|
||||
prec = 0;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */
|
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later.
|
||||
*/
|
||||
if (cinfo->arith_code || cinfo->progressive_mode ||
|
||||
cinfo->data_precision != 8) {
|
||||
is_baseline = FALSE;
|
||||
} else {
|
||||
is_baseline = TRUE;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
|
||||
is_baseline = FALSE;
|
||||
}
|
||||
if (prec && is_baseline) {
|
||||
is_baseline = FALSE;
|
||||
/* If it's baseline except for quantizer size, warn the user */
|
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit the proper SOF marker */
|
||||
if (cinfo->arith_code) {
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for arithmetic coding */
|
||||
} else {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
|
||||
else if (is_baseline)
|
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write scan header.
|
||||
* This consists of DHT or DAC markers, optional DRI, and SOS.
|
||||
* Compressed data will be written following the SOS.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_scan_header (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||
int i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->arith_code) {
|
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly
|
||||
* worth worrying about.
|
||||
*/
|
||||
emit_dac(cinfo);
|
||||
} else {
|
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables.
|
||||
*/
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Progressive mode: only DC or only AC tables are used in one scan */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Ah == 0) /* DC needs no table for refinement scan */
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
} else {
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
} else {
|
||||
/* Sequential mode: need both DC and AC tables */
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* We avoid wasting space with unnecessary DRIs, however.
|
||||
*/
|
||||
if (cinfo->restart_interval != marker->last_restart_interval) {
|
||||
emit_dri(cinfo);
|
||||
marker->last_restart_interval = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
emit_sos(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_trailer (j_compress_ptr cinfo)
|
||||
{
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream.
|
||||
* This consists of SOI, DQT and DHT tables, and EOI.
|
||||
* Any table that is defined and not marked sent_table = TRUE will be
|
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_tables_only (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
emit_marker(cinfo, M_SOI);
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if (cinfo->quant_tbl_ptrs[i] != NULL)
|
||||
(void) emit_dqt(cinfo, i);
|
||||
}
|
||||
|
||||
if (! cinfo->arith_code) {
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, FALSE);
|
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_marker_writer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker;
|
||||
|
||||
/* Create the subobject */
|
||||
marker = (my_marker_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_marker_writer));
|
||||
cinfo->marker = (struct jpeg_marker_writer *) marker;
|
||||
/* Initialize method pointers */
|
||||
marker->pub.write_file_header = write_file_header;
|
||||
marker->pub.write_frame_header = write_frame_header;
|
||||
marker->pub.write_scan_header = write_scan_header;
|
||||
marker->pub.write_file_trailer = write_file_trailer;
|
||||
marker->pub.write_tables_only = write_tables_only;
|
||||
marker->pub.write_marker_header = write_marker_header;
|
||||
marker->pub.write_marker_byte = write_marker_byte;
|
||||
/* Initialize private state */
|
||||
marker->last_restart_interval = 0;
|
||||
}
|
590
TMessagesProj/jni/libjpeg/jcmaster.c
Executable file
@ -0,0 +1,590 @@
|
||||
/*
|
||||
* jcmaster.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG compressor.
|
||||
* These routines are concerned with parameter validation, initial setup,
|
||||
* and inter-pass control (determining the number of passes and the work
|
||||
* to be done in each pass).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef enum {
|
||||
main_pass, /* input data, also do first output step */
|
||||
huff_opt_pass, /* Huffman code optimization pass */
|
||||
output_pass /* data output pass */
|
||||
} c_pass_type;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_comp_master pub; /* public fields */
|
||||
|
||||
c_pass_type pass_type; /* the type of the current pass */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
int total_passes; /* total # of passes needed */
|
||||
|
||||
int scan_number; /* current index in scan_info[] */
|
||||
} my_comp_master;
|
||||
|
||||
typedef my_comp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Sanity check on image dimensions */
|
||||
if (cinfo->image_height <= 0 || cinfo->image_width <= 0
|
||||
|| cinfo->num_components <= 0 || cinfo->input_components <= 0)
|
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Fill in the correct component_index value; don't rely on application */
|
||||
compptr->component_index = ci;
|
||||
/* For compression, we never do DCT scaling. */
|
||||
compptr->DCT_scaled_size = DCTSIZE;
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) cinfo->max_v_samp_factor);
|
||||
/* Mark component needed (this flag isn't actually used for compression) */
|
||||
compptr->component_needed = TRUE;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller).
|
||||
*/
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
LOCAL(void)
|
||||
validate_script (j_compress_ptr cinfo)
|
||||
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
|
||||
*/
|
||||
{
|
||||
const jpeg_scan_info * scanptr;
|
||||
int scanno, ncomps, ci, coefi, thisi;
|
||||
int Ss, Se, Ah, Al;
|
||||
boolean component_sent[MAX_COMPONENTS];
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
int * last_bitpos_ptr;
|
||||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
|
||||
/* -1 until that coefficient has been seen; then last Al for it */
|
||||
#endif
|
||||
|
||||
if (cinfo->num_scans <= 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
|
||||
|
||||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||
* for progressive JPEG, no scan can have this.
|
||||
*/
|
||||
scanptr = cinfo->scan_info;
|
||||
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
cinfo->progressive_mode = TRUE;
|
||||
last_bitpos_ptr = & last_bitpos[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++)
|
||||
*last_bitpos_ptr++ = -1;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
component_sent[ci] = FALSE;
|
||||
}
|
||||
|
||||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
|
||||
/* Validate component indexes */
|
||||
ncomps = scanptr->comps_in_scan;
|
||||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (thisi < 0 || thisi >= cinfo->num_components)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
/* Components must appear in SOF order within each scan */
|
||||
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
}
|
||||
/* Validate progression parameters */
|
||||
Ss = scanptr->Ss;
|
||||
Se = scanptr->Se;
|
||||
Ah = scanptr->Ah;
|
||||
Al = scanptr->Al;
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
|
||||
* seems wrong: the upper bound ought to depend on data precision.
|
||||
* Perhaps they really meant 0..N+1 for N-bit precision.
|
||||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
|
||||
* out-of-range reconstructed DC values during the first DC scan,
|
||||
* which might cause problems for some decoders.
|
||||
*/
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MAX_AH_AL 10
|
||||
#else
|
||||
#define MAX_AH_AL 13
|
||||
#endif
|
||||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
|
||||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
if (Ss == 0) {
|
||||
if (Se != 0) /* DC and AC together not OK */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
if (ncomps != 1) /* AC scans must be for only one component */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
|
||||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
for (coefi = Ss; coefi <= Se; coefi++) {
|
||||
if (last_bitpos_ptr[coefi] < 0) {
|
||||
/* first scan of this coefficient */
|
||||
if (Ah != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
/* not first scan */
|
||||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
last_bitpos_ptr[coefi] = Al;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
/* For sequential JPEG, all progression parameters must be these: */
|
||||
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
/* Make sure components are not sent twice */
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (component_sent[thisi])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
component_sent[thisi] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now verify that everything got sent. */
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* For progressive mode, we only check that at least some DC data
|
||||
* got sent for each component; the spec does not require that all bits
|
||||
* of all coefficients be transmitted. Would it be wiser to enforce
|
||||
* transmission of all coefficient bits??
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (last_bitpos[ci][0] < 0)
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (! component_sent[ci])
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
select_scan_parameters (j_compress_ptr cinfo)
|
||||
/* Set up the scan parameters for the current scan */
|
||||
{
|
||||
int ci;
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
if (cinfo->scan_info != NULL) {
|
||||
/* Prepare for current scan --- the script is already validated */
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
|
||||
|
||||
cinfo->comps_in_scan = scanptr->comps_in_scan;
|
||||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
|
||||
cinfo->cur_comp_info[ci] =
|
||||
&cinfo->comp_info[scanptr->component_index[ci]];
|
||||
}
|
||||
cinfo->Ss = scanptr->Ss;
|
||||
cinfo->Se = scanptr->Se;
|
||||
cinfo->Ah = scanptr->Ah;
|
||||
cinfo->Al = scanptr->Al;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
/* Prepare for single sequential-JPEG scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
cinfo->Ss = 0;
|
||||
cinfo->Se = DCTSIZE2-1;
|
||||
cinfo->Ah = 0;
|
||||
cinfo->Al = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = DCTSIZE;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Convert restart specified in rows to actual MCU count. */
|
||||
/* Note that count must fit in 16 bits, so we provide limiting. */
|
||||
if (cinfo->restart_in_rows > 0) {
|
||||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
|
||||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each pass. We determine which modules
|
||||
* will be active during this pass and give them appropriate start_pass calls.
|
||||
* We also set is_last_pass to indicate whether any more passes will be
|
||||
* required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* Initial pass: will collect input data, and do either Huffman
|
||||
* optimization or data output for the first scan.
|
||||
*/
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (! cinfo->raw_data_in) {
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->downsample->start_pass) (cinfo);
|
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
(*cinfo->fdct->start_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
|
||||
(*cinfo->coef->start_pass) (cinfo,
|
||||
(master->total_passes > 1 ?
|
||||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
if (cinfo->optimize_coding) {
|
||||
/* No immediate data output; postpone writing frame/scan headers */
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
} else {
|
||||
/* Will write frame/scan headers at first jpeg_write_scanlines call */
|
||||
master->pub.call_pass_startup = TRUE;
|
||||
}
|
||||
break;
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
case huff_opt_pass:
|
||||
/* Do Huffman optimization for a scan after the first one. */
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) {
|
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
}
|
||||
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||
* and therefore we can skip the optimization pass for them.
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
master->pass_number++;
|
||||
/*FALLTHROUGH*/
|
||||
#endif
|
||||
case output_pass:
|
||||
/* Do a data-output pass. */
|
||||
/* We need not repeat per-scan setup if prior optimization pass did it. */
|
||||
if (! cinfo->optimize_coding) {
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
}
|
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
/* We emit frame/scan headers now */
|
||||
if (master->scan_number == 0)
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
}
|
||||
|
||||
master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->total_passes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook.
|
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
|
||||
* In single-pass processing, we need this hook because we don't want to
|
||||
* write frame/scan headers during jpeg_start_compress; we want to let the
|
||||
* application write COM markers etc. between jpeg_start_compress and the
|
||||
* jpeg_write_scanlines loop.
|
||||
* In multi-pass processing, this routine is not used.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pass_startup (j_compress_ptr cinfo)
|
||||
{
|
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
|
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_master (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
/* The entropy coder always needs an end-of-pass call,
|
||||
* either to analyze statistics or to flush its output buffer.
|
||||
*/
|
||||
(*cinfo->entropy->finish_pass) (cinfo);
|
||||
|
||||
/* Update state for next pass */
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* next pass is either output of scan 0 (after optimization)
|
||||
* or output of scan 1 (if no optimization).
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
if (! cinfo->optimize_coding)
|
||||
master->scan_number++;
|
||||
break;
|
||||
case huff_opt_pass:
|
||||
/* next pass is always output of current scan */
|
||||
master->pass_type = output_pass;
|
||||
break;
|
||||
case output_pass:
|
||||
/* next pass is either optimization or output of next scan */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
master->scan_number++;
|
||||
break;
|
||||
}
|
||||
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
|
||||
{
|
||||
my_master_ptr master;
|
||||
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_comp_master));
|
||||
cinfo->master = (struct jpeg_comp_master *) master;
|
||||
master->pub.prepare_for_pass = prepare_for_pass;
|
||||
master->pub.pass_startup = pass_startup;
|
||||
master->pub.finish_pass = finish_pass_master;
|
||||
master->pub.is_last_pass = FALSE;
|
||||
|
||||
/* Validate parameters, determine derived values */
|
||||
initial_setup(cinfo);
|
||||
|
||||
if (cinfo->scan_info != NULL) {
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
validate_script(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
cinfo->num_scans = 1;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode) /* TEMPORARY HACK ??? */
|
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
|
||||
|
||||
/* Initialize my private state */
|
||||
if (transcode_only) {
|
||||
/* no main pass in transcoding */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
else
|
||||
master->pass_type = output_pass;
|
||||
} else {
|
||||
/* for normal compression, first pass is always this type: */
|
||||
master->pass_type = main_pass;
|
||||
}
|
||||
master->scan_number = 0;
|
||||
master->pass_number = 0;
|
||||
if (cinfo->optimize_coding)
|
||||
master->total_passes = cinfo->num_scans * 2;
|
||||
else
|
||||
master->total_passes = cinfo->num_scans;
|
||||
}
|
106
TMessagesProj/jni/libjpeg/jcomapi.c
Executable file
@ -0,0 +1,106 @@
|
||||
/*
|
||||
* jcomapi.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface routines that are used for both
|
||||
* compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*
|
||||
* For this, we merely clean up all the nonpermanent memory pools.
|
||||
* Note that temp files (virtual arrays) are not allowed to belong to
|
||||
* the permanent pool, so we will be able to close all temp files here.
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort (j_common_ptr cinfo)
|
||||
{
|
||||
int pool;
|
||||
|
||||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
|
||||
if (cinfo->mem == NULL)
|
||||
return;
|
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries.
|
||||
*/
|
||||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
|
||||
(*cinfo->mem->free_pool) (cinfo, pool);
|
||||
}
|
||||
|
||||
/* Reset overall state for possible reuse of object */
|
||||
if (cinfo->is_decompressor) {
|
||||
cinfo->global_state = DSTATE_START;
|
||||
/* Try to keep application from accessing now-deleted marker list.
|
||||
* A bit kludgy to do it here, but this is the most central place.
|
||||
*/
|
||||
((j_decompress_ptr) cinfo)->marker_list = NULL;
|
||||
} else {
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object.
|
||||
*
|
||||
* Everything gets deallocated except the master jpeg_compress_struct itself
|
||||
* and the error manager struct. Both of these are supplied by the application
|
||||
* and must be freed, if necessary, by the application. (Often they are on
|
||||
* the stack and so don't need to be freed anyway.)
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy (j_common_ptr cinfo)
|
||||
{
|
||||
/* We need only tell the memory manager to release everything. */
|
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
|
||||
if (cinfo->mem != NULL)
|
||||
(*cinfo->mem->self_destruct) (cinfo);
|
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
|
||||
cinfo->global_state = 0; /* mark it destroyed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables.
|
||||
* (Would jutils.c be a more reasonable place to put these?)
|
||||
*/
|
||||
|
||||
GLOBAL(JQUANT_TBL *)
|
||||
jpeg_alloc_quant_table (j_common_ptr cinfo)
|
||||
{
|
||||
JQUANT_TBL *tbl;
|
||||
|
||||
tbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(JHUFF_TBL *)
|
||||
jpeg_alloc_huff_table (j_common_ptr cinfo)
|
||||
{
|
||||
JHUFF_TBL *tbl;
|
||||
|
||||
tbl = (JHUFF_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
156
TMessagesProj/jni/libjpeg/jconfig.h
Executable file
@ -0,0 +1,156 @@
|
||||
/* android jconfig.h */
|
||||
/*
|
||||
* jconfig.doc
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file documents the configuration options that are required to
|
||||
* customize the JPEG software for a particular system.
|
||||
*
|
||||
* The actual configuration options for a particular installation are stored
|
||||
* in jconfig.h. On many machines, jconfig.h can be generated automatically
|
||||
* or copied from one of the "canned" jconfig files that we supply. But if
|
||||
* you need to generate a jconfig.h file by hand, this file tells you how.
|
||||
*
|
||||
* DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
|
||||
* EDIT A COPY NAMED JCONFIG.H.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* These symbols indicate the properties of your machine or compiler.
|
||||
* #define the symbol if yes, #undef it if no.
|
||||
*/
|
||||
|
||||
/* Does your compiler support function prototypes?
|
||||
* (If not, you also need to use ansi2knr, see install.doc)
|
||||
*/
|
||||
#define HAVE_PROTOTYPES
|
||||
|
||||
/* Does your compiler support the declaration "unsigned char" ?
|
||||
* How about "unsigned short" ?
|
||||
*/
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
|
||||
/* Define "void" as "char" if your compiler doesn't know about type void.
|
||||
* NOTE: be sure to define void such that "void *" represents the most general
|
||||
* pointer type, e.g., that returned by malloc().
|
||||
*/
|
||||
/* #define void char */
|
||||
|
||||
/* Define "const" as empty if your compiler doesn't know the "const" keyword.
|
||||
*/
|
||||
/* #define const */
|
||||
|
||||
/* Define this if an ordinary "char" type is unsigned.
|
||||
* If you're not sure, leaving it undefined will work at some cost in speed.
|
||||
* If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
|
||||
*/
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
|
||||
/* Define this if your system has an ANSI-conforming <stddef.h> file.
|
||||
*/
|
||||
#define HAVE_STDDEF_H
|
||||
|
||||
/* Define this if your system has an ANSI-conforming <stdlib.h> file.
|
||||
*/
|
||||
#define HAVE_STDLIB_H
|
||||
|
||||
/* Define this if your system does not have an ANSI/SysV <string.h>,
|
||||
* but does have a BSD-style <strings.h>.
|
||||
*/
|
||||
#undef NEED_BSD_STRINGS
|
||||
|
||||
/* Define this if your system does not provide typedef size_t in any of the
|
||||
* ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
|
||||
* <sys/types.h> instead.
|
||||
*/
|
||||
#undef NEED_SYS_TYPES_H
|
||||
|
||||
/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
|
||||
* unless you are using a large-data memory model or 80386 flat-memory mode.
|
||||
* On less brain-damaged CPUs this symbol must not be defined.
|
||||
* (Defining this symbol causes large data structures to be referenced through
|
||||
* "far" pointers and to be allocated with a special version of malloc.)
|
||||
*/
|
||||
#undef NEED_FAR_POINTERS
|
||||
|
||||
/* Define this if your linker needs global names to be unique in less
|
||||
* than the first 15 characters.
|
||||
*/
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
|
||||
/* Although a real ANSI C compiler can deal perfectly well with pointers to
|
||||
* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
|
||||
* and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
|
||||
* define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you
|
||||
* actually get "missing structure definition" warnings or errors while
|
||||
* compiling the JPEG code.
|
||||
*/
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
|
||||
/*
|
||||
* The following options affect code selection within the JPEG library,
|
||||
* but they don't need to be visible to applications using the library.
|
||||
* To minimize application namespace pollution, the symbols won't be
|
||||
* defined unless JPEG_INTERNALS has been defined.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
/* Define this if your compiler implements ">>" on signed values as a logical
|
||||
* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
|
||||
* which is the normal and rational definition.
|
||||
*/
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
|
||||
/*
|
||||
* The remaining options do not affect the JPEG library proper,
|
||||
* but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
|
||||
* Other applications can ignore these.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
/* These defines indicate which image (non-JPEG) file formats are allowed. */
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
/* Define this if you want to name both input and output files on the command
|
||||
* line, rather than using stdout and optionally stdin. You MUST do this if
|
||||
* your system can't cope with binary I/O to stdin/stdout. See comments at
|
||||
* head of cjpeg.c or djpeg.c.
|
||||
*/
|
||||
#undef TWO_FILE_COMMANDLINE
|
||||
|
||||
/* Define this if your system needs explicit cleanup of temporary files.
|
||||
* This is crucial under MS-DOS, where the temporary "files" may be areas
|
||||
* of extended memory; on most other systems it's not as important.
|
||||
*/
|
||||
#undef NEED_SIGNAL_CATCHER
|
||||
|
||||
/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
|
||||
* This is necessary on systems that distinguish text files from binary files,
|
||||
* and is harmless on most systems that don't. If you have one of the rare
|
||||
* systems that complains about the "b" spec, define this symbol.
|
||||
*/
|
||||
#undef DONT_USE_B_MODE
|
||||
|
||||
/* Define this if you want percent-done progress reports from cjpeg/djpeg.
|
||||
*/
|
||||
#undef PROGRESS_REPORT
|
||||
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
610
TMessagesProj/jni/libjpeg/jcparam.c
Executable file
@ -0,0 +1,610 @@
|
||||
/*
|
||||
* jcparam.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG compressor.
|
||||
* Applications do not have to use this file, but those that don't use it
|
||||
* must know a lot more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
||||
const unsigned int *basic_table,
|
||||
int scale_factor, boolean force_baseline)
|
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage).
|
||||
* If force_baseline is TRUE, the computed quantization table entries
|
||||
* are limited to 1..255 for JPEG baseline compatibility.
|
||||
*/
|
||||
{
|
||||
JQUANT_TBL ** qtblptr;
|
||||
int i;
|
||||
long temp;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
|
||||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
|
||||
|
||||
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
||||
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
||||
/* limit the values to the valid range */
|
||||
if (temp <= 0L) temp = 1L;
|
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
||||
if (force_baseline && temp > 255L)
|
||||
temp = 255L; /* limit to baseline range if requested */
|
||||
(*qtblptr)->quantval[i] = (UINT16) temp;
|
||||
}
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better
|
||||
* to use jpeg_set_quality (below); this entry point is provided for
|
||||
* applications that insist on a linear percentage scaling.
|
||||
*/
|
||||
{
|
||||
/* These are the sample quantization tables given in JPEG spec section K.1.
|
||||
* The spec says that the values given produce "good" quality, and
|
||||
* when divided by 2, "very good" quality.
|
||||
*/
|
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
||||
16, 11, 10, 16, 24, 40, 51, 61,
|
||||
12, 12, 14, 19, 26, 58, 60, 55,
|
||||
14, 13, 16, 24, 40, 57, 69, 56,
|
||||
14, 17, 22, 29, 51, 87, 80, 62,
|
||||
18, 22, 37, 56, 68, 109, 103, 77,
|
||||
24, 35, 55, 64, 81, 104, 113, 92,
|
||||
49, 64, 78, 87, 103, 121, 120, 101,
|
||||
72, 92, 95, 98, 112, 100, 103, 99
|
||||
};
|
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||
17, 18, 24, 47, 99, 99, 99, 99,
|
||||
18, 21, 26, 66, 99, 99, 99, 99,
|
||||
24, 26, 56, 99, 99, 99, 99, 99,
|
||||
47, 66, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99
|
||||
};
|
||||
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_quality_scaling (int quality)
|
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve.
|
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
||||
*/
|
||||
{
|
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||
if (quality <= 0) quality = 1;
|
||||
if (quality > 100) quality = 100;
|
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
||||
* to make all the table entries 1 (hence, minimum quantization loss).
|
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||
*/
|
||||
if (quality < 50)
|
||||
quality = 5000 / quality;
|
||||
else
|
||||
quality = 200 - quality*2;
|
||||
|
||||
return quality;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user
|
||||
* interfaces; only those who want detailed control over quantization tables
|
||||
* would use the preceding three routines directly.
|
||||
*/
|
||||
{
|
||||
/* Convert user 0-100 rating to percentage scaling */
|
||||
quality = jpeg_quality_scaling(quality);
|
||||
|
||||
/* Set up standard quality tables */
|
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman table setup routines
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
add_huff_table (j_compress_ptr cinfo,
|
||||
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
|
||||
/* Define a Huffman table */
|
||||
{
|
||||
int nsymbols, len;
|
||||
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
|
||||
/* Copy the number-of-symbols-of-each-code-length counts */
|
||||
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
|
||||
|
||||
/* Validate the counts. We do this here mainly so we can copy the right
|
||||
* number of symbols from the val[] array, without risking marching off
|
||||
* the end of memory. jchuff.c will do a more thorough test later.
|
||||
*/
|
||||
nsymbols = 0;
|
||||
for (len = 1; len <= 16; len++)
|
||||
nsymbols += bits[len];
|
||||
if (nsymbols < 1 || nsymbols > 256)
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
|
||||
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*htblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
std_huff_tables (j_compress_ptr cinfo)
|
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */
|
||||
{
|
||||
static const UINT8 bits_dc_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_luminance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_dc_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_chrominance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_ac_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
||||
static const UINT8 val_ac_luminance[] =
|
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
static const UINT8 bits_ac_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
||||
static const UINT8 val_ac_chrominance[] =
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
|
||||
bits_dc_luminance, val_dc_luminance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
|
||||
bits_ac_luminance, val_ac_luminance);
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
|
||||
bits_dc_chrominance, val_dc_chrominance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
|
||||
bits_ac_chrominance, val_ac_chrominance);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression.
|
||||
*
|
||||
* Applications that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_defaults (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress
|
||||
* multiple images at same param settings.
|
||||
*/
|
||||
if (cinfo->comp_info == NULL)
|
||||
cinfo->comp_info = (jpeg_component_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
|
||||
|
||||
/* Initialize everything not dependent on the color space */
|
||||
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
/* Set up two quantization tables using default quality of 75 */
|
||||
jpeg_set_quality(cinfo, 75, TRUE);
|
||||
/* Set up two Huffman tables */
|
||||
std_huff_tables(cinfo);
|
||||
|
||||
/* Initialize default arithmetic coding conditioning */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
|
||||
/* Default is no multiple-scan output */
|
||||
cinfo->scan_info = NULL;
|
||||
cinfo->num_scans = 0;
|
||||
|
||||
/* Expect normal source image, not raw downsampled data */
|
||||
cinfo->raw_data_in = FALSE;
|
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */
|
||||
cinfo->arith_code = FALSE;
|
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */
|
||||
cinfo->optimize_coding = FALSE;
|
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, force optimization on so that usable
|
||||
* tables will be computed. This test can be removed if default tables
|
||||
* are supplied that are valid for the desired precision.
|
||||
*/
|
||||
if (cinfo->data_precision > 8)
|
||||
cinfo->optimize_coding = TRUE;
|
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */
|
||||
cinfo->CCIR601_sampling = FALSE;
|
||||
|
||||
/* No input smoothing */
|
||||
cinfo->smoothing_factor = 0;
|
||||
|
||||
/* DCT algorithm preference */
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
|
||||
/* No restart markers */
|
||||
cinfo->restart_interval = 0;
|
||||
cinfo->restart_in_rows = 0;
|
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace.
|
||||
*
|
||||
* By default, the library emits JFIF version code 1.01.
|
||||
* An application that wants to emit JFIF 1.02 extension markers should set
|
||||
* JFIF_minor_version to 2. We could probably get away with just defaulting
|
||||
* to 1.02, but there may still be some decoders in use that will complain
|
||||
* about that; saying 1.01 should minimize compatibility problems.
|
||||
*/
|
||||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
|
||||
cinfo->JFIF_minor_version = 1;
|
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */
|
||||
|
||||
jpeg_default_colorspace(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_default_colorspace (j_compress_ptr cinfo)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCCK);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
||||
{
|
||||
jpeg_component_info * compptr;
|
||||
int ci;
|
||||
|
||||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
|
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) )
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components.
|
||||
*/
|
||||
|
||||
cinfo->jpeg_color_space = colorspace;
|
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
||||
|
||||
switch (colorspace) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 1;
|
||||
/* JFIF specifies component ID 1 */
|
||||
SET_COMP(0, 1, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
||||
cinfo->num_components = 3;
|
||||
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
|
||||
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
|
||||
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 3;
|
||||
/* JFIF specifies component IDs 1,2,3 */
|
||||
/* We default to 2x2 subsamples of chrominance */
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
|
||||
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
|
||||
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
|
||||
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
SET_COMP(3, 4, 2,2, 0, 0,0);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
cinfo->num_components = cinfo->input_components;
|
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
SET_COMP(ci, ci, 1,1, 0, 0,0);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_a_scan (jpeg_scan_info * scanptr, int ci,
|
||||
int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for specified component */
|
||||
{
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_scans (jpeg_scan_info * scanptr, int ncomps,
|
||||
int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for each component */
|
||||
{
|
||||
int ci;
|
||||
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
|
||||
/* Support routine: generate interleaved DC scan if possible, else N scans */
|
||||
{
|
||||
int ci;
|
||||
|
||||
if (ncomps <= MAX_COMPS_IN_SCAN) {
|
||||
/* Single interleaved DC scan */
|
||||
scanptr->comps_in_scan = ncomps;
|
||||
for (ci = 0; ci < ncomps; ci++)
|
||||
scanptr->component_index[ci] = ci;
|
||||
scanptr->Ss = scanptr->Se = 0;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
} else {
|
||||
/* Noninterleaved DC scan for each component */
|
||||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create a recommended progressive-JPEG script.
|
||||
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_simple_progression (j_compress_ptr cinfo)
|
||||
{
|
||||
int ncomps = cinfo->num_components;
|
||||
int nscans;
|
||||
jpeg_scan_info * scanptr;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Figure space needed for script. Calculation must match code below! */
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
nscans = 10;
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
if (ncomps > MAX_COMPS_IN_SCAN)
|
||||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
|
||||
else
|
||||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
|
||||
}
|
||||
|
||||
/* Allocate space for script.
|
||||
* We need to put it in the permanent pool in case the application performs
|
||||
* multiple compressions without changing the settings. To avoid a memory
|
||||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
|
||||
* object, we try to re-use previously allocated space, and we allocate
|
||||
* enough space to handle YCbCr even if initially asked for grayscale.
|
||||
*/
|
||||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
|
||||
cinfo->script_space_size = MAX(nscans, 10);
|
||||
cinfo->script_space = (jpeg_scan_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
|
||||
}
|
||||
scanptr = cinfo->script_space;
|
||||
cinfo->scan_info = scanptr;
|
||||
cinfo->num_scans = nscans;
|
||||
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
/* Initial DC scan */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
/* Initial AC scan: get some luma data out in a hurry */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
|
||||
/* Chroma data is too small to be worth expending many scans on */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
|
||||
/* Complete spectral selection for luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
|
||||
/* Refine next bit of luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
|
||||
/* Finish DC successive approximation */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
/* Finish AC successive approximation */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
|
||||
/* Luma bottom bit comes last since it's usually largest scan */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
/* Successive approximation first pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
|
||||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
|
||||
/* Successive approximation second pass */
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
|
||||
/* Successive approximation final pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */
|
833
TMessagesProj/jni/libjpeg/jcphuff.c
Executable file
@ -0,0 +1,833 @@
|
||||
/*
|
||||
* jcphuff.c
|
||||
*
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains Huffman entropy encoding routines for progressive JPEG.
|
||||
*
|
||||
* We do not support output suspension in this module, since the library
|
||||
* currently does not allow multiple-scan files to be written with output
|
||||
* suspension.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jchuff.h" /* Declarations shared with jchuff.c */
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
|
||||
/* Expanded entropy encoder object for progressive Huffman encoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_encoder pub; /* public fields */
|
||||
|
||||
/* Mode flag: TRUE for optimization, FALSE for actual data output */
|
||||
boolean gather_statistics;
|
||||
|
||||
/* Bit-level coding status.
|
||||
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
||||
*/
|
||||
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
||||
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
||||
INT32 put_buffer; /* current bit-accumulation buffer */
|
||||
int put_bits; /* # of bits now in it */
|
||||
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
||||
|
||||
/* Coding status for DC components */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
|
||||
/* Coding status for AC components */
|
||||
int ac_tbl_no; /* the table number of the single component */
|
||||
unsigned int EOBRUN; /* run length of EOBs */
|
||||
unsigned int BE; /* # of buffered correction bits before MCU */
|
||||
char * bit_buffer; /* buffer for correction bits (1 per char) */
|
||||
/* packing correction bits tightly would save some space but cost time... */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
int next_restart_num; /* next restart number to write (0-7) */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan).
|
||||
* Since any one scan codes only DC or only AC, we only need one set
|
||||
* of tables, not one for DC and one for AC.
|
||||
*/
|
||||
c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
/* Statistics tables for optimization; again, one set is enough */
|
||||
long * count_ptrs[NUM_HUFF_TBLS];
|
||||
} phuff_entropy_encoder;
|
||||
|
||||
typedef phuff_entropy_encoder * phuff_entropy_ptr;
|
||||
|
||||
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
||||
* buffer can hold. Larger sizes may slightly improve compression, but
|
||||
* 1000 is already well into the realm of overkill.
|
||||
* The minimum safe size is 64 bits.
|
||||
*/
|
||||
|
||||
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is,
|
||||
* which should be safe.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS int ishift_temp;
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
|
||||
METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan using progressive JPEG.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
boolean is_DC_band;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
entropy->cinfo = cinfo;
|
||||
entropy->gather_statistics = gather_statistics;
|
||||
|
||||
is_DC_band = (cinfo->Ss == 0);
|
||||
|
||||
/* We assume jcmaster.c already validated the scan parameters. */
|
||||
|
||||
/* Select execution routines */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (is_DC_band)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
||||
} else {
|
||||
if (is_DC_band)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
||||
else {
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
||||
/* AC refinement needs a correction bit buffer */
|
||||
if (entropy->bit_buffer == NULL)
|
||||
entropy->bit_buffer = (char *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
MAX_CORR_BITS * SIZEOF(char));
|
||||
}
|
||||
}
|
||||
if (gather_statistics)
|
||||
entropy->pub.finish_pass = finish_pass_gather_phuff;
|
||||
else
|
||||
entropy->pub.finish_pass = finish_pass_phuff;
|
||||
|
||||
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
|
||||
* for AC coefficients.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
/* Get table index */
|
||||
if (is_DC_band) {
|
||||
if (cinfo->Ah != 0) /* DC refinement needs no table */
|
||||
continue;
|
||||
tbl = compptr->dc_tbl_no;
|
||||
} else {
|
||||
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
|
||||
}
|
||||
if (gather_statistics) {
|
||||
/* Check for invalid table index */
|
||||
/* (make_c_derived_tbl does this in the other path) */
|
||||
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
||||
/* Allocate and zero the statistics tables */
|
||||
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
||||
if (entropy->count_ptrs[tbl] == NULL)
|
||||
entropy->count_ptrs[tbl] = (long *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
257 * SIZEOF(long));
|
||||
MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
|
||||
} else {
|
||||
/* Compute derived values for Huffman table */
|
||||
/* We may do this more than once for a table, but it's not expensive */
|
||||
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
|
||||
& entropy->derived_tbls[tbl]);
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize AC stuff */
|
||||
entropy->EOBRUN = 0;
|
||||
entropy->BE = 0;
|
||||
|
||||
/* Initialize bit buffer to empty */
|
||||
entropy->put_buffer = 0;
|
||||
entropy->put_bits = 0;
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num = 0;
|
||||
}
|
||||
|
||||
|
||||
/* Outputting bytes to the file.
|
||||
* NB: these must be called only when actually outputting,
|
||||
* that is, entropy->gather_statistics == FALSE.
|
||||
*/
|
||||
|
||||
/* Emit a byte */
|
||||
#define emit_byte(entropy,val) \
|
||||
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
||||
if (--(entropy)->free_in_buffer == 0) \
|
||||
dump_buffer(entropy); }
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
dump_buffer (phuff_entropy_ptr entropy)
|
||||
/* Empty the output buffer; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
||||
|
||||
if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
||||
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
||||
/* After a successful buffer dump, must reset buffer pointers */
|
||||
entropy->next_output_byte = dest->next_output_byte;
|
||||
entropy->free_in_buffer = dest->free_in_buffer;
|
||||
}
|
||||
|
||||
|
||||
/* Outputting bits to the file */
|
||||
|
||||
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
||||
* left-justified in this part. At most 16 bits can be passed to emit_bits
|
||||
* in one call, and we never retain more than 7 bits in put_buffer
|
||||
* between calls, so 24 bits are sufficient.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
|
||||
/* Emit some bits, unless we are in gather mode */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding tightly. */
|
||||
register INT32 put_buffer = (INT32) code;
|
||||
register int put_bits = entropy->put_bits;
|
||||
|
||||
/* if size is 0, caller used an invalid Huffman table entry */
|
||||
if (size == 0)
|
||||
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
||||
|
||||
if (entropy->gather_statistics)
|
||||
return; /* do nothing if we're only getting stats */
|
||||
|
||||
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
||||
|
||||
put_bits += size; /* new number of bits in buffer */
|
||||
|
||||
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
||||
|
||||
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
|
||||
|
||||
while (put_bits >= 8) {
|
||||
int c = (int) ((put_buffer >> 16) & 0xFF);
|
||||
|
||||
emit_byte(entropy, c);
|
||||
if (c == 0xFF) { /* need to stuff a zero byte? */
|
||||
emit_byte(entropy, 0);
|
||||
}
|
||||
put_buffer <<= 8;
|
||||
put_bits -= 8;
|
||||
}
|
||||
|
||||
entropy->put_buffer = put_buffer; /* update variables */
|
||||
entropy->put_bits = put_bits;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
flush_bits (phuff_entropy_ptr entropy)
|
||||
{
|
||||
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
||||
entropy->put_buffer = 0; /* and reset bit-buffer to empty */
|
||||
entropy->put_bits = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit (or just count) a Huffman symbol.
|
||||
*/
|
||||
|
||||
INLINE
|
||||
LOCAL(void)
|
||||
emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
|
||||
{
|
||||
if (entropy->gather_statistics)
|
||||
entropy->count_ptrs[tbl_no][symbol]++;
|
||||
else {
|
||||
c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
|
||||
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit bits from a correction bit buffer.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
|
||||
unsigned int nbits)
|
||||
{
|
||||
if (entropy->gather_statistics)
|
||||
return; /* no real work */
|
||||
|
||||
while (nbits > 0) {
|
||||
emit_bits(entropy, (unsigned int) (*bufstart), 1);
|
||||
bufstart++;
|
||||
nbits--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit any pending EOBRUN symbol.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_eobrun (phuff_entropy_ptr entropy)
|
||||
{
|
||||
register int temp, nbits;
|
||||
|
||||
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
||||
temp = entropy->EOBRUN;
|
||||
nbits = 0;
|
||||
while ((temp >>= 1))
|
||||
nbits++;
|
||||
/* safety check: shouldn't happen given limited correction-bit buffer */
|
||||
if (nbits > 14)
|
||||
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
||||
|
||||
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
||||
if (nbits)
|
||||
emit_bits(entropy, entropy->EOBRUN, nbits);
|
||||
|
||||
entropy->EOBRUN = 0;
|
||||
|
||||
/* Emit any buffered correction bits */
|
||||
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
||||
entropy->BE = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_restart (phuff_entropy_ptr entropy, int restart_num)
|
||||
{
|
||||
int ci;
|
||||
|
||||
emit_eobrun(entropy);
|
||||
|
||||
if (! entropy->gather_statistics) {
|
||||
flush_bits(entropy);
|
||||
emit_byte(entropy, 0xFF);
|
||||
emit_byte(entropy, JPEG_RST0 + restart_num);
|
||||
}
|
||||
|
||||
if (entropy->cinfo->Ss == 0) {
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
} else {
|
||||
/* Re-initialize all AC-related fields to 0 */
|
||||
entropy->EOBRUN = 0;
|
||||
entropy->BE = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
register int temp, temp2;
|
||||
register int nbits;
|
||||
int blkn, ci;
|
||||
int Al = cinfo->Al;
|
||||
JBLOCKROW block;
|
||||
jpeg_component_info * compptr;
|
||||
ISHIFT_TEMPS
|
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval)
|
||||
if (entropy->restarts_to_go == 0)
|
||||
emit_restart(entropy, entropy->next_restart_num);
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift.
|
||||
*/
|
||||
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
|
||||
|
||||
/* DC differences are figured on the point-transformed values. */
|
||||
temp = temp2 - entropy->last_dc_val[ci];
|
||||
entropy->last_dc_val[ci] = temp2;
|
||||
|
||||
/* Encode the DC coefficient difference per section G.1.2.1 */
|
||||
temp2 = temp;
|
||||
if (temp < 0) {
|
||||
temp = -temp; /* temp is abs value of input */
|
||||
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
||||
/* This code assumes we are on a two's complement machine */
|
||||
temp2--;
|
||||
}
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = 0;
|
||||
while (temp) {
|
||||
nbits++;
|
||||
temp >>= 1;
|
||||
}
|
||||
/* Check for out-of-range coefficient values.
|
||||
* Since we're encoding a difference, the range limit is twice as much.
|
||||
*/
|
||||
if (nbits > MAX_COEF_BITS+1)
|
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
||||
|
||||
/* Count/emit the Huffman-coded symbol for the number of bits */
|
||||
emit_symbol(entropy, compptr->dc_tbl_no, nbits);
|
||||
|
||||
/* Emit that number of bits of the value, if positive, */
|
||||
/* or the complement of its magnitude, if negative. */
|
||||
if (nbits) /* emit_bits rejects calls with size 0 */
|
||||
emit_bits(entropy, (unsigned int) temp2, nbits);
|
||||
}
|
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
||||
|
||||
/* Update restart-interval state too */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
register int temp, temp2;
|
||||
register int nbits;
|
||||
register int r, k;
|
||||
int Se = cinfo->Se;
|
||||
int Al = cinfo->Al;
|
||||
JBLOCKROW block;
|
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval)
|
||||
if (entropy->restarts_to_go == 0)
|
||||
emit_restart(entropy, entropy->next_restart_num);
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
|
||||
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
||||
|
||||
r = 0; /* r = run length of zeros */
|
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) {
|
||||
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
|
||||
r++;
|
||||
continue;
|
||||
}
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value; so the code is
|
||||
* interwoven with finding the abs value (temp) and output bits (temp2).
|
||||
*/
|
||||
if (temp < 0) {
|
||||
temp = -temp; /* temp is abs value of input */
|
||||
temp >>= Al; /* apply the point transform */
|
||||
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
||||
temp2 = ~temp;
|
||||
} else {
|
||||
temp >>= Al; /* apply the point transform */
|
||||
temp2 = temp;
|
||||
}
|
||||
/* Watch out for case that nonzero coef is zero after point transform */
|
||||
if (temp == 0) {
|
||||
r++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Emit any pending EOBRUN */
|
||||
if (entropy->EOBRUN > 0)
|
||||
emit_eobrun(entropy);
|
||||
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
||||
while (r > 15) {
|
||||
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
||||
r -= 16;
|
||||
}
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = 1; /* there must be at least one 1 bit */
|
||||
while ((temp >>= 1))
|
||||
nbits++;
|
||||
/* Check for out-of-range coefficient values */
|
||||
if (nbits > MAX_COEF_BITS)
|
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
||||
|
||||
/* Count/emit Huffman symbol for run length / number of bits */
|
||||
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
||||
|
||||
/* Emit that number of bits of the value, if positive, */
|
||||
/* or the complement of its magnitude, if negative. */
|
||||
emit_bits(entropy, (unsigned int) temp2, nbits);
|
||||
|
||||
r = 0; /* reset zero run length */
|
||||
}
|
||||
|
||||
if (r > 0) { /* If there are trailing zeroes, */
|
||||
entropy->EOBRUN++; /* count an EOB */
|
||||
if (entropy->EOBRUN == 0x7FFF)
|
||||
emit_eobrun(entropy); /* force it out to avoid overflow */
|
||||
}
|
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
||||
|
||||
/* Update restart-interval state too */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan.
|
||||
* Note: we assume such scans can be multi-component, although the spec
|
||||
* is not very clear on the point.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
register int temp;
|
||||
int blkn;
|
||||
int Al = cinfo->Al;
|
||||
JBLOCKROW block;
|
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval)
|
||||
if (entropy->restarts_to_go == 0)
|
||||
emit_restart(entropy, entropy->next_restart_num);
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
|
||||
/* We simply emit the Al'th bit of the DC coefficient value. */
|
||||
temp = (*block)[0];
|
||||
emit_bits(entropy, (unsigned int) (temp >> Al), 1);
|
||||
}
|
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
||||
|
||||
/* Update restart-interval state too */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
register int temp;
|
||||
register int r, k;
|
||||
int EOB;
|
||||
char *BR_buffer;
|
||||
unsigned int BR;
|
||||
int Se = cinfo->Se;
|
||||
int Al = cinfo->Al;
|
||||
JBLOCKROW block;
|
||||
int absvalues[DCTSIZE2];
|
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval)
|
||||
if (entropy->restarts_to_go == 0)
|
||||
emit_restart(entropy, entropy->next_restart_num);
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
|
||||
/* It is convenient to make a pre-pass to determine the transformed
|
||||
* coefficients' absolute values and the EOB position.
|
||||
*/
|
||||
EOB = 0;
|
||||
for (k = cinfo->Ss; k <= Se; k++) {
|
||||
temp = (*block)[jpeg_natural_order[k]];
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if (temp < 0)
|
||||
temp = -temp; /* temp is abs value of input */
|
||||
temp >>= Al; /* apply the point transform */
|
||||
absvalues[k] = temp; /* save abs value for main pass */
|
||||
if (temp == 1)
|
||||
EOB = k; /* EOB = index of last newly-nonzero coef */
|
||||
}
|
||||
|
||||
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
||||
|
||||
r = 0; /* r = run length of zeros */
|
||||
BR = 0; /* BR = count of buffered bits added now */
|
||||
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) {
|
||||
if ((temp = absvalues[k]) == 0) {
|
||||
r++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Emit any required ZRLs, but not if they can be folded into EOB */
|
||||
while (r > 15 && k <= EOB) {
|
||||
/* emit any pending EOBRUN and the BE correction bits */
|
||||
emit_eobrun(entropy);
|
||||
/* Emit ZRL */
|
||||
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
||||
r -= 16;
|
||||
/* Emit buffered correction bits that must be associated with ZRL */
|
||||
emit_buffered_bits(entropy, BR_buffer, BR);
|
||||
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
||||
BR = 0;
|
||||
}
|
||||
|
||||
/* If the coef was previously nonzero, it only needs a correction bit.
|
||||
* NOTE: a straight translation of the spec's figure G.7 would suggest
|
||||
* that we also need to test r > 15. But if r > 15, we can only get here
|
||||
* if k > EOB, which implies that this coefficient is not 1.
|
||||
*/
|
||||
if (temp > 1) {
|
||||
/* The correction bit is the next bit of the absolute value. */
|
||||
BR_buffer[BR++] = (char) (temp & 1);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Emit any pending EOBRUN and the BE correction bits */
|
||||
emit_eobrun(entropy);
|
||||
|
||||
/* Count/emit Huffman symbol for run length / number of bits */
|
||||
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
||||
|
||||
/* Emit output bit for newly-nonzero coef */
|
||||
temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
|
||||
emit_bits(entropy, (unsigned int) temp, 1);
|
||||
|
||||
/* Emit buffered correction bits that must be associated with this code */
|
||||
emit_buffered_bits(entropy, BR_buffer, BR);
|
||||
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
||||
BR = 0;
|
||||
r = 0; /* reset zero run length */
|
||||
}
|
||||
|
||||
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
||||
entropy->EOBRUN++; /* count an EOB */
|
||||
entropy->BE += BR; /* concat my correction bits to older ones */
|
||||
/* We force out the EOB if we risk either:
|
||||
* 1. overflow of the EOB counter;
|
||||
* 2. overflow of the correction bit buffer during the next MCU.
|
||||
*/
|
||||
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
||||
emit_eobrun(entropy);
|
||||
}
|
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
||||
|
||||
/* Update restart-interval state too */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of a Huffman-compressed progressive scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_phuff (j_compress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
|
||||
/* Flush out any buffered data */
|
||||
emit_eobrun(entropy);
|
||||
flush_bits(entropy);
|
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_gather_phuff (j_compress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
boolean is_DC_band;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
JHUFF_TBL **htblptr;
|
||||
boolean did[NUM_HUFF_TBLS];
|
||||
|
||||
/* Flush out buffered data (all we care about is counting the EOB symbol) */
|
||||
emit_eobrun(entropy);
|
||||
|
||||
is_DC_band = (cinfo->Ss == 0);
|
||||
|
||||
/* It's important not to apply jpeg_gen_optimal_table more than once
|
||||
* per table, because it clobbers the input frequency counts!
|
||||
*/
|
||||
MEMZERO(did, SIZEOF(did));
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
if (is_DC_band) {
|
||||
if (cinfo->Ah != 0) /* DC refinement needs no table */
|
||||
continue;
|
||||
tbl = compptr->dc_tbl_no;
|
||||
} else {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
}
|
||||
if (! did[tbl]) {
|
||||
if (is_DC_band)
|
||||
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
||||
else
|
||||
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
|
||||
did[tbl] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for progressive Huffman entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_phuff_encoder (j_compress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (phuff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(phuff_entropy_encoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass_phuff;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->derived_tbls[i] = NULL;
|
||||
entropy->count_ptrs[i] = NULL;
|
||||
}
|
||||
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
||||
}
|
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */
|
354
TMessagesProj/jni/libjpeg/jcprepct.c
Executable file
@ -0,0 +1,354 @@
|
||||
/*
|
||||
* jcprepct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the compression preprocessing controller.
|
||||
* This controller manages the color conversion, downsampling,
|
||||
* and edge expansion steps.
|
||||
*
|
||||
* Most of the complexity here is associated with buffering input rows
|
||||
* as required by the downsampler. See the comments at the head of
|
||||
* jcsample.c for the downsampler's needs.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling
|
||||
* or other more-complex downsampling procedures. The code to support
|
||||
* context rows should be compiled only if needed.
|
||||
*/
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
#define CONTEXT_ROWS_SUPPORTED
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one
|
||||
* row group's worth of pixels for the downsampling step. At the bottom of
|
||||
* the image, we pad to a full row group by replicating the last pixel row.
|
||||
* The downsampler's last output row is then replicated if needed to pad
|
||||
* out to a full iMCU row.
|
||||
*
|
||||
* When providing context rows, we must buffer three row groups' worth of
|
||||
* pixels. Three row groups are physically allocated, but the row pointer
|
||||
* arrays are made five row groups high, with the extra pointers above and
|
||||
* below "wrapping around" to point to the last and first real row groups.
|
||||
* This allows the downsampler to access the proper context rows.
|
||||
* At the top and bottom of the image, we create dummy context rows by
|
||||
* copying the first or last real pixel row. This copying could be avoided
|
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
|
||||
* trouble on the compression side.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_prep_controller pub; /* public fields */
|
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */
|
||||
int next_buf_row; /* index of next row to store in color_buf */
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
|
||||
int this_row_group; /* starting row index of group to process */
|
||||
int next_buf_stop; /* downsample when we reach this index */
|
||||
#endif
|
||||
} my_prep_controller;
|
||||
|
||||
typedef my_prep_controller * my_prep_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
|
||||
if (pass_mode != JBUF_PASS_THRU)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
prep->rows_to_go = cinfo->image_height;
|
||||
/* Mark the conversion buffer empty */
|
||||
prep->next_buf_row = 0;
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode.
|
||||
*/
|
||||
prep->this_row_group = 0;
|
||||
/* Set next_buf_stop to stop after two row groups have been read in. */
|
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows,
|
||||
* by duplicating the bottom row.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
|
||||
int input_rows, int output_rows)
|
||||
{
|
||||
register int row;
|
||||
|
||||
for (row = input_rows; row < output_rows; row++) {
|
||||
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
|
||||
1, num_cols);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case.
|
||||
*
|
||||
* Preprocessor output data is counted in "row groups". A row group
|
||||
* is defined to be v_samp_factor sample rows of each component.
|
||||
* Downsampling will produce this much data from each max_v_samp_factor
|
||||
* input rows.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_data (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
JDIMENSION inrows;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
while (*in_row_ctr < in_rows_avail &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->rows_to_go == 0 &&
|
||||
prep->next_buf_row < cinfo->max_v_samp_factor) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, cinfo->max_v_samp_factor);
|
||||
}
|
||||
prep->next_buf_row = cinfo->max_v_samp_factor;
|
||||
}
|
||||
/* If we've filled the conversion buffer, empty it. */
|
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf, (JDIMENSION) 0,
|
||||
output_buf, *out_row_group_ctr);
|
||||
prep->next_buf_row = 0;
|
||||
(*out_row_group_ctr)++;
|
||||
}
|
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||
*/
|
||||
if (prep->rows_to_go == 0 &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
expand_bottom_edge(output_buf[ci],
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
(int) (*out_row_group_ctr * compptr->v_samp_factor),
|
||||
(int) (out_row_groups_avail * compptr->v_samp_factor));
|
||||
}
|
||||
*out_row_group_ctr = out_row_groups_avail;
|
||||
break; /* can exit outer loop without test */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the context case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_context (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
int buf_height = cinfo->max_v_samp_factor * 3;
|
||||
JDIMENSION inrows;
|
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) {
|
||||
if (*in_row_ctr < in_rows_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = prep->next_buf_stop - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
/* Pad at top of image, if first time through */
|
||||
if (prep->rows_to_go == cinfo->image_height) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
int row;
|
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
|
||||
jcopy_sample_rows(prep->color_buf[ci], 0,
|
||||
prep->color_buf[ci], -row,
|
||||
1, cinfo->image_width);
|
||||
}
|
||||
}
|
||||
}
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
} else {
|
||||
/* Return for more data, unless we are at the bottom of the image. */
|
||||
if (prep->rows_to_go != 0)
|
||||
break;
|
||||
/* When at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->next_buf_row < prep->next_buf_stop) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, prep->next_buf_stop);
|
||||
}
|
||||
prep->next_buf_row = prep->next_buf_stop;
|
||||
}
|
||||
}
|
||||
/* If we've gotten enough data, downsample a row group. */
|
||||
if (prep->next_buf_row == prep->next_buf_stop) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->this_row_group,
|
||||
output_buf, *out_row_group_ctr);
|
||||
(*out_row_group_ctr)++;
|
||||
/* Advance pointers with wraparound as necessary. */
|
||||
prep->this_row_group += cinfo->max_v_samp_factor;
|
||||
if (prep->this_row_group >= buf_height)
|
||||
prep->this_row_group = 0;
|
||||
if (prep->next_buf_row >= buf_height)
|
||||
prep->next_buf_row = 0;
|
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_context_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int rgroup_height = cinfo->max_v_samp_factor;
|
||||
int ci, i;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY true_buffer, fake_buffer;
|
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component.
|
||||
*/
|
||||
fake_buffer = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(cinfo->num_components * 5 * rgroup_height) *
|
||||
SIZEOF(JSAMPROW));
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
true_buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) (3 * rgroup_height));
|
||||
/* Copy true buffer row pointers into the middle of the fake row array */
|
||||
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
|
||||
3 * rgroup_height * SIZEOF(JSAMPROW));
|
||||
/* Fill in the above and below wraparound pointers */
|
||||
for (i = 0; i < rgroup_height; i++) {
|
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
|
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
|
||||
}
|
||||
prep->color_buf[ci] = fake_buffer + rgroup_height;
|
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_prep_ptr prep;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (need_full_buffer) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
prep = (my_prep_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_prep_controller));
|
||||
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
|
||||
prep->pub.start_pass = start_pass_prep;
|
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
if (cinfo->downsample->need_context_rows) {
|
||||
/* Set up to provide context rows */
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
prep->pub.pre_process_data = pre_process_context;
|
||||
create_context_buffer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* No context, just make it tall enough for one row group */
|
||||
prep->pub.pre_process_data = pre_process_data;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
519
TMessagesProj/jni/libjpeg/jcsample.c
Executable file
@ -0,0 +1,519 @@
|
||||
/*
|
||||
* jcsample.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains downsampling routines.
|
||||
*
|
||||
* Downsampling input data is counted in "row groups". A row group
|
||||
* is defined to be max_v_samp_factor pixel rows of each component,
|
||||
* from which the downsampler produces v_samp_factor sample rows.
|
||||
* A single row group is processed in each call to the downsampler module.
|
||||
*
|
||||
* The downsampler is responsible for edge-expansion of its output data
|
||||
* to fill an integral number of DCT blocks horizontally. The source buffer
|
||||
* may be modified if it is helpful for this purpose (the source buffer is
|
||||
* allocated wide enough to correspond to the desired output width).
|
||||
* The caller (the prep controller) is responsible for vertical padding.
|
||||
*
|
||||
* The downsampler may request "context rows" by setting need_context_rows
|
||||
* during startup. In this case, the input arrays will contain at least
|
||||
* one row group's worth of pixels above and below the passed-in data;
|
||||
* the caller will create dummy rows at image top and bottom by replicating
|
||||
* the first or last real pixel row.
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*
|
||||
* The downsampling algorithm used here is a simple average of the source
|
||||
* pixels covered by the output pixel. The hi-falutin sampling literature
|
||||
* refers to this as a "box filter". In general the characteristics of a box
|
||||
* filter are not very good, but for the specific cases we normally use (1:1
|
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
||||
* advised to improve this code.
|
||||
*
|
||||
* A simple input-smoothing capability is provided. This is mainly intended
|
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
||||
* we suggest using an external filtering program such as pnmconvol). When
|
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
||||
* where SF = (smoothing_factor / 1024).
|
||||
* Currently, smoothing is only supported for 2h2v sampling factors.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to downsample a single component */
|
||||
typedef JMETHOD(void, downsample1_ptr,
|
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_downsampler pub; /* public fields */
|
||||
|
||||
/* Downsampling method pointers, one per component */
|
||||
downsample1_ptr methods[MAX_COMPONENTS];
|
||||
} my_downsampler;
|
||||
|
||||
typedef my_downsampler * my_downsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a downsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_downsample (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand a component horizontally from width input_cols to width output_cols,
|
||||
* by duplicating the rightmost samples.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
||||
JDIMENSION input_cols, JDIMENSION output_cols)
|
||||
{
|
||||
register JSAMPROW ptr;
|
||||
register JSAMPLE pixval;
|
||||
register int count;
|
||||
int row;
|
||||
int numcols = (int) (output_cols - input_cols);
|
||||
|
||||
if (numcols > 0) {
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptr = image_data[row] + input_cols;
|
||||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
||||
for (count = numcols; count > 0; count--)
|
||||
*ptr++ = pixval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components).
|
||||
*
|
||||
* In this version we simply downsample each component independently.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_downsample (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY in_ptr, out_ptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
in_ptr = input_buf[ci] + in_row_index;
|
||||
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
|
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* One row group is processed per call.
|
||||
* This version handles arbitrary integral sampling ratios, without smoothing.
|
||||
* Note that this version is not actually used for customary sampling ratios.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
JSAMPROW inptr, outptr;
|
||||
INT32 outvalue;
|
||||
|
||||
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
|
||||
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
||||
numpix = h_expand * v_expand;
|
||||
numpix2 = numpix/2;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * h_expand);
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
||||
outcol++, outcol_h += h_expand) {
|
||||
outvalue = 0;
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow+v] + outcol_h;
|
||||
for (h = 0; h < h_expand; h++) {
|
||||
outvalue += (INT32) GETJSAMPLE(*inptr++);
|
||||
}
|
||||
}
|
||||
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
|
||||
}
|
||||
inrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
/* Copy the data */
|
||||
jcopy_sample_rows(input_data, 0, output_data, 0,
|
||||
cinfo->max_v_samp_factor, cinfo->image_width);
|
||||
/* Edge-expand */
|
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
||||
* without smoothing.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int outrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr = input_data[outrow];
|
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
||||
+ bias) >> 1);
|
||||
bias ^= 1; /* 0=>1, 1=>0 */
|
||||
inptr += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr0, inptr1, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
||||
+ bias) >> 2);
|
||||
bias ^= 3; /* 1=>2, 2=>1 */
|
||||
inptr0 += 2; inptr1 += 2;
|
||||
}
|
||||
inrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four
|
||||
* smoothed values. Each of the four member pixels contributes a fraction
|
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
||||
* factors are scaled by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
above_ptr = input_data[inrow-1];
|
||||
below_ptr = input_data[inrow+2];
|
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
/* sum of pixels directly mapped to this output element */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
/* sum of edge-neighbor pixels */
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
||||
/* The edge-neighbors count twice as much as corner-neighbors */
|
||||
neighsum += neighsum;
|
||||
/* Add in the corner-neighbors */
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
||||
/* form final output scaled up by 2^16 */
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
/* round, descale and output it */
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
inrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int outrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
int colsum, lastcolsum, nextcolsum;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols);
|
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr = input_data[outrow];
|
||||
above_ptr = input_data[outrow-1];
|
||||
below_ptr = input_data[outrow+1];
|
||||
|
||||
/* Special case for first column */
|
||||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
||||
GETJSAMPLE(*inptr);
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
above_ptr++; below_ptr++;
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling.
|
||||
* Note that we must select a routine for each component.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_downsampler (j_compress_ptr cinfo)
|
||||
{
|
||||
my_downsample_ptr downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean smoothok = TRUE;
|
||||
|
||||
downsample = (my_downsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_downsampler));
|
||||
cinfo->downsample = (struct jpeg_downsampler *) downsample;
|
||||
downsample->pub.start_pass = start_pass_downsample;
|
||||
downsample->pub.downsample = sep_downsample;
|
||||
downsample->pub.need_context_rows = FALSE;
|
||||
|
||||
if (cinfo->CCIR601_sampling)
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = fullsize_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = fullsize_downsample;
|
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = h2v1_downsample;
|
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = h2v2_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v2_downsample;
|
||||
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = int_downsample;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
}
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor && !smoothok)
|
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
||||
#endif
|
||||
}
|
388
TMessagesProj/jni/libjpeg/jctrans.c
Executable file
@ -0,0 +1,388 @@
|
||||
/*
|
||||
* jctrans.c
|
||||
*
|
||||
* Copyright (C) 1995-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains library routines for transcoding compression,
|
||||
* that is, writing raw DCT coefficient arrays to an output JPEG file.
|
||||
* The routines in jcapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transencode_master_selection
|
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||
LOCAL(void) transencode_coef_controller
|
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization for writing raw-coefficient data.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
* Call jpeg_finish_compress() to actually write the data.
|
||||
*
|
||||
* The number of passed virtual arrays must match cinfo->num_components.
|
||||
* Note that the virtual arrays need not be filled or even realized at
|
||||
* the time write_coefficients is called; indeed, if the virtual arrays
|
||||
* were requested from this compression object's memory manager, they
|
||||
* typically will be realized during this routine and filled afterwards.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Mark all tables to be written */
|
||||
jpeg_suppress_tables(cinfo, FALSE);
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
transencode_master_selection(cinfo, coef_arrays);
|
||||
/* Wait for jpeg_finish_compress() call */
|
||||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
||||
cinfo->global_state = CSTATE_WRCOEFS;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the compression object with default parameters,
|
||||
* then copy from the source object all parameters needed for lossless
|
||||
* transcoding. Parameters that can be varied without loss (such as
|
||||
* scan script and Huffman optimization) are left in their default states.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
|
||||
j_compress_ptr dstinfo)
|
||||
{
|
||||
JQUANT_TBL ** qtblptr;
|
||||
jpeg_component_info *incomp, *outcomp;
|
||||
JQUANT_TBL *c_quant, *slot_quant;
|
||||
int tblno, ci, coefi;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (dstinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
||||
/* Copy fundamental image dimensions */
|
||||
dstinfo->image_width = srcinfo->image_width;
|
||||
dstinfo->image_height = srcinfo->image_height;
|
||||
dstinfo->input_components = srcinfo->num_components;
|
||||
dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
||||
/* Initialize all parameters to default values */
|
||||
jpeg_set_defaults(dstinfo);
|
||||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||
* Fix it to get the right header markers for the image colorspace.
|
||||
*/
|
||||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
||||
dstinfo->data_precision = srcinfo->data_precision;
|
||||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
||||
/* Copy the source's quantization tables. */
|
||||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
||||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
||||
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
|
||||
MEMCOPY((*qtblptr)->quantval,
|
||||
srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
||||
SIZEOF((*qtblptr)->quantval));
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
}
|
||||
/* Copy the source's per-component info.
|
||||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
||||
*/
|
||||
dstinfo->num_components = srcinfo->num_components;
|
||||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
||||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
||||
outcomp->component_id = incomp->component_id;
|
||||
outcomp->h_samp_factor = incomp->h_samp_factor;
|
||||
outcomp->v_samp_factor = incomp->v_samp_factor;
|
||||
outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
||||
/* Make sure saved quantization table for component matches the qtable
|
||||
* slot. If not, the input file re-used this qtable slot.
|
||||
* IJG encoder currently cannot duplicate this.
|
||||
*/
|
||||
tblno = outcomp->quant_tbl_no;
|
||||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
||||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
||||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
||||
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
||||
c_quant = incomp->quant_table;
|
||||
if (c_quant != NULL) {
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
||||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
||||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
||||
}
|
||||
}
|
||||
/* Note: we do not copy the source's Huffman table assignments;
|
||||
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
||||
*/
|
||||
}
|
||||
/* Also copy JFIF version and resolution information, if available.
|
||||
* Strictly speaking this isn't "critical" info, but it's nearly
|
||||
* always appropriate to copy it if available. In particular,
|
||||
* if the application chooses to copy JFIF 1.02 extension markers from
|
||||
* the source file, we need to copy the version to make sure we don't
|
||||
* emit a file that has 1.02 extensions but a claimed version of 1.01.
|
||||
* We will *not*, however, copy version info from mislabeled "2.01" files.
|
||||
*/
|
||||
if (srcinfo->saw_JFIF_marker) {
|
||||
if (srcinfo->JFIF_major_version == 1) {
|
||||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
||||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
||||
}
|
||||
dstinfo->density_unit = srcinfo->density_unit;
|
||||
dstinfo->X_density = srcinfo->X_density;
|
||||
dstinfo->Y_density = srcinfo->Y_density;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules for transcoding.
|
||||
* This substitutes for jcinit.c's initialization of the full compressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_master_selection (j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
/* Although we don't actually use input_components for transcoding,
|
||||
* jcmaster.c's initial_setup will complain if input_components is 0.
|
||||
*/
|
||||
cinfo->input_components = 1;
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* We need a special coefficient buffer controller. */
|
||||
transencode_coef_controller(cinfo, coef_arrays);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI, JFIF) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The rest of this file is a special implementation of the coefficient
|
||||
* buffer controller. This is similar to jccoefct.c, but it handles only
|
||||
* output from presupplied virtual arrays. Furthermore, we generate any
|
||||
* dummy padding blocks on-the-fly rather than expecting them to be present
|
||||
* in the arrays.
|
||||
*/
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* Virtual block array for each component. */
|
||||
jvirt_barray_ptr * whole_image;
|
||||
|
||||
/* Workspace for constructing dummy blocks at right/bottom edges. */
|
||||
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
if (pass_mode != JBUF_CRANK_DEST)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yindex+yoffset < compptr->last_row_height) {
|
||||
/* Fill in pointers to real blocks in this row */
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < blockcnt; xindex++)
|
||||
MCU_buffer[blkn++] = buffer_ptr++;
|
||||
} else {
|
||||
/* At bottom of image, need a whole row of dummy blocks */
|
||||
xindex = 0;
|
||||
}
|
||||
/* Fill in any dummy blocks needed in this row.
|
||||
* Dummy blocks are filled in the same way as in jccoefct.c:
|
||||
* all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. The init routine has already zeroed the
|
||||
* AC entries, so we need only set the DC entries correctly.
|
||||
*/
|
||||
for (; xindex < compptr->MCU_width; xindex++) {
|
||||
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
|
||||
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
|
||||
blkn++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*
|
||||
* Each passed coefficient array must be the right size for that
|
||||
* coefficient: width_in_blocks wide and height_in_blocks high,
|
||||
* with unitheight at least v_samp_factor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_coef_controller (j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
coef->pub.compress_data = compress_output;
|
||||
|
||||
/* Save pointer to virtual arrays */
|
||||
coef->whole_image = coef_arrays;
|
||||
|
||||
/* Allocate and pre-zero space for dummy DCT blocks. */
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->dummy_buffer[i] = buffer + i;
|
||||
}
|
||||
}
|
401
TMessagesProj/jni/libjpeg/jdapimin.c
Executable file
@ -0,0 +1,401 @@
|
||||
/*
|
||||
* jdapimin.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-decompression case or the
|
||||
* transcoding-only case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
|
||||
* shared by compression and decompression, and jdtrans.c for the transcoding
|
||||
* case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != SIZEOF(struct jpeg_decompress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = TRUE;
|
||||
cinfo->tile_decode = FALSE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->src = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header.
|
||||
*/
|
||||
cinfo->marker_list = NULL;
|
||||
jinit_marker_reader(cinfo);
|
||||
|
||||
/* And initialize the overall input controller. */
|
||||
jinit_input_controller(cinfo);
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = DSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
default_decompress_parms (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Guess the input colorspace, and set output colorspace accordingly. */
|
||||
/* (Wish JPEG committee had provided a real way to specify this...) */
|
||||
/* Note application may override our guesses. */
|
||||
switch (cinfo->num_components) {
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE;
|
||||
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (cinfo->saw_JFIF_marker) {
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
|
||||
} else if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_RGB;
|
||||
break;
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* Saw no special markers, try to guess from the component IDs */
|
||||
int cid0 = cinfo->comp_info[0].component_id;
|
||||
int cid1 = cinfo->comp_info[1].component_id;
|
||||
int cid2 = cinfo->comp_info[2].component_id;
|
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
|
||||
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
|
||||
else {
|
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
}
|
||||
}
|
||||
/* Always guess RGB is proper output colorspace. */
|
||||
cinfo->out_color_space = JCS_RGB;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
break;
|
||||
case 2:
|
||||
cinfo->jpeg_color_space = JCS_YCCK;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* No special markers, assume straight CMYK. */
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
}
|
||||
cinfo->out_color_space = JCS_CMYK;
|
||||
break;
|
||||
|
||||
default:
|
||||
cinfo->jpeg_color_space = JCS_UNKNOWN;
|
||||
cinfo->out_color_space = JCS_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set defaults for other decompression parameters. */
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||
cinfo->scale_denom = 1;
|
||||
cinfo->output_gamma = 1.0;
|
||||
cinfo->buffered_image = FALSE;
|
||||
cinfo->raw_data_out = FALSE;
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
cinfo->do_fancy_upsampling = TRUE;
|
||||
cinfo->do_block_smoothing = TRUE;
|
||||
cinfo->quantize_colors = FALSE;
|
||||
/* We set these in case application only sets quantize_colors. */
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
#else
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
#endif
|
||||
cinfo->desired_number_of_colors = 256;
|
||||
cinfo->colormap = NULL;
|
||||
/* Initialize for no mode change in buffered-image mode. */
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there.
|
||||
* Need only initialize JPEG object and supply a data source before calling.
|
||||
*
|
||||
* This routine will read as far as the first SOS marker (ie, actual start of
|
||||
* compressed data), and will save all tables and parameters in the JPEG
|
||||
* object. It will also initialize the decompression parameters to default
|
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may
|
||||
* adjust the decompression parameters and then call jpeg_start_decompress.
|
||||
* (Or, if the application only wanted to determine the image parameters,
|
||||
* the data need not be decompressed. In that case, call jpeg_abort or
|
||||
* jpeg_destroy to release any temporary space.)
|
||||
* If an abbreviated (tables only) datastream is presented, the routine will
|
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
|
||||
* re-use the JPEG object to read the abbreviated image datastream(s).
|
||||
* It is unnecessary (but OK) to call jpeg_abort in this case.
|
||||
* The JPEG_SUSPENDED return code only occurs if the data source module
|
||||
* requests suspension of the decompressor. In this case the application
|
||||
* should load more source data and then re-call jpeg_read_header to resume
|
||||
* processing.
|
||||
* If a non-suspending data source is used and require_image is TRUE, then the
|
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible.
|
||||
*
|
||||
* This routine is now just a front end to jpeg_consume_input, with some
|
||||
* extra error checking.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
|
||||
{
|
||||
int retcode;
|
||||
|
||||
if (cinfo->global_state != DSTATE_START &&
|
||||
cinfo->global_state != DSTATE_INHEADER)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
retcode = jpeg_consume_input(cinfo);
|
||||
|
||||
switch (retcode) {
|
||||
case JPEG_REACHED_SOS:
|
||||
retcode = JPEG_HEADER_OK;
|
||||
break;
|
||||
case JPEG_REACHED_EOI:
|
||||
if (require_image) /* Complain if application wanted an image */
|
||||
ERREXIT(cinfo, JERR_NO_IMAGE);
|
||||
/* Reset to start state; it would be safer to require the application to
|
||||
* call jpeg_abort, but we can't change it now for compatibility reasons.
|
||||
* A side effect is to free any temporary memory (there shouldn't be any).
|
||||
*/
|
||||
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
|
||||
retcode = JPEG_HEADER_TABLES_ONLY;
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
/* no work */
|
||||
break;
|
||||
}
|
||||
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Consume data in advance of what the decompressor requires.
|
||||
* This can be called at any time once the decompressor object has
|
||||
* been created and a data source has been set up.
|
||||
*
|
||||
* This routine is essentially a state machine that handles a couple
|
||||
* of critical state-transition actions, namely initial setup and
|
||||
* transition from header scanning to ready-for-start_decompress.
|
||||
* All the actual input is done via the input controller's consume_input
|
||||
* method.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_consume_input (j_decompress_ptr cinfo)
|
||||
{
|
||||
int retcode = JPEG_SUSPENDED;
|
||||
|
||||
/* NB: every possible DSTATE value should be listed in this switch */
|
||||
switch (cinfo->global_state) {
|
||||
case DSTATE_START:
|
||||
/* Start-of-datastream actions: reset appropriate modules */
|
||||
(*cinfo->inputctl->reset_input_controller) (cinfo);
|
||||
/* Initialize application's data source module */
|
||||
(*cinfo->src->init_source) (cinfo);
|
||||
cinfo->global_state = DSTATE_INHEADER;
|
||||
/*FALLTHROUGH*/
|
||||
case DSTATE_INHEADER:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
|
||||
/* Set up default parameters based on header data */
|
||||
default_decompress_parms(cinfo);
|
||||
/* Set global state: ready for start_decompress */
|
||||
cinfo->global_state = DSTATE_READY;
|
||||
}
|
||||
break;
|
||||
case DSTATE_READY:
|
||||
/* Can't advance past first SOS until start_decompress is called */
|
||||
retcode = JPEG_REACHED_SOS;
|
||||
break;
|
||||
case DSTATE_PRELOAD:
|
||||
case DSTATE_PRESCAN:
|
||||
case DSTATE_SCANNING:
|
||||
case DSTATE_RAW_OK:
|
||||
case DSTATE_BUFIMAGE:
|
||||
case DSTATE_BUFPOST:
|
||||
case DSTATE_STOPPING:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
break;
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Have we finished reading the input file?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_input_complete (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Check for valid jpeg object */
|
||||
if (cinfo->global_state < DSTATE_START ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->eoi_reached;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Is there more than one scan?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Only valid after jpeg_read_header completes */
|
||||
if (cinfo->global_state < DSTATE_READY ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->has_multiple_scans;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression.
|
||||
*
|
||||
* This will normally just verify the file trailer and release temp storage.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
|
||||
/* Terminate final pass of non-buffered mode */
|
||||
#ifdef ANDROID_TILE_BASED_DECODE
|
||||
cinfo->output_scanline = cinfo->output_height;
|
||||
#endif
|
||||
if (cinfo->output_scanline < cinfo->output_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
|
||||
/* Finishing after a buffered-image operation */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state != DSTATE_STOPPING) {
|
||||
/* STOPPING = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read until EOI */
|
||||
#ifndef ANDROID_TILE_BASED_DECODE
|
||||
while (! cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
#endif
|
||||
/* Do final cleanup */
|
||||
(*cinfo->src->term_source) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
return TRUE;
|
||||
}
|
397
TMessagesProj/jni/libjpeg/jdapistd.c
Executable file
@ -0,0 +1,397 @@
|
||||
/*
|
||||
* jdapistd.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-decompression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_decompress, it will end up linking in the entire decompressor.
|
||||
* We thus must separate this file from jdapimin.c to avoid linking the
|
||||
* whole decompression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* If a multipass operating mode was selected, this will do all but the
|
||||
* last pass, and thus may take a great deal of time.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize master control, select active modules */
|
||||
jinit_master_decompress(cinfo);
|
||||
if (cinfo->buffered_image) {
|
||||
/* No more work here; expecting jpeg_start_output next */
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
cinfo->global_state = DSTATE_PRELOAD;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_PRELOAD) {
|
||||
/* If file has multiple scans, absorb them all into the coef buffer */
|
||||
if (cinfo->inputctl->has_multiple_scans) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return FALSE;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* jdmaster underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
} else if (cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any dummy output passes, and set up for the final pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
/*
|
||||
* Tile decompression initialization.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_tile_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize master control, select active modules */
|
||||
cinfo->tile_decode = TRUE;
|
||||
jinit_master_decompress(cinfo);
|
||||
if (cinfo->buffered_image) {
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
cinfo->global_state = DSTATE_PRELOAD;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_PRELOAD) {
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
} else if (cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any dummy output passes, and set up for the final pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set up for an output pass, and perform any dummy pass(es) needed.
|
||||
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
|
||||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
|
||||
* Exit: If done, returns TRUE and sets global_state for proper output mode.
|
||||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
output_pass_setup (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_PRESCAN) {
|
||||
/* First call: do pass setup */
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
cinfo->global_state = DSTATE_PRESCAN;
|
||||
}
|
||||
/* Loop over any required dummy passes */
|
||||
while (cinfo->master->is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Crank through the dummy pass */
|
||||
while (cinfo->output_scanline < cinfo->output_height) {
|
||||
JDIMENSION last_scanline;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* Process some data */
|
||||
last_scanline = cinfo->output_scanline;
|
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
|
||||
&cinfo->output_scanline, (JDIMENSION) 0);
|
||||
if (cinfo->output_scanline == last_scanline)
|
||||
return FALSE; /* No progress made, must suspend */
|
||||
}
|
||||
/* Finish up dummy pass, and set up for another one */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
}
|
||||
/* Ready for application to drive output pass through
|
||||
* jpeg_read_scanlines or jpeg_read_raw_data.
|
||||
*/
|
||||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor.
|
||||
*
|
||||
* The return value will be the number of lines actually read.
|
||||
* This may be less than the number requested in several cases,
|
||||
* including bottom of image, data source suspension, and operating
|
||||
* modes that emit multiple scanlines at a time.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_read_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION row_ctr;
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Process some data */
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
|
||||
cinfo->output_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
/*
|
||||
* Initialize the jpeg decoder to decompressing a rectangle with size of (width, height)
|
||||
* and its upper-left corner located at (start_x, start_y).
|
||||
* Align start_x and start_y to multiplies of iMCU width and height, respectively.
|
||||
* Also, the new reader position and sampled image size will be returned in
|
||||
* (start_x, start_y) and (width, height), respectively.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_init_read_tile_scanline(j_decompress_ptr cinfo, huffman_index *index,
|
||||
int *start_x, int *start_y, int *width, int *height)
|
||||
{
|
||||
// Calculates the boundary of iMCU
|
||||
int lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
int lines_per_iMCU_col = cinfo->max_h_samp_factor * DCTSIZE;
|
||||
int row_offset = *start_y / lines_per_iMCU_row;
|
||||
int col_left_boundary = ((*start_x / lines_per_iMCU_col)
|
||||
/ index->MCU_sample_size) * index->MCU_sample_size;
|
||||
int col_right_boundary =
|
||||
jdiv_round_up(*start_x + *width, lines_per_iMCU_col);
|
||||
|
||||
cinfo->coef->MCU_columns_to_skip =
|
||||
*start_x / lines_per_iMCU_col - col_left_boundary;
|
||||
|
||||
*height = (*start_y - row_offset * lines_per_iMCU_row) + *height;
|
||||
*start_x = col_left_boundary * lines_per_iMCU_col;
|
||||
*start_y = row_offset * lines_per_iMCU_row;
|
||||
cinfo->image_width = jmin(cinfo->original_image_width,
|
||||
col_right_boundary * lines_per_iMCU_col) -
|
||||
col_left_boundary * lines_per_iMCU_col;
|
||||
cinfo->input_iMCU_row = row_offset;
|
||||
cinfo->output_iMCU_row = row_offset;
|
||||
|
||||
// Updates JPEG decoder parameter
|
||||
jinit_color_deconverter(cinfo);
|
||||
jpeg_calc_output_dimensions(cinfo);
|
||||
jinit_upsampler(cinfo);
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
if (cinfo->progressive_mode)
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
else
|
||||
jpeg_decompress_per_scan_setup(cinfo);
|
||||
|
||||
int sample_size = DCTSIZE / cinfo->min_DCT_scaled_size;
|
||||
|
||||
*height = jdiv_round_up(*height, sample_size);
|
||||
*width = cinfo->output_width;
|
||||
cinfo->output_scanline = lines_per_iMCU_row * row_offset / sample_size;
|
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
|
||||
cinfo->inputctl->consume_input_build_huffman_index =
|
||||
cinfo->coef->consume_data_build_huffman_index;
|
||||
cinfo->entropy->index = index;
|
||||
cinfo->input_iMCU_row = row_offset;
|
||||
cinfo->output_iMCU_row = row_offset;
|
||||
cinfo->coef->MCU_column_left_boundary = col_left_boundary;
|
||||
cinfo->coef->MCU_column_right_boundary = col_right_boundary;
|
||||
cinfo->coef->column_left_boundary =
|
||||
col_left_boundary / index->MCU_sample_size;
|
||||
cinfo->coef->column_right_boundary =
|
||||
jdiv_round_up(col_right_boundary, index->MCU_sample_size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Read a scanline from the current position.
|
||||
*
|
||||
* Return the number of lines actually read.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_tile_scanline (j_decompress_ptr cinfo, huffman_index *index,
|
||||
JSAMPARRAY scanlines)
|
||||
{
|
||||
// Calculates the boundary of iMCU
|
||||
int lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
int lines_per_iMCU_col = cinfo->max_h_samp_factor * DCTSIZE;
|
||||
int sample_size = DCTSIZE / cinfo->min_DCT_scaled_size;
|
||||
JDIMENSION row_ctr = 0;
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, 1);
|
||||
} else {
|
||||
if (cinfo->output_scanline % (lines_per_iMCU_row / sample_size) == 0) {
|
||||
// Set the read head to the next iMCU row
|
||||
int iMCU_row_offset = cinfo->output_scanline /
|
||||
(lines_per_iMCU_row / sample_size);
|
||||
int offset_data_col_position = cinfo->coef->MCU_column_left_boundary /
|
||||
index->MCU_sample_size;
|
||||
huffman_offset_data offset_data =
|
||||
index->scan[0].offset[iMCU_row_offset][offset_data_col_position];
|
||||
(*cinfo->entropy->configure_huffman_decoder) (cinfo, offset_data);
|
||||
}
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, 1);
|
||||
}
|
||||
|
||||
cinfo->output_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Verify that at least one iMCU row can be returned. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
|
||||
if (max_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Decompress directly into user's buffer. */
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, data))
|
||||
return 0; /* suspension forced, can do nothing more */
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->output_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
||||
|
||||
|
||||
/* Additional entry points for buffered-image mode. */
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Initialize for an output pass in buffered-image mode.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE &&
|
||||
cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Limit scan number to valid range */
|
||||
if (scan_number <= 0)
|
||||
scan_number = 1;
|
||||
if (cinfo->inputctl->eoi_reached &&
|
||||
scan_number > cinfo->input_scan_number)
|
||||
scan_number = cinfo->input_scan_number;
|
||||
cinfo->output_scan_number = scan_number;
|
||||
/* Perform any dummy output passes, and set up for the real pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after an output pass in buffered-image mode.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_output (j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
|
||||
/* Terminate this pass. */
|
||||
/* We do not require the whole pass to have been completed. */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_BUFPOST;
|
||||
} else if (cinfo->global_state != DSTATE_BUFPOST) {
|
||||
/* BUFPOST = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read markers looking for SOS or EOI */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
! cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
151
TMessagesProj/jni/libjpeg/jdatadst.c
Executable file
@ -0,0 +1,151 @@
|
||||
/*
|
||||
* jdatadst.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains compression data destination routines for the case of
|
||||
* emitting JPEG data to a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* destination manager.
|
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
FILE * outfile; /* target stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
} my_destination_mgr;
|
||||
|
||||
typedef my_destination_mgr * my_dest_ptr;
|
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress
|
||||
* before any data is actually written.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
/* Allocate the output buffer --- it will be released when done with image */
|
||||
dest->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up.
|
||||
*
|
||||
* In typical applications, this should write the entire output buffer
|
||||
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been dumped.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to output
|
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||
* In this situation, the compressor will return to its caller (possibly with
|
||||
* an indication that it has not accepted all the supplied scanlines). The
|
||||
* application should resume compression after it has made more room in the
|
||||
* output buffer. Note that there are substantial restrictions on the use of
|
||||
* suspension --- see the documentation.
|
||||
*
|
||||
* When suspending, the compressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point will be regenerated after resumption, so do not
|
||||
* write it out when emptying the buffer externally.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
empty_output_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
|
||||
(size_t) OUTPUT_BUF_SIZE)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress
|
||||
* after all data has been written. Usually needs to flush buffer.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
|
||||
|
||||
/* Write any data remaining in the buffer */
|
||||
if (datacount > 0) {
|
||||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
fflush(dest->outfile);
|
||||
/* Make sure we wrote the output file OK */
|
||||
if (ferror(dest->outfile))
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing compression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
|
||||
{
|
||||
my_dest_ptr dest;
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||||
* This makes it dangerous to use this manager and a different destination
|
||||
* manager serially with the same JPEG object, because their private object
|
||||
* sizes may be different. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_destination_mgr));
|
||||
}
|
||||
|
||||
dest = (my_dest_ptr) cinfo->dest;
|
||||
dest->pub.init_destination = init_destination;
|
||||
dest->pub.empty_output_buffer = empty_output_buffer;
|
||||
dest->pub.term_destination = term_destination;
|
||||
dest->outfile = outfile;
|
||||
}
|
212
TMessagesProj/jni/libjpeg/jdatasrc.c
Executable file
@ -0,0 +1,212 @@
|
||||
/*
|
||||
* jdatasrc.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains decompression data source routines for the case of
|
||||
* reading JPEG data from a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* source manager.
|
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data source object for stdio input */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_source_mgr pub; /* public fields */
|
||||
|
||||
FILE * infile; /* source stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
boolean start_of_file; /* have we gotten any data yet? */
|
||||
} my_source_mgr;
|
||||
|
||||
typedef my_source_mgr * my_src_ptr;
|
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header
|
||||
* before any data is actually read.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer.
|
||||
* This is correct behavior for reading a series of images from one source.
|
||||
*/
|
||||
src->start_of_file = TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied.
|
||||
*
|
||||
* In typical applications, this should read fresh data into the buffer
|
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been reloaded. It is not necessary to
|
||||
* fill the buffer entirely, only to obtain at least one more byte.
|
||||
*
|
||||
* There is no such thing as an EOF return. If the end of the file has been
|
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||
* the buffer. In most cases, generating a warning message and inserting a
|
||||
* fake EOI marker is the best course of action --- this will allow the
|
||||
* decompressor to output however much of the image is there. However,
|
||||
* the resulting error message is misleading if the real problem is an empty
|
||||
* input file, so we handle that case specially.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to input
|
||||
* not being available yet, a FALSE return indicates that no more data can be
|
||||
* obtained right now, but more may be forthcoming later. In this situation,
|
||||
* the decompressor will return to its caller (with an indication of the
|
||||
* number of scanlines it has read, if any). The application should resume
|
||||
* decompression after it has loaded more data into the input buffer. Note
|
||||
* that there are substantial restrictions on the use of suspension --- see
|
||||
* the documentation.
|
||||
*
|
||||
* When suspending, the decompressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point must be rescanned after resumption, so move it to
|
||||
* the front of the buffer rather than discarding it.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
fill_input_buffer (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
size_t nbytes;
|
||||
|
||||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
|
||||
|
||||
if (nbytes <= 0) {
|
||||
if (src->start_of_file) /* Treat empty input file as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
/* Insert a fake EOI marker */
|
||||
src->buffer[0] = (JOCTET) 0xFF;
|
||||
src->buffer[1] = (JOCTET) JPEG_EOI;
|
||||
nbytes = 2;
|
||||
}
|
||||
|
||||
src->pub.next_input_byte = src->buffer;
|
||||
src->pub.bytes_in_buffer = nbytes;
|
||||
src->start_of_file = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of
|
||||
* uninteresting data (such as an APPn marker).
|
||||
*
|
||||
* Writers of suspendable-input applications must note that skip_input_data
|
||||
* is not granted the right to give a suspension return. If the skip extends
|
||||
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||
* Arranging for additional bytes to be discarded before reloading the input
|
||||
* buffer is the application writer's problem.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth
|
||||
* any trouble anyway --- large skips are infrequent.
|
||||
*/
|
||||
if (num_bytes > 0) {
|
||||
while (num_bytes > (long) src->pub.bytes_in_buffer) {
|
||||
num_bytes -= (long) src->pub.bytes_in_buffer;
|
||||
(void) fill_input_buffer(cinfo);
|
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled.
|
||||
*/
|
||||
}
|
||||
src->pub.next_input_byte += (size_t) num_bytes;
|
||||
src->pub.bytes_in_buffer -= (size_t) num_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the
|
||||
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||
* For the moment, this source module just uses the default resync method
|
||||
* provided by the JPEG library. That method assumes that no backtracking
|
||||
* is possible.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress
|
||||
* after all data has been read. Often a no-op.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing decompression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
|
||||
{
|
||||
my_src_ptr src;
|
||||
|
||||
/* The source object and input buffer are made permanent so that a series
|
||||
* of JPEG images can be read from the same file by calling jpeg_stdio_src
|
||||
* only before the first one. (If we discarded the buffer at the end of
|
||||
* one image, we'd likely lose the start of the next one.)
|
||||
* This makes it unsafe to use this manager and a different source
|
||||
* manager serially with the same JPEG object. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_source_mgr));
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
INPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
}
|
||||
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->pub.init_source = init_source;
|
||||
src->pub.fill_input_buffer = fill_input_buffer;
|
||||
src->pub.skip_input_data = skip_input_data;
|
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->pub.term_source = term_source;
|
||||
src->infile = infile;
|
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
|
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */
|
||||
}
|
1038
TMessagesProj/jni/libjpeg/jdcoefct.c
Executable file
899
TMessagesProj/jni/libjpeg/jdcolor.c
Executable file
@ -0,0 +1,899 @@
|
||||
/*
|
||||
* jdcolor.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#ifdef NV_ARM_NEON
|
||||
#include "jsimd_neon.h"
|
||||
#endif
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_deconverter pub; /* public fields */
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
} my_color_deconverter;
|
||||
|
||||
typedef my_color_deconverter * my_cconvert_ptr;
|
||||
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
*
|
||||
* We use 4x4 ordered dither array packed into 32 bits. This array is
|
||||
* sufficent for dithering RGB_888 to RGB_565.
|
||||
*/
|
||||
|
||||
#define DITHER_MASK 0x3
|
||||
#define DITHER_ROTATE(x) (((x)<<24) | (((x)>>8)&0x00FFFFFF))
|
||||
static const INT32 dither_matrix[4] = {
|
||||
0x0008020A,
|
||||
0x0C040E06,
|
||||
0x030B0109,
|
||||
0x0F070D05
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/**************** YCbCr -> RGB conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* R = Y + 1.40200 * Cr
|
||||
* G = Y - 0.34414 * Cb - 0.71414 * Cr
|
||||
* B = Y + 1.77200 * Cb
|
||||
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
* Notice that Y, being an integral input, does not contribute any fraction
|
||||
* so it need not participate in the rounding.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times Cb and Cr for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
|
||||
* values for the G calculation are left scaled up, since we must add them
|
||||
* together before rounding.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
int i;
|
||||
INT32 x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
cconvert->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
cconvert->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
cconvert->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
cconvert->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace.
|
||||
*
|
||||
* Note that we change from noninterleaved, one-plane-per-component format
|
||||
* to interleaved-pixel format. The output buffer is therefore three times
|
||||
* as wide as the input buffer.
|
||||
* A starting row offset is provided only for the input buffer. The caller
|
||||
* can easily adjust the passed output_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||
outptr[RGB_GREEN] = range_limit[y +
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
METHODDEF(void)
|
||||
ycc_rgba_8888_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||
outptr[RGB_GREEN] = range_limit[y +
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||
outptr[RGB_ALPHA] = 0xFF;
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb_565_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
INT32 rgb;
|
||||
unsigned int r, g, b;
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols>>1); col++) {
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols&1) {
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
r = range_limit[y + Crrtab[cr]];
|
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS))];
|
||||
b = range_limit[y + Cbbtab[cb]];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb_565D_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
INT32 rgb;
|
||||
unsigned int r, g, b;
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols>>1); col++) {
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols&1) {
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)];
|
||||
g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb]+Crgtab[cr], SCALEBITS)), d0)];
|
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/**************** Cases other than YCbCr -> RGB(A) **************/
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
METHODDEF(void)
|
||||
rgb_rgba_8888_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
*outptr++ = *inptr0++;
|
||||
*outptr++ = *inptr1++;
|
||||
*outptr++ = *inptr2++;
|
||||
*outptr++ = 0xFF;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_rgb_565_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
INT32 rgb;
|
||||
unsigned int r, g, b;
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
r = GETJSAMPLE(*inptr0++);
|
||||
g = GETJSAMPLE(*inptr1++);
|
||||
b = GETJSAMPLE(*inptr2++);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols>>1); col++) {
|
||||
r = GETJSAMPLE(*inptr0++);
|
||||
g = GETJSAMPLE(*inptr1++);
|
||||
b = GETJSAMPLE(*inptr2++);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
r = GETJSAMPLE(*inptr0++);
|
||||
g = GETJSAMPLE(*inptr1++);
|
||||
b = GETJSAMPLE(*inptr2++);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols&1) {
|
||||
r = GETJSAMPLE(*inptr0);
|
||||
g = GETJSAMPLE(*inptr1);
|
||||
b = GETJSAMPLE(*inptr2);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_rgb_565D_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
INT32 rgb;
|
||||
unsigned int r, g, b;
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)];
|
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)];
|
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols>>1); col++) {
|
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)];
|
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)];
|
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)];
|
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)];
|
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols&1) {
|
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0), d0)];
|
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1), d0)];
|
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2), d0)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data,
|
||||
* converting from separate-planes to interleaved representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION count;
|
||||
register int num_components = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
int ci;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
for (ci = 0; ci < num_components; ci++) {
|
||||
inptr = input_buf[ci][input_row];
|
||||
outptr = output_buf[0] + ci;
|
||||
for (count = num_cols; count > 0; count--) {
|
||||
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||
outptr += num_components;
|
||||
}
|
||||
}
|
||||
input_row++;
|
||||
output_buf++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data.
|
||||
* This also works for YCbCr -> grayscale conversion, in which
|
||||
* we just copy the Y (luminance) component and ignore chrominance.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
|
||||
num_rows, cinfo->output_width);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB: just duplicate the graylevel three times.
|
||||
* This is provided to support applications that don't want to cope
|
||||
* with grayscale as a separate case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
/* We can dispense with GETJSAMPLE() here */
|
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
METHODDEF(void)
|
||||
gray_rgba_8888_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
/* We can dispense with GETJSAMPLE() here */
|
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
|
||||
outptr[RGB_ALPHA] = 0xff;
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb_565_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
INT32 rgb;
|
||||
unsigned int g;
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
g = *inptr++;
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16*)outptr = rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols>>1); col++) {
|
||||
g = *inptr++;
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
g = *inptr++;
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g));
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols&1) {
|
||||
g = *inptr;
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb_565D_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
INT32 rgb;
|
||||
unsigned int g;
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) {
|
||||
g = *inptr++;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16*)outptr = rgb;
|
||||
outptr += 2;
|
||||
num_cols--;
|
||||
}
|
||||
for (col = 0; col < (num_cols>>1); col++) {
|
||||
g = *inptr++;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
g = *inptr++;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g));
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
if (num_cols&1) {
|
||||
g = *inptr;
|
||||
g = range_limit[DITHER_565_R(g, d0)];
|
||||
rgb = PACK_SHORT_565(g, g, g);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Adobe-style YCCK->CMYK conversion.
|
||||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume build_ycc_rgb_table has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycck_cmyk_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
inptr3 = input_buf[3][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
|
||||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)))];
|
||||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
|
||||
/* K passes through unchanged */
|
||||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dcolor (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for output colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_color_deconverter (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
int ci;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_deconverter));
|
||||
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
|
||||
cconvert->pub.start_pass = start_pass_dcolor;
|
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->num_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also clear the component_needed flags for any unused components,
|
||||
* so that earlier pipeline stages can avoid useless computation.
|
||||
*/
|
||||
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
|
||||
cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
/* For color->grayscale conversion, only the Y (0) component is needed */
|
||||
for (ci = 1; ci < cinfo->num_components; ci++)
|
||||
cinfo->comp_info[ci].component_needed = FALSE;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = ycc_rgb_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub.color_convert = gray_rgb_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
case JCS_RGBA_8888:
|
||||
cinfo->out_color_components = 4;
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
#if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
|
||||
if (cap_neon_ycc_rgb()) {
|
||||
cconvert->pub.color_convert = jsimd_ycc_rgba8888_convert;
|
||||
} else {
|
||||
cconvert->pub.color_convert = ycc_rgba_8888_convert;
|
||||
}
|
||||
#else
|
||||
cconvert->pub.color_convert = ycc_rgba_8888_convert;
|
||||
#endif
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub.color_convert = gray_rgba_8888_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
cconvert->pub.color_convert = rgb_rgba_8888_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB_565:
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
if (cinfo->dither_mode == JDITHER_NONE) {
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
#if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
|
||||
if (cap_neon_ycc_rgb()) {
|
||||
cconvert->pub.color_convert = jsimd_ycc_rgb565_convert;
|
||||
} else {
|
||||
cconvert->pub.color_convert = ycc_rgb_565_convert;
|
||||
}
|
||||
#else
|
||||
cconvert->pub.color_convert = ycc_rgb_565_convert;
|
||||
#endif
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub.color_convert = gray_rgb_565_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
cconvert->pub.color_convert = rgb_rgb_565_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
} else {
|
||||
/* only ordered dither is supported */
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = ycc_rgb_565D_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub.color_convert = gray_rgb_565D_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) {
|
||||
cconvert->pub.color_convert = rgb_rgb_565D_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
case JCS_CMYK:
|
||||
cinfo->out_color_components = 4;
|
||||
if (cinfo->jpeg_color_space == JCS_YCCK) {
|
||||
cconvert->pub.color_convert = ycck_cmyk_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Permit null conversion to same output space */
|
||||
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else /* unsupported non-null conversion */
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
}
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
cinfo->output_components = 1; /* single colormapped output component */
|
||||
else
|
||||
cinfo->output_components = cinfo->out_color_components;
|
||||
}
|
180
TMessagesProj/jni/libjpeg/jdct.h
Executable file
@ -0,0 +1,180 @@
|
||||
/*
|
||||
* jdct.h
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file contains common declarations for the forward and
|
||||
* inverse DCT modules. These declarations are private to the DCT managers
|
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
||||
* The individual DCT algorithms are kept in separate files to ease
|
||||
* machine-dependent tuning (e.g., assembly coding).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
|
||||
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
|
||||
* for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
|
||||
* implementations use an array of type FAST_FLOAT, instead.)
|
||||
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
|
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
||||
* convention improves accuracy in integer implementations and saves some
|
||||
* work in floating-point ones.
|
||||
* Quantization of the output coefficients is done by jcdctmgr.c.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#ifdef ANDROID_MIPS_IDCT
|
||||
typedef short DCTELEM; /* 16 or 32 bits is fine */
|
||||
#else
|
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */
|
||||
#endif
|
||||
#else
|
||||
typedef INT32 DCTELEM; /* must have 32 bits */
|
||||
#endif
|
||||
|
||||
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
|
||||
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
|
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
||||
* to an output sample array. The routine must dequantize the input data as
|
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
||||
* pointed to by compptr->dct_table. The output data is to be placed into the
|
||||
* sample array starting at a specified column. (Any row offset needed will
|
||||
* be applied to the array pointer before it is passed to the IDCT code.)
|
||||
* Note that the number of samples emitted by the IDCT routine is
|
||||
* DCT_scaled_size * DCT_scaled_size.
|
||||
*/
|
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type.
|
||||
*/
|
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
||||
#else
|
||||
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
||||
#endif
|
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and
|
||||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
||||
* be quite far out of range if the input data is corrupt, so a bulletproof
|
||||
* range-limiting step is required. We use a mask-and-table-lookup method
|
||||
* to do the combined operations quickly. See the comments with
|
||||
* prepare_range_limit_table (in jdmaster.c) for more info.
|
||||
*/
|
||||
|
||||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
|
||||
|
||||
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_fdct_islow jFDislow
|
||||
#define jpeg_fdct_ifast jFDifast
|
||||
#define jpeg_fdct_float jFDfloat
|
||||
#define jpeg_idct_islow jRDislow
|
||||
#define jpeg_idct_ifast jRDifast
|
||||
#define jpeg_idct_float jRDfloat
|
||||
#define jpeg_idct_4x4 jRD4x4
|
||||
#define jpeg_idct_2x2 jRD2x2
|
||||
#define jpeg_idct_1x1 jRD1x1
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */
|
||||
|
||||
EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
|
||||
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
|
||||
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
|
||||
|
||||
EXTERN(void) jpeg_idct_islow
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_ifast
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_float
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_1x1
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many
|
||||
* but not all of the DCT/IDCT modules.
|
||||
*
|
||||
* All values are expected to be of type INT32.
|
||||
* Fractional constants are scaled left by CONST_BITS bits.
|
||||
* CONST_BITS is defined within each module using these macros,
|
||||
* and may differ from one module to the next.
|
||||
*/
|
||||
|
||||
#define ONE ((INT32) 1)
|
||||
#define CONST_SCALE (ONE << CONST_BITS)
|
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
||||
* thus causing a lot of useless floating-point operations at run time.
|
||||
*/
|
||||
|
||||
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||||
* the fudge factor is correct for either sign of X.
|
||||
*/
|
||||
|
||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* This macro is used only when the two inputs will actually be no more than
|
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
||||
* full 32x32 multiply. This provides a useful speedup on many machines.
|
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
||||
* in C, but some C compilers will do the right thing if you provide the
|
||||
* correct combination of casts.
|
||||
*/
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
||||
#endif
|
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */
|
||||
#define MULTIPLY16C16(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
/* Same except both inputs are variables. */
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */
|
||||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
||||
#endif
|
383
TMessagesProj/jni/libjpeg/jddctmgr.c
Executable file
@ -0,0 +1,383 @@
|
||||
/*
|
||||
* jddctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the inverse-DCT management logic.
|
||||
* This code selects a particular IDCT implementation to be used,
|
||||
* and it performs related housekeeping chores. No code in this file
|
||||
* is executed per IDCT step, only during output pass setup.
|
||||
*
|
||||
* Note that the IDCT routines are responsible for performing coefficient
|
||||
* dequantization as well as the IDCT proper. This module sets up the
|
||||
* dequantization multiplier table needed by the IDCT routine.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef ANDROID_ARMV6_IDCT
|
||||
#undef ANDROID_ARMV6_IDCT
|
||||
#ifdef __arm__
|
||||
#include <machine/cpu-features.h>
|
||||
#if __ARM_ARCH__ >= 6
|
||||
#define ANDROID_ARMV6_IDCT
|
||||
#else
|
||||
#warning "ANDROID_ARMV6_IDCT is disabled"
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef NV_ARM_NEON
|
||||
#include "jsimd_neon.h"
|
||||
#endif
|
||||
|
||||
#ifdef ANDROID_ARMV6_IDCT
|
||||
|
||||
/* Intentionally declare the prototype with arguments of primitive types instead
|
||||
* of type-defined ones. This will at least generate some warnings if jmorecfg.h
|
||||
* is changed and becomes incompatible with the assembly code.
|
||||
*/
|
||||
extern void armv6_idct(short *coefs, int *quans, unsigned char **rows, int col);
|
||||
|
||||
void jpeg_idct_armv6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
IFAST_MULT_TYPE *dct_table = (IFAST_MULT_TYPE *)compptr->dct_table;
|
||||
armv6_idct(coef_block, dct_table, output_buf, output_col);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef ANDROID_INTELSSE2_IDCT
|
||||
extern short __attribute__((aligned(16))) quantptrSSE[DCTSIZE2];
|
||||
extern void jpeg_idct_intelsse (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col);
|
||||
#endif
|
||||
|
||||
#ifdef ANDROID_MIPS_IDCT
|
||||
extern void jpeg_idct_mips(j_decompress_ptr, jpeg_component_info *, JCOEFPTR, JSAMPARRAY, JDIMENSION);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The decompressor input side (jdinput.c) saves away the appropriate
|
||||
* quantization table for each component at the start of the first scan
|
||||
* involving that component. (This is necessary in order to correctly
|
||||
* decode files that reuse Q-table slots.)
|
||||
* When we are ready to make an output pass, the saved Q-table is converted
|
||||
* to a multiplier table that will actually be used by the IDCT routine.
|
||||
* The multiplier table contents are IDCT-method-dependent. To support
|
||||
* application changes in IDCT method between scans, we can remake the
|
||||
* multiplier tables if necessary.
|
||||
* In buffered-image mode, the first output pass may occur before any data
|
||||
* has been seen for some components, and thus before their Q-tables have
|
||||
* been saved away. To handle this case, multiplier tables are preset
|
||||
* to zeroes; the result of the IDCT will be a neutral gray level.
|
||||
*/
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_inverse_dct pub; /* public fields */
|
||||
|
||||
/* This array contains the IDCT method code that each multiplier table
|
||||
* is currently set up for, or -1 if it's not yet set up.
|
||||
* The actual multiplier tables are pointed to by dct_table in the
|
||||
* per-component comp_info structures.
|
||||
*/
|
||||
int cur_method[MAX_COMPONENTS];
|
||||
} my_idct_controller;
|
||||
|
||||
typedef my_idct_controller * my_idct_ptr;
|
||||
|
||||
|
||||
/* Allocated multiplier tables: big enough for any supported variant */
|
||||
|
||||
typedef union {
|
||||
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
||||
#endif
|
||||
} multiplier_table;
|
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass.
|
||||
* Here we select the proper IDCT routine for each component and build
|
||||
* a matching multiplier table.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
int method = 0;
|
||||
inverse_DCT_method_ptr method_ptr = NULL;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Select the proper IDCT routine for this component's scaling */
|
||||
switch (compptr->DCT_scaled_size) {
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
case 1:
|
||||
method_ptr = jpeg_idct_1x1;
|
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 2:
|
||||
#if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
|
||||
if (cap_neon_idct_2x2()) {
|
||||
method_ptr = jsimd_idct_2x2;
|
||||
} else {
|
||||
method_ptr = jpeg_idct_2x2;
|
||||
}
|
||||
#else
|
||||
method_ptr = jpeg_idct_2x2;
|
||||
#endif
|
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 4:
|
||||
#if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
|
||||
if (cap_neon_idct_4x4()) {
|
||||
method_ptr = jsimd_idct_4x4;
|
||||
} else {
|
||||
method_ptr = jpeg_idct_4x4;
|
||||
}
|
||||
#else
|
||||
method_ptr = jpeg_idct_4x4;
|
||||
#endif
|
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case DCTSIZE:
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef ANDROID_ARMV6_IDCT
|
||||
case JDCT_ISLOW:
|
||||
case JDCT_IFAST:
|
||||
method_ptr = jpeg_idct_armv6;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#else /* ANDROID_ARMV6_IDCT */
|
||||
#ifdef ANDROID_INTELSSE2_IDCT
|
||||
case JDCT_ISLOW:
|
||||
case JDCT_IFAST:
|
||||
method_ptr = jpeg_idct_intelsse;
|
||||
method = JDCT_ISLOW; /* Use quant table of ISLOW.*/
|
||||
break;
|
||||
#else /* ANDROID_INTELSSE2_IDCT */
|
||||
#ifdef ANDROID_MIPS_IDCT
|
||||
case JDCT_ISLOW:
|
||||
case JDCT_IFAST:
|
||||
method_ptr = jpeg_idct_mips;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#else /* ANDROID_MIPS_IDCT */
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
method_ptr = jpeg_idct_islow;
|
||||
method = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
#if defined(NV_ARM_NEON) && defined(__ARM_HAVE_NEON)
|
||||
if (cap_neon_idct_ifast()) {
|
||||
method_ptr = jsimd_idct_ifast;
|
||||
} else {
|
||||
method_ptr = jpeg_idct_ifast;
|
||||
}
|
||||
#else
|
||||
method_ptr = jpeg_idct_ifast;
|
||||
#endif
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#endif /* ANDROID_MIPS_IDCT */
|
||||
#endif /* ANDROID_INTELSSE2_IDCT*/
|
||||
#endif /* ANDROID_ARMV6_IDCT */
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
method_ptr = jpeg_idct_float;
|
||||
method = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
|
||||
break;
|
||||
}
|
||||
idct->pub.inverse_DCT[ci] = method_ptr;
|
||||
/* Create multiplier table from quant table.
|
||||
* However, we can skip this if the component is uninteresting
|
||||
* or if we already built the table. Also, if no quant table
|
||||
* has yet been saved for the component, we leave the
|
||||
* multiplier table all-zero; we'll be reading zeroes from the
|
||||
* coefficient controller's buffer anyway.
|
||||
*/
|
||||
if (! compptr->component_needed || idct->cur_method[ci] == method)
|
||||
continue;
|
||||
qtbl = compptr->quant_table;
|
||||
if (qtbl == NULL) /* happens if no data yet for component */
|
||||
continue;
|
||||
idct->cur_method[ci] = method;
|
||||
switch (method) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
{
|
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored as ints to ensure access efficiency.
|
||||
*/
|
||||
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* For integer operation, the multiplier table is to be scaled by
|
||||
* IFAST_SCALE_BITS.
|
||||
*/
|
||||
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
#ifdef ANDROID_ARMV6_IDCT
|
||||
/* Precomputed values scaled up by 15 bits. */
|
||||
static const unsigned short scales[DCTSIZE2] = {
|
||||
32768, 45451, 42813, 38531, 32768, 25746, 17734, 9041,
|
||||
45451, 63042, 59384, 53444, 45451, 35710, 24598, 12540,
|
||||
42813, 59384, 55938, 50343, 42813, 33638, 23170, 11812,
|
||||
38531, 53444, 50343, 45308, 38531, 30274, 20853, 10631,
|
||||
32768, 45451, 42813, 38531, 32768, 25746, 17734, 9041,
|
||||
25746, 35710, 33638, 30274, 25746, 20228, 13933, 7103,
|
||||
17734, 24598, 23170, 20853, 17734, 13933, 9598, 4893,
|
||||
9041, 12540, 11812, 10631, 9041, 7103, 4893, 2494,
|
||||
};
|
||||
/* Inverse map of [7, 5, 1, 3, 0, 2, 4, 6]. */
|
||||
static const char orders[DCTSIZE] = {4, 2, 5, 3, 6, 1, 7, 0};
|
||||
/* Reorder the columns after transposing. */
|
||||
for (i = 0; i < DCTSIZE2; ++i) {
|
||||
int j = ((i & 7) << 3) + orders[i >> 3];
|
||||
ifmtbl[j] = (qtbl->quantval[i] * scales[i] + 2) >> 2;
|
||||
}
|
||||
#else /* ANDROID_ARMV6_IDCT */
|
||||
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ifmtbl[i] = (IFAST_MULT_TYPE)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-IFAST_SCALE_BITS);
|
||||
}
|
||||
#endif /* ANDROID_ARMV6_IDCT */
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
*/
|
||||
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fmtbl[i] = (FLOAT_MULT_TYPE)
|
||||
((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_inverse_dct (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
idct = (my_idct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_idct_controller));
|
||||
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
||||
idct->pub.start_pass = start_pass;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate and pre-zero a multiplier table for each component */
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(multiplier_table));
|
||||
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
||||
/* Mark multiplier table not yet set up for any method */
|
||||
idct->cur_method[ci] = -1;
|
||||
}
|
||||
}
|
894
TMessagesProj/jni/libjpeg/jdhuff.c
Executable file
@ -0,0 +1,894 @@
|
||||
/*
|
||||
* jdhuff.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains Huffman entropy decoding routines.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting input suspension.
|
||||
* If the data source module demands suspension, we want to be able to back
|
||||
* up to the start of the current MCU. To do this, we copy state variables
|
||||
* into local working storage, and update them back to the permanent
|
||||
* storage only upon successful completion of an MCU.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
|
||||
|
||||
LOCAL(boolean) process_restart (j_decompress_ptr cinfo);
|
||||
|
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for Huffman decoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have
|
||||
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
||||
*/
|
||||
|
||||
#ifndef NO_STRUCT_ASSIGN
|
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
||||
#else
|
||||
#if MAX_COMPS_IN_SCAN == 4
|
||||
#define ASSIGN_STATE(dest,src) \
|
||||
((dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them.
|
||||
*/
|
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
||||
savable_state saved; /* Other state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
||||
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
/* Precalculated info set up by start_pass for use in decode_mcu: */
|
||||
|
||||
/* Pointers to derived tables to be used for each block within an MCU */
|
||||
d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
||||
d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
||||
/* Whether we care about the DC and AC coefficient values for each block */
|
||||
boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
|
||||
boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
|
||||
} huff_entropy_decoder;
|
||||
|
||||
typedef huff_entropy_decoder * huff_entropy_ptr;
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_huff_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int ci, blkn, dctbl, actbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning because
|
||||
* there are some baseline files out there with all zeroes in these bytes.
|
||||
*/
|
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
|
||||
cinfo->Ah != 0 || cinfo->Al != 0)
|
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
dctbl = compptr->dc_tbl_no;
|
||||
actbl = compptr->ac_tbl_no;
|
||||
/* Compute derived values for Huffman tables */
|
||||
/* We may do this more than once for a table, but it's not expensive */
|
||||
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
|
||||
& entropy->dc_derived_tbls[dctbl]);
|
||||
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
|
||||
& entropy->ac_derived_tbls[actbl]);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
}
|
||||
|
||||
/* Precalculate decoding info for each block in an MCU of this scan */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Precalculate which table to use for each block */
|
||||
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
||||
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
||||
/* Decide whether we really care about the coefficient values */
|
||||
if (compptr->component_needed) {
|
||||
entropy->dc_needed[blkn] = TRUE;
|
||||
/* we don't need the ACs if producing a 1/8th-size image */
|
||||
entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
|
||||
} else {
|
||||
entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize bitread state variables */
|
||||
entropy->bitstate.bits_left = 0;
|
||||
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute the derived values for a Huffman table.
|
||||
* This routine also performs some validation checks on the table.
|
||||
*
|
||||
* Note this is also used by jdphuff.c.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
|
||||
d_derived_tbl ** pdtbl)
|
||||
{
|
||||
JHUFF_TBL *htbl;
|
||||
d_derived_tbl *dtbl;
|
||||
int p, i, l, si, numsymbols;
|
||||
int lookbits, ctr;
|
||||
char huffsize[257];
|
||||
unsigned int huffcode[257];
|
||||
unsigned int code;
|
||||
|
||||
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
||||
* paralleling the order of the symbols themselves in htbl->huffval[].
|
||||
*/
|
||||
|
||||
/* Find the input Huffman table */
|
||||
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||
htbl =
|
||||
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||
|
||||
/* Allocate a workspace if we haven't already done so. */
|
||||
if (*pdtbl == NULL)
|
||||
*pdtbl = (d_derived_tbl *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(d_derived_tbl));
|
||||
dtbl = *pdtbl;
|
||||
dtbl->pub = htbl; /* fill in back link */
|
||||
|
||||
/* Figure C.1: make table of Huffman code length for each symbol */
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= 16; l++) {
|
||||
i = (int) htbl->bits[l];
|
||||
if (i < 0 || p + i > 256) /* protect against table overrun */
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
while (i--)
|
||||
huffsize[p++] = (char) l;
|
||||
}
|
||||
huffsize[p] = 0;
|
||||
numsymbols = p;
|
||||
|
||||
/* Figure C.2: generate the codes themselves */
|
||||
/* We also validate that the counts represent a legal Huffman code tree. */
|
||||
|
||||
code = 0;
|
||||
si = huffsize[0];
|
||||
p = 0;
|
||||
while (huffsize[p]) {
|
||||
while (((int) huffsize[p]) == si) {
|
||||
huffcode[p++] = code;
|
||||
code++;
|
||||
}
|
||||
/* code is now 1 more than the last code used for codelength si; but
|
||||
* it must still fit in si bits, since no code is allowed to be all ones.
|
||||
*/
|
||||
if (((INT32) code) >= (((INT32) 1) << si))
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
code <<= 1;
|
||||
si++;
|
||||
}
|
||||
|
||||
/* Figure F.15: generate decoding tables for bit-sequential decoding */
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= 16; l++) {
|
||||
if (htbl->bits[l]) {
|
||||
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
||||
* minus the minimum code of length l
|
||||
*/
|
||||
dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
|
||||
p += htbl->bits[l];
|
||||
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
||||
} else {
|
||||
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
||||
}
|
||||
}
|
||||
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
|
||||
|
||||
/* Compute lookahead tables to speed up decoding.
|
||||
* First we set all the table entries to 0, indicating "too long";
|
||||
* then we iterate through the Huffman codes that are short enough and
|
||||
* fill in all the entries that correspond to bit sequences starting
|
||||
* with that code.
|
||||
*/
|
||||
|
||||
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
||||
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
|
||||
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
||||
/* Generate left-justified code followed by all possible bit sequences */
|
||||
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
|
||||
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
|
||||
dtbl->look_nbits[lookbits] = l;
|
||||
dtbl->look_sym[lookbits] = htbl->huffval[p];
|
||||
lookbits++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Validate symbols as being reasonable.
|
||||
* For AC tables, we make no check, but accept all byte values 0..255.
|
||||
* For DC tables, we require the symbols to be in range 0..15.
|
||||
* (Tighter bounds could be applied depending on the data depth and mode,
|
||||
* but this is sufficient to ensure safe decoding.)
|
||||
*/
|
||||
if (isDC) {
|
||||
for (i = 0; i < numsymbols; i++) {
|
||||
int sym = htbl->huffval[i];
|
||||
if (sym < 0 || sym > 15)
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Out-of-line code for bit fetching (shared with jdphuff.c).
|
||||
* See jdhuff.h for info about usage.
|
||||
* Note: current values of get_buffer and bits_left are passed as parameters,
|
||||
* but are returned in the corresponding fields of the state struct.
|
||||
*
|
||||
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
||||
* of get_buffer to be used. (On machines with wider words, an even larger
|
||||
* buffer could be used.) However, on some machines 32-bit shifts are
|
||||
* quite slow and take time proportional to the number of places shifted.
|
||||
* (This is true with most PC compilers, for instance.) In this case it may
|
||||
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
||||
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
|
||||
*/
|
||||
|
||||
#ifdef SLOW_SHIFT_32
|
||||
#define MIN_GET_BITS 15 /* minimum allowable value */
|
||||
#else
|
||||
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
|
||||
#endif
|
||||
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_fill_bit_buffer (bitread_working_state * state,
|
||||
register bit_buf_type get_buffer, register int bits_left,
|
||||
int nbits)
|
||||
/* Load up the bit buffer to a depth of at least nbits */
|
||||
{
|
||||
/* Copy heavily used state fields into locals (hopefully registers) */
|
||||
register const JOCTET * next_input_byte = state->next_input_byte;
|
||||
register size_t bytes_in_buffer = state->bytes_in_buffer;
|
||||
j_decompress_ptr cinfo = state->cinfo;
|
||||
|
||||
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
||||
/* (It is assumed that no request will be for more than that many bits.) */
|
||||
/* We fail to do so only if we hit a marker or are forced to suspend. */
|
||||
|
||||
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
|
||||
while (bits_left < MIN_GET_BITS) {
|
||||
register int c;
|
||||
|
||||
/* Attempt to read a byte */
|
||||
if (bytes_in_buffer == 0) {
|
||||
if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
||||
return FALSE;
|
||||
next_input_byte = cinfo->src->next_input_byte;
|
||||
bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
||||
}
|
||||
bytes_in_buffer--;
|
||||
c = GETJOCTET(*next_input_byte++);
|
||||
|
||||
/* If it's 0xFF, check and discard stuffed zero byte */
|
||||
if (c == 0xFF) {
|
||||
/* Loop here to discard any padding FF's on terminating marker,
|
||||
* so that we can save a valid unread_marker value. NOTE: we will
|
||||
* accept multiple FF's followed by a 0 as meaning a single FF data
|
||||
* byte. This data pattern is not valid according to the standard.
|
||||
*/
|
||||
do {
|
||||
if (bytes_in_buffer == 0) {
|
||||
if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
||||
return FALSE;
|
||||
next_input_byte = cinfo->src->next_input_byte;
|
||||
bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
||||
}
|
||||
bytes_in_buffer--;
|
||||
c = GETJOCTET(*next_input_byte++);
|
||||
} while (c == 0xFF);
|
||||
|
||||
if (c == 0) {
|
||||
/* Found FF/00, which represents an FF data byte */
|
||||
c = 0xFF;
|
||||
} else {
|
||||
/* Oops, it's actually a marker indicating end of compressed data.
|
||||
* Save the marker code for later use.
|
||||
* Fine point: it might appear that we should save the marker into
|
||||
* bitread working state, not straight into permanent state. But
|
||||
* once we have hit a marker, we cannot need to suspend within the
|
||||
* current MCU, because we will read no more bytes from the data
|
||||
* source. So it is OK to update permanent state right away.
|
||||
*/
|
||||
cinfo->unread_marker = c;
|
||||
/* See if we need to insert some fake zero bits. */
|
||||
goto no_more_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
/* OK, load c into get_buffer */
|
||||
get_buffer = (get_buffer << 8) | c;
|
||||
bits_left += 8;
|
||||
} /* end while */
|
||||
} else {
|
||||
no_more_bytes:
|
||||
/* We get here if we've read the marker that terminates the compressed
|
||||
* data segment. There should be enough bits in the buffer register
|
||||
* to satisfy the request; if so, no problem.
|
||||
*/
|
||||
if (nbits > bits_left) {
|
||||
/* Uh-oh. Report corrupted data to user and stuff zeroes into
|
||||
* the data stream, so that we can produce some kind of image.
|
||||
* We use a nonvolatile flag to ensure that only one warning message
|
||||
* appears per data segment.
|
||||
*/
|
||||
if (! cinfo->entropy->insufficient_data) {
|
||||
WARNMS(cinfo, JWRN_HIT_MARKER);
|
||||
cinfo->entropy->insufficient_data = TRUE;
|
||||
}
|
||||
/* Fill the buffer with zero bits */
|
||||
get_buffer <<= MIN_GET_BITS - bits_left;
|
||||
bits_left = MIN_GET_BITS;
|
||||
}
|
||||
}
|
||||
|
||||
/* Unload the local registers */
|
||||
state->next_input_byte = next_input_byte;
|
||||
state->bytes_in_buffer = bytes_in_buffer;
|
||||
state->get_buffer = get_buffer;
|
||||
state->bits_left = bits_left;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Out-of-line code for Huffman code decoding.
|
||||
* See jdhuff.h for info about usage.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_huff_decode (bitread_working_state * state,
|
||||
register bit_buf_type get_buffer, register int bits_left,
|
||||
d_derived_tbl * htbl, int min_bits)
|
||||
{
|
||||
register int l = min_bits;
|
||||
register INT32 code;
|
||||
|
||||
/* HUFF_DECODE has determined that the code is at least min_bits */
|
||||
/* bits long, so fetch that many bits in one swoop. */
|
||||
|
||||
CHECK_BIT_BUFFER(*state, l, return -1);
|
||||
code = GET_BITS(l);
|
||||
|
||||
/* Collect the rest of the Huffman code one bit at a time. */
|
||||
/* This is per Figure F.16 in the JPEG spec. */
|
||||
|
||||
while (code > htbl->maxcode[l]) {
|
||||
code <<= 1;
|
||||
CHECK_BIT_BUFFER(*state, 1, return -1);
|
||||
code |= GET_BITS(1);
|
||||
l++;
|
||||
}
|
||||
|
||||
/* Unload the local registers */
|
||||
state->get_buffer = get_buffer;
|
||||
state->bits_left = bits_left;
|
||||
|
||||
/* With garbage input we may reach the sentinel value l = 17. */
|
||||
|
||||
if (l > 16) {
|
||||
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
||||
return 0; /* fake a zero as the safest result */
|
||||
}
|
||||
|
||||
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Figure F.12: extend sign bit.
|
||||
* On some machines, a shift and add will be faster than a table lookup.
|
||||
*/
|
||||
|
||||
#ifdef AVOID_TABLES
|
||||
|
||||
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
|
||||
|
||||
#else
|
||||
|
||||
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
||||
|
||||
static const int extend_test[16] = /* entry n is 2**(n-1) */
|
||||
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
|
||||
|
||||
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
|
||||
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
|
||||
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
|
||||
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
|
||||
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
|
||||
|
||||
#endif /* AVOID_TABLES */
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
* Returns FALSE if must suspend.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
process_restart (j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
|
||||
/* Throw away any unused bits remaining in bit buffer; */
|
||||
/* include any full bytes in next_marker's count of discarded bytes */
|
||||
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
||||
entropy->bitstate.bits_left = 0;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||
return FALSE;
|
||||
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
|
||||
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
||||
* against a marker. In that case we will end up treating the next data
|
||||
* segment as empty, and we can avoid producing bogus output pixels by
|
||||
* leaving the flag set.
|
||||
*/
|
||||
if (cinfo->unread_marker == 0)
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Save the current Huffman deocde position and the DC coefficients
|
||||
* for each component into bitstream_offset and dc_info[], respectively.
|
||||
*/
|
||||
METHODDEF(void)
|
||||
get_huffman_decoder_configuration(j_decompress_ptr cinfo,
|
||||
huffman_offset_data *offset)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
short int *dc_info = offset->prev_dc;
|
||||
int i;
|
||||
jpeg_get_huffman_decoder_configuration(cinfo, offset);
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
dc_info[i] = entropy->saved.last_dc_val[i];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Save the current Huffman decoder position and the bit buffer
|
||||
* into bitstream_offset and get_buffer, respectively.
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jpeg_get_huffman_decoder_configuration(j_decompress_ptr cinfo,
|
||||
huffman_offset_data *offset)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
|
||||
if (cinfo->restart_interval) {
|
||||
// We are at the end of a data segment
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return;
|
||||
}
|
||||
|
||||
// Save restarts_to_go and next_restart_num
|
||||
offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
|
||||
offset->next_restart_num = cinfo->marker->next_restart_num;
|
||||
|
||||
offset->bitstream_offset =
|
||||
(jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
|
||||
+ entropy->bitstate.bits_left;
|
||||
|
||||
offset->get_buffer = entropy->bitstate.get_buffer;
|
||||
}
|
||||
|
||||
/*
|
||||
* Configure the Huffman decoder to decode the image
|
||||
* starting from the bitstream position recorded in offset.
|
||||
*/
|
||||
METHODDEF(void)
|
||||
configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
short int *dc_info = offset.prev_dc;
|
||||
int i;
|
||||
jpeg_configure_huffman_decoder(cinfo, offset);
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
entropy->saved.last_dc_val[i] = dc_info[i];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Configure the Huffman decoder reader position and bit buffer.
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jpeg_configure_huffman_decoder(j_decompress_ptr cinfo,
|
||||
huffman_offset_data offset)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
|
||||
// Restore restarts_to_go and next_restart_num
|
||||
cinfo->unread_marker = 0;
|
||||
entropy->restarts_to_go = offset.restarts_to_go;
|
||||
cinfo->marker->next_restart_num = offset.next_restart_num;
|
||||
|
||||
unsigned int bitstream_offset = offset.bitstream_offset;
|
||||
int blkn, i;
|
||||
|
||||
unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
|
||||
unsigned int bit_in_bit_buffer =
|
||||
bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
|
||||
|
||||
jset_input_stream_position_bit(cinfo, byte_offset,
|
||||
bit_in_bit_buffer, offset.get_buffer);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode and return one MCU's worth of Huffman-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
|
||||
* (Wholesale zeroing is usually a little faster than retail...)
|
||||
*
|
||||
* Returns FALSE if data source requested suspension. In that case no
|
||||
* changes have been made to permanent state. (Exception: some output
|
||||
* coefficients may already have been assigned. This is harmless for
|
||||
* this module, since we'll just re-assign them on the next call.)
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int blkn;
|
||||
BITREAD_STATE_VARS;
|
||||
savable_state state;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment.
|
||||
*/
|
||||
if (! entropy->pub.insufficient_data) {
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
||||
ASSIGN_STATE(state, entropy->saved);
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
JBLOCKROW block = MCU_data[blkn];
|
||||
d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
|
||||
d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
|
||||
register int s, k, r;
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
|
||||
if (s) {
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
}
|
||||
|
||||
if (entropy->dc_needed[blkn]) {
|
||||
/* Convert DC difference to actual value, update last_dc_val */
|
||||
int ci = cinfo->MCU_membership[blkn];
|
||||
s += state.last_dc_val[ci];
|
||||
state.last_dc_val[ci] = s;
|
||||
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
|
||||
(*block)[0] = (JCOEF) s;
|
||||
}
|
||||
|
||||
if (entropy->ac_needed[blkn]) {
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
/* Since zeroes are skipped, output area must be cleared beforehand */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
/* Output coefficient in natural (dezigzagged) order.
|
||||
* Note: the extra entries in jpeg_natural_order[] will save us
|
||||
* if k >= DCTSIZE2, which could happen if the data is corrupted.
|
||||
*/
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
/* In this path we just discard the values */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
DROP_BITS(s);
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
||||
ASSIGN_STATE(entropy->saved, state);
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of Huffman-compressed coefficients.
|
||||
* The propose of this method is to calculate the
|
||||
* data length of one MCU in Huffman-coded format.
|
||||
* Therefore, all coefficients are discarded.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_discard_coef (j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int blkn;
|
||||
BITREAD_STATE_VARS;
|
||||
savable_state state;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
if (! entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
||||
ASSIGN_STATE(state, entropy->saved);
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
|
||||
d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
|
||||
register int s, k, r;
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
|
||||
if (s) {
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
}
|
||||
|
||||
/* discard all coefficients */
|
||||
if (entropy->dc_needed[blkn]) {
|
||||
/* Convert DC difference to actual value, update last_dc_val */
|
||||
int ci = cinfo->MCU_membership[blkn];
|
||||
s += state.last_dc_val[ci];
|
||||
state.last_dc_val[ci] = s;
|
||||
}
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
DROP_BITS(s);
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
||||
ASSIGN_STATE(entropy->saved, state);
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for Huffman entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_huff_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (huff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(huff_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass_huff_decoder;
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
entropy->pub.decode_mcu_discard_coef = decode_mcu_discard_coef;
|
||||
entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
|
||||
entropy->pub.get_huffman_decoder_configuration =
|
||||
get_huffman_decoder_configuration;
|
||||
entropy->pub.index = NULL;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Call after jpeg_read_header
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jpeg_create_huffman_index(j_decompress_ptr cinfo, huffman_index *index)
|
||||
{
|
||||
int i, s;
|
||||
index->scan_count = 1;
|
||||
index->total_iMCU_rows = cinfo->total_iMCU_rows;
|
||||
index->scan = (huffman_scan_header*)malloc(index->scan_count
|
||||
* sizeof(huffman_scan_header));
|
||||
index->scan[0].offset = (huffman_offset_data**)malloc(cinfo->total_iMCU_rows
|
||||
* sizeof(huffman_offset_data*));
|
||||
index->scan[0].prev_MCU_offset.bitstream_offset = 0;
|
||||
index->MCU_sample_size = DEFAULT_MCU_SAMPLE_SIZE;
|
||||
|
||||
index->mem_used = sizeof(huffman_scan_header)
|
||||
+ cinfo->total_iMCU_rows * sizeof(huffman_offset_data*);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_huffman_index(huffman_index *index)
|
||||
{
|
||||
int i, j;
|
||||
for (i = 0; i < index->scan_count; i++) {
|
||||
for(j = 0; j < index->total_iMCU_rows; j++) {
|
||||
free(index->scan[i].offset[j]);
|
||||
}
|
||||
free(index->scan[i].offset);
|
||||
}
|
||||
free(index->scan);
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the reader byte position to offset
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jset_input_stream_position(j_decompress_ptr cinfo, int offset)
|
||||
{
|
||||
if (cinfo->src->seek_input_data) {
|
||||
cinfo->src->seek_input_data(cinfo, offset);
|
||||
} else {
|
||||
cinfo->src->bytes_in_buffer = cinfo->src->current_offset - offset;
|
||||
cinfo->src->next_input_byte = cinfo->src->start_input_byte + offset;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the reader byte position to offset and bit position to bit_left
|
||||
* with bit buffer set to buf.
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jset_input_stream_position_bit(j_decompress_ptr cinfo,
|
||||
int byte_offset, int bit_left, INT32 buf)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
|
||||
entropy->bitstate.bits_left = bit_left;
|
||||
entropy->bitstate.get_buffer = buf;
|
||||
|
||||
jset_input_stream_position(cinfo, byte_offset);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the current reader byte position.
|
||||
*/
|
||||
GLOBAL(int)
|
||||
jget_input_stream_position(j_decompress_ptr cinfo)
|
||||
{
|
||||
return cinfo->src->current_offset - cinfo->src->bytes_in_buffer;
|
||||
}
|
202
TMessagesProj/jni/libjpeg/jdhuff.h
Executable file
@ -0,0 +1,202 @@
|
||||
/*
|
||||
* jdhuff.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains declarations for Huffman entropy decoding routines
|
||||
* that are shared between the sequential decoder (jdhuff.c) and the
|
||||
* progressive decoder (jdphuff.c). No other modules need to see these.
|
||||
*/
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_make_d_derived_tbl jMkDDerived
|
||||
#define jpeg_fill_bit_buffer jFilBitBuf
|
||||
#define jpeg_huff_decode jHufDecode
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/* Derived data constructed for each Huffman table */
|
||||
|
||||
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
|
||||
|
||||
typedef struct {
|
||||
/* Basic tables: (element [0] of each array is unused) */
|
||||
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
|
||||
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
|
||||
INT32 valoffset[17]; /* huffval[] offset for codes of length k */
|
||||
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
|
||||
* the smallest code of length k; so given a code of length k, the
|
||||
* corresponding symbol is huffval[code + valoffset[k]]
|
||||
*/
|
||||
|
||||
/* Link to public Huffman table (needed only in jpeg_huff_decode) */
|
||||
JHUFF_TBL *pub;
|
||||
|
||||
/* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
|
||||
* the input data stream. If the next Huffman code is no more
|
||||
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
|
||||
* the corresponding symbol directly from these tables.
|
||||
*/
|
||||
int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
|
||||
UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
|
||||
} d_derived_tbl;
|
||||
|
||||
/* Expand a Huffman table definition into the derived format */
|
||||
EXTERN(void) jpeg_make_d_derived_tbl
|
||||
JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
|
||||
d_derived_tbl ** pdtbl));
|
||||
|
||||
|
||||
/*
|
||||
* Fetching the next N bits from the input stream is a time-critical operation
|
||||
* for the Huffman decoders. We implement it with a combination of inline
|
||||
* macros and out-of-line subroutines. Note that N (the number of bits
|
||||
* demanded at one time) never exceeds 15 for JPEG use.
|
||||
*
|
||||
* We read source bytes into get_buffer and dole out bits as needed.
|
||||
* If get_buffer already contains enough bits, they are fetched in-line
|
||||
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
|
||||
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
|
||||
* as full as possible (not just to the number of bits needed; this
|
||||
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
|
||||
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
|
||||
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
|
||||
* at least the requested number of bits --- dummy zeroes are inserted if
|
||||
* necessary.
|
||||
*/
|
||||
|
||||
typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
|
||||
#define BIT_BUF_SIZE 32 /* size of buffer in bits */
|
||||
#define LOG_TWO_BIT_BUF_SIZE 5 /* log_2(BIT_BUF_SIZE) */
|
||||
|
||||
/* If long is > 32 bits on your machine, and shifting/masking longs is
|
||||
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
|
||||
* appropriately should be a win. Unfortunately we can't define the size
|
||||
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
|
||||
* because not all machines measure sizeof in 8-bit bytes.
|
||||
*/
|
||||
|
||||
typedef struct { /* Bitreading state saved across MCUs */
|
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
} bitread_perm_state;
|
||||
|
||||
typedef struct { /* Bitreading working state within an MCU */
|
||||
/* Current data source location */
|
||||
/* We need a copy, rather than munging the original, in case of suspension */
|
||||
const JOCTET * next_input_byte; /* => next byte to read from source */
|
||||
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
|
||||
/* Bit input buffer --- note these values are kept in register variables,
|
||||
* not in this struct, inside the inner loops.
|
||||
*/
|
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
/* Pointer needed by jpeg_fill_bit_buffer. */
|
||||
j_decompress_ptr cinfo; /* back link to decompress master record */
|
||||
} bitread_working_state;
|
||||
|
||||
/* Macros to declare and load/save bitread local variables. */
|
||||
#define BITREAD_STATE_VARS \
|
||||
register bit_buf_type get_buffer; \
|
||||
register int bits_left; \
|
||||
bitread_working_state br_state
|
||||
|
||||
#define BITREAD_LOAD_STATE(cinfop,permstate) \
|
||||
br_state.cinfo = cinfop; \
|
||||
br_state.next_input_byte = cinfop->src->next_input_byte; \
|
||||
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
|
||||
get_buffer = permstate.get_buffer; \
|
||||
bits_left = permstate.bits_left;
|
||||
|
||||
#define BITREAD_SAVE_STATE(cinfop,permstate) \
|
||||
cinfop->src->next_input_byte = br_state.next_input_byte; \
|
||||
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
|
||||
permstate.get_buffer = get_buffer; \
|
||||
permstate.bits_left = bits_left
|
||||
|
||||
/*
|
||||
* These macros provide the in-line portion of bit fetching.
|
||||
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
|
||||
* before using GET_BITS, PEEK_BITS, or DROP_BITS.
|
||||
* The variables get_buffer and bits_left are assumed to be locals,
|
||||
* but the state struct might not be (jpeg_huff_decode needs this).
|
||||
* CHECK_BIT_BUFFER(state,n,action);
|
||||
* Ensure there are N bits in get_buffer; if suspend, take action.
|
||||
* val = GET_BITS(n);
|
||||
* Fetch next N bits.
|
||||
* val = PEEK_BITS(n);
|
||||
* Fetch next N bits without removing them from the buffer.
|
||||
* DROP_BITS(n);
|
||||
* Discard next N bits.
|
||||
* The value N should be a simple variable, not an expression, because it
|
||||
* is evaluated multiple times.
|
||||
*/
|
||||
|
||||
#define CHECK_BIT_BUFFER(state,nbits,action) \
|
||||
{ if (bits_left < (nbits)) { \
|
||||
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
|
||||
{ action; } \
|
||||
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
|
||||
|
||||
#define GET_BITS(nbits) \
|
||||
(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
|
||||
|
||||
#define PEEK_BITS(nbits) \
|
||||
(((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
|
||||
|
||||
#define DROP_BITS(nbits) \
|
||||
(bits_left -= (nbits))
|
||||
|
||||
/* Load up the bit buffer to a depth of at least nbits */
|
||||
EXTERN(boolean) jpeg_fill_bit_buffer
|
||||
JPP((bitread_working_state * state, register bit_buf_type get_buffer,
|
||||
register int bits_left, int nbits));
|
||||
|
||||
|
||||
/*
|
||||
* Code for extracting next Huffman-coded symbol from input bit stream.
|
||||
* Again, this is time-critical and we make the main paths be macros.
|
||||
*
|
||||
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
|
||||
* without looping. Usually, more than 95% of the Huffman codes will be 8
|
||||
* or fewer bits long. The few overlength codes are handled with a loop,
|
||||
* which need not be inline code.
|
||||
*
|
||||
* Notes about the HUFF_DECODE macro:
|
||||
* 1. Near the end of the data segment, we may fail to get enough bits
|
||||
* for a lookahead. In that case, we do it the hard way.
|
||||
* 2. If the lookahead table contains no entry, the next code must be
|
||||
* more than HUFF_LOOKAHEAD bits long.
|
||||
* 3. jpeg_huff_decode returns -1 if forced to suspend.
|
||||
*/
|
||||
|
||||
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
|
||||
{ register int nb, look; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
nb = 1; goto slowlabel; \
|
||||
} \
|
||||
} \
|
||||
look = PEEK_BITS(HUFF_LOOKAHEAD); \
|
||||
if ((nb = htbl->look_nbits[look]) != 0) { \
|
||||
DROP_BITS(nb); \
|
||||
result = htbl->look_sym[look]; \
|
||||
} else { \
|
||||
nb = HUFF_LOOKAHEAD+1; \
|
||||
slowlabel: \
|
||||
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
|
||||
{ failaction; } \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Out-of-line case for Huffman code fetching */
|
||||
EXTERN(int) jpeg_huff_decode
|
||||
JPP((bitread_working_state * state, register bit_buf_type get_buffer,
|
||||
register int bits_left, d_derived_tbl * htbl, int min_bits));
|
415
TMessagesProj/jni/libjpeg/jdinput.c
Executable file
@ -0,0 +1,415 @@
|
||||
/*
|
||||
* jdinput.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input control logic for the JPEG decompressor.
|
||||
* These routines are concerned with controlling the decompressor's input
|
||||
* processing (marker reading and coefficient decoding). The actual input
|
||||
* reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_input_controller pub; /* public fields */
|
||||
|
||||
boolean inheaders; /* TRUE until first SOS is reached */
|
||||
} my_input_controller;
|
||||
|
||||
typedef my_input_controller * my_inputctl_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
|
||||
METHODDEF(int) consume_markers_with_huffman_index JPP((j_decompress_ptr cinfo,
|
||||
huffman_index *index, int current_scan));
|
||||
|
||||
|
||||
/*
|
||||
* Routines to calculate various quantities related to the size of the image.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup (j_decompress_ptr cinfo)
|
||||
/* Called once, when first SOS marker is reached */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
|
||||
* In the full decompressor, this will be overridden by jdmaster.c;
|
||||
* but in the transcoder, jdmaster.c is not used, so we must do it here.
|
||||
*/
|
||||
cinfo->min_DCT_scaled_size = DCTSIZE;
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
compptr->DCT_scaled_size = DCTSIZE;
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* downsampled_width and downsampled_height will also be overridden by
|
||||
* jdmaster.c if we are doing full decompression. The transcoder library
|
||||
* doesn't use these values, but the calling application might.
|
||||
*/
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) cinfo->max_v_samp_factor);
|
||||
/* Mark component needed, until color conversion says otherwise */
|
||||
compptr->component_needed = TRUE;
|
||||
/* Mark no quantization table yet saved for component */
|
||||
compptr->quant_table = NULL;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows. */
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
/* Decide whether file contains multiple scans */
|
||||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
|
||||
cinfo->inputctl->has_multiple_scans = TRUE;
|
||||
else
|
||||
cinfo->inputctl->has_multiple_scans = FALSE;
|
||||
cinfo->original_image_width = cinfo->image_width;
|
||||
}
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->DCT_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
#ifdef ANDROID_TILE_BASED_DECODE
|
||||
if (cinfo->tile_decode) {
|
||||
tmp = (int) (jdiv_round_up(cinfo->image_width, 8)
|
||||
% compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
}
|
||||
#endif
|
||||
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_decompress_per_scan_setup(j_decompress_ptr cinfo)
|
||||
{
|
||||
per_scan_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Save away a copy of the Q-table referenced by each component present
|
||||
* in the current scan, unless already saved during a prior scan.
|
||||
*
|
||||
* In a multiple-scan JPEG file, the encoder could assign different components
|
||||
* the same Q-table slot number, but change table definitions between scans
|
||||
* so that each component uses a different Q-table. (The IJG encoder is not
|
||||
* currently capable of doing this, but other encoders might.) Since we want
|
||||
* to be able to dequantize all the components at the end of the file, this
|
||||
* means that we have to save away the table actually used for each component.
|
||||
* We do this by copying the table at the start of the first scan containing
|
||||
* the component.
|
||||
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
|
||||
* slot between scans of a component using that slot. If the encoder does so
|
||||
* anyway, this decoder will simply use the Q-table values that were current
|
||||
* at the start of the first scan for the component.
|
||||
*
|
||||
* The decompressor output side looks only at the saved quant tables,
|
||||
* not at the current Q-table slots.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
latch_quant_tables (j_decompress_ptr cinfo)
|
||||
{
|
||||
int ci, qtblno;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* No work if we already saved Q-table for this component */
|
||||
if (compptr->quant_table != NULL)
|
||||
continue;
|
||||
/* Make sure specified quantization table is present */
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
/* OK, save away the quantization table */
|
||||
qtbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(JQUANT_TBL));
|
||||
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
|
||||
compptr->quant_table = qtbl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input modules to read a scan of compressed data.
|
||||
* The first call to this is done by jdmaster.c after initializing
|
||||
* the entire decompressor (during jpeg_start_decompress).
|
||||
* Subsequent calls come from consume_markers, below.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
per_scan_setup(cinfo);
|
||||
latch_quant_tables(cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_input_pass) (cinfo);
|
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
|
||||
cinfo->inputctl->consume_input_build_huffman_index =
|
||||
cinfo->coef->consume_data_build_huffman_index;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after inputting a compressed-data scan.
|
||||
* This is called by the coefficient controller after it's read all
|
||||
* the expected data of the scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->inputctl->consume_input = consume_markers;
|
||||
cinfo->inputctl->consume_input_build_huffman_index =
|
||||
consume_markers_with_huffman_index;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(int)
|
||||
consume_markers_with_huffman_index (j_decompress_ptr cinfo,
|
||||
huffman_index *index, int current_scan)
|
||||
{
|
||||
return consume_markers(cinfo);
|
||||
}
|
||||
/*
|
||||
* Read JPEG markers before, between, or after compressed-data scans.
|
||||
* Change state as necessary when a new scan is reached.
|
||||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*
|
||||
* The consume_input method pointer points either here or to the
|
||||
* coefficient controller's consume_data routine, depending on whether
|
||||
* we are reading a compressed data segment or inter-segment markers.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_markers (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||
int val;
|
||||
|
||||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
|
||||
return JPEG_REACHED_EOI;
|
||||
|
||||
val = (*cinfo->marker->read_markers) (cinfo);
|
||||
|
||||
switch (val) {
|
||||
case JPEG_REACHED_SOS: /* Found SOS */
|
||||
if (inputctl->inheaders) { /* 1st SOS */
|
||||
initial_setup(cinfo);
|
||||
inputctl->inheaders = FALSE;
|
||||
/* Note: start_input_pass must be called by jdmaster.c
|
||||
* before any more input can be consumed. jdapimin.c is
|
||||
* responsible for enforcing this sequencing.
|
||||
*/
|
||||
} else { /* 2nd or later SOS marker */
|
||||
if (! inputctl->pub.has_multiple_scans)
|
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
|
||||
start_input_pass(cinfo);
|
||||
}
|
||||
break;
|
||||
case JPEG_REACHED_EOI: /* Found EOI */
|
||||
inputctl->pub.eoi_reached = TRUE;
|
||||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
|
||||
if (cinfo->marker->saw_SOF)
|
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS);
|
||||
} else {
|
||||
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||
* if user set output_scan_number larger than number of scans.
|
||||
*/
|
||||
if (cinfo->output_scan_number > cinfo->input_scan_number)
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
}
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
break;
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset state to begin a fresh datastream.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_input_controller (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.consume_input_build_huffman_index =
|
||||
consume_markers_with_huffman_index;
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
/* Reset other modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->marker->reset_marker_reader) (cinfo);
|
||||
/* Reset progression state -- would be cleaner if entropy decoder did this */
|
||||
cinfo->coef_bits = NULL;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input controller module.
|
||||
* This is called only once, when the decompression object is created.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_input_controller (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl;
|
||||
|
||||
/* Create subobject in permanent pool */
|
||||
inputctl = (my_inputctl_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_input_controller));
|
||||
cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
|
||||
/* Initialize method pointers */
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.reset_input_controller = reset_input_controller;
|
||||
inputctl->pub.start_input_pass = start_input_pass;
|
||||
inputctl->pub.finish_input_pass = finish_input_pass;
|
||||
|
||||
inputctl->pub.consume_markers = consume_markers_with_huffman_index;
|
||||
inputctl->pub.consume_input_build_huffman_index =
|
||||
consume_markers_with_huffman_index;
|
||||
/* Initialize state: can't use reset_input_controller since we don't
|
||||
* want to try to reset other modules yet.
|
||||
*/
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
}
|
512
TMessagesProj/jni/libjpeg/jdmainct.c
Executable file
@ -0,0 +1,512 @@
|
||||
/*
|
||||
* jdmainct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for decompression.
|
||||
* The main buffer lies between the JPEG decompressor proper and the
|
||||
* post-processor; it holds downsampled data in the JPEG colorspace.
|
||||
*
|
||||
* Note that this code is bypassed in raw-data mode, since the application
|
||||
* supplies the equivalent of the main buffer in that case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image
|
||||
* buffer; any full-height buffers will be found inside the coefficient or
|
||||
* postprocessing controllers. Nonetheless, the main controller is not
|
||||
* trivial. Its responsibility is to provide context rows for upsampling/
|
||||
* rescaling, and doing this in an efficient fashion is a bit tricky.
|
||||
*
|
||||
* Postprocessor input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. (We require DCT_scaled_size values to be
|
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size
|
||||
* values will likely be powers of two, so we actually have the stronger
|
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
|
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each
|
||||
* row group (times any additional scale factor that the upsampler is
|
||||
* applying).
|
||||
*
|
||||
* The coefficient controller will deliver data to us one iMCU row at a time;
|
||||
* each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
|
||||
* exactly min_DCT_scaled_size row groups. (This amount of data corresponds
|
||||
* to one row of MCUs when the image is fully interleaved.) Note that the
|
||||
* number of sample rows varies across components, but the number of row
|
||||
* groups does not. Some garbage sample rows may be included in the last iMCU
|
||||
* row at the bottom of the image.
|
||||
*
|
||||
* Depending on the vertical scaling algorithm used, the upsampler may need
|
||||
* access to the sample row(s) above and below its current input row group.
|
||||
* The upsampler is required to set need_context_rows TRUE at global selection
|
||||
* time if so. When need_context_rows is FALSE, this controller can simply
|
||||
* obtain one iMCU row at a time from the coefficient controller and dole it
|
||||
* out as row groups to the postprocessor.
|
||||
*
|
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer
|
||||
* passed to postprocessing contains at least one row group's worth of samples
|
||||
* above and below the row group(s) being processed. Note that the context
|
||||
* rows "above" the first passed row group appear at negative row offsets in
|
||||
* the passed buffer. At the top and bottom of the image, the required
|
||||
* context rows are manufactured by duplicating the first or last real sample
|
||||
* row; this avoids having special cases in the upsampling inner loops.
|
||||
*
|
||||
* The amount of context is fixed at one row group just because that's a
|
||||
* convenient number for this controller to work with. The existing
|
||||
* upsamplers really only need one sample row of context. An upsampler
|
||||
* supporting arbitrary output rescaling might wish for more than one row
|
||||
* group of context when shrinking the image; tough, we don't handle that.
|
||||
* (This is justified by the assumption that downsizing will be handled mostly
|
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
|
||||
* the upsample step needn't be much less than one.)
|
||||
*
|
||||
* To provide the desired context, we have to retain the last two row groups
|
||||
* of one iMCU row while reading in the next iMCU row. (The last row group
|
||||
* can't be processed until we have another row group for its below-context,
|
||||
* and so we have to save the next-to-last group too for its above-context.)
|
||||
* We could do this most simply by copying data around in our buffer, but
|
||||
* that'd be very slow. We can avoid copying any data by creating a rather
|
||||
* strange pointer structure. Here's how it works. We allocate a workspace
|
||||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
|
||||
* of row groups per iMCU row). We create two sets of redundant pointers to
|
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
|
||||
* pointer lists look like this:
|
||||
* M+1 M-1
|
||||
* master pointer --> 0 master pointer --> 0
|
||||
* 1 1
|
||||
* ... ...
|
||||
* M-3 M-3
|
||||
* M-2 M
|
||||
* M-1 M+1
|
||||
* M M-2
|
||||
* M+1 M-1
|
||||
* 0 0
|
||||
* We read alternate iMCU rows using each master pointer; thus the last two
|
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace.
|
||||
* The pointer lists are set up so that the required context rows appear to
|
||||
* be adjacent to the proper places when we pass the pointer lists to the
|
||||
* upsampler.
|
||||
*
|
||||
* The above pictures describe the normal state of the pointer lists.
|
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate
|
||||
* the first or last sample row as necessary (this is cheaper than copying
|
||||
* sample rows around).
|
||||
*
|
||||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
|
||||
* situation each iMCU row provides only one row group so the buffering logic
|
||||
* must be different (eg, we must read two iMCU rows before we can emit the
|
||||
* first row group). For now, we simply do not support providing context
|
||||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to
|
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably
|
||||
* want it quick and dirty, so a context-free upsampler is sufficient.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_main_controller pub; /* public fields */
|
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
|
||||
|
||||
/* Remaining fields are only used in the context case. */
|
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */
|
||||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
|
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */
|
||||
int context_state; /* process_data state machine status */
|
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
|
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
/* context_state values: */
|
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
|
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
|
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
METHODDEF(void) process_data_context_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) process_data_crank_post
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
alloc_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Allocate space for the funny pointer lists.
|
||||
* This is done only once, not once per pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, rgroup;
|
||||
int M = cinfo->min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles.
|
||||
*/
|
||||
main->xbuffer[0] = (JSAMPIMAGE)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
|
||||
main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles.
|
||||
*/
|
||||
xbuf = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
|
||||
xbuf += rgroup; /* want one row group at negative offsets */
|
||||
main->xbuffer[0][ci] = xbuf;
|
||||
xbuf += rgroup * (M + 4);
|
||||
main->xbuffer[1][ci] = xbuf;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
make_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in main->buffer),
|
||||
* and the space for the pointer lists is allocated too.
|
||||
* This routine just fills in the curiously ordered lists.
|
||||
* This will be repeated at the beginning of each pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY buf, xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
/* First copy the workspace pointers as-is */
|
||||
buf = main->buffer[ci];
|
||||
for (i = 0; i < rgroup * (M + 2); i++) {
|
||||
xbuf0[i] = xbuf1[i] = buf[i];
|
||||
}
|
||||
/* In the second list, put the last four row groups in swapped order */
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
|
||||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
|
||||
}
|
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above"
|
||||
* pointers to duplicate the first actual data line. This only needs
|
||||
* to happen in xbuffer[0].
|
||||
*/
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_wraparound_pointers (j_decompress_ptr cinfo)
|
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
|
||||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
|
||||
xbuf0[rgroup*(M+2) + i] = xbuf0[i];
|
||||
xbuf1[rgroup*(M+2) + i] = xbuf1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_bottom_pointers (j_decompress_ptr cinfo)
|
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
|
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup, iMCUheight, rows_left;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Count sample rows in one iMCU row and in one row group */
|
||||
iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
|
||||
rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
|
||||
/* Count nondummy sample rows remaining for this component */
|
||||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
|
||||
if (rows_left == 0) rows_left = iMCUheight;
|
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once.
|
||||
*/
|
||||
if (ci == 0) {
|
||||
main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
|
||||
}
|
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context.
|
||||
*/
|
||||
xbuf = main->xbuffer[main->whichptr][ci];
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf[rows_left + i] = xbuf[rows_left-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
main->pub.process_data = process_data_context_main;
|
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
|
||||
main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
main->iMCU_row_ctr = 0;
|
||||
} else {
|
||||
/* Simple case with no context needed */
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
}
|
||||
main->buffer_full = FALSE; /* Mark buffer empty */
|
||||
main->rowgroup_ctr = 0;
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_CRANK_DEST:
|
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */
|
||||
main->pub.process_data = process_data_crank_post;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the simple case where no context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
JDIMENSION rowgroups_avail;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
}
|
||||
|
||||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */
|
||||
rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
|
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom
|
||||
* of image anyway (at row resolution), so no point in us doing it too.
|
||||
*/
|
||||
|
||||
/* Feed the postprocessor */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->buffer,
|
||||
&main->rowgroup_ctr, rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
|
||||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */
|
||||
if (main->rowgroup_ctr >= rowgroups_avail) {
|
||||
main->buffer_full = FALSE;
|
||||
main->rowgroup_ctr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the case where context rows must be provided.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_context_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo,
|
||||
main->xbuffer[main->whichptr]))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
main->iMCU_row_ctr++; /* count rows received */
|
||||
}
|
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared
|
||||
* to exit and restart. This switch lets us keep track of how far we got.
|
||||
* Note that each case falls through to the next on successful completion.
|
||||
*/
|
||||
switch (main->context_state) {
|
||||
case CTX_POSTPONED_ROW:
|
||||
/* Call postprocessor using previously set pointers for postponed row */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
if (*out_row_ctr >= out_rows_avail)
|
||||
return; /* Postprocessor exactly filled output buf */
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PREPARE_FOR_IMCU:
|
||||
/* Prepare to process first M-1 row groups of this iMCU row */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
|
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
|
||||
*/
|
||||
if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
|
||||
set_bottom_pointers(cinfo);
|
||||
main->context_state = CTX_PROCESS_IMCU;
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PROCESS_IMCU:
|
||||
/* Call postprocessor using previously set pointers */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
/* After the first iMCU, change wraparound pointers to normal state */
|
||||
if (main->iMCU_row_ctr == 1)
|
||||
set_wraparound_pointers(cinfo);
|
||||
/* Prepare to load new iMCU row using other xbuffer list */
|
||||
main->whichptr ^= 1; /* 0=>1 or 1=>0 */
|
||||
main->buffer_full = FALSE;
|
||||
/* Still need to process last row group of this iMCU row, */
|
||||
/* which is saved at index M+1 of the other xbuffer */
|
||||
main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
|
||||
main->context_state = CTX_POSTPONED_ROW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* Final pass of two-pass quantization: just call the postprocessor.
|
||||
* Source data will be the postprocessor controller's internal buffer.
|
||||
*/
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_crank_post (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
|
||||
(JDIMENSION *) NULL, (JDIMENSION) 0,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci, rgroup, ngroups;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_d_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
if (need_full_buffer) /* shouldn't happen */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need.
|
||||
*/
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
|
||||
ngroups = cinfo->min_DCT_scaled_size + 2;
|
||||
} else {
|
||||
ngroups = cinfo->min_DCT_scaled_size;
|
||||
}
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->DCT_scaled_size,
|
||||
(JDIMENSION) (rgroup * ngroups));
|
||||
}
|
||||
}
|
1410
TMessagesProj/jni/libjpeg/jdmarker.c
Executable file
580
TMessagesProj/jni/libjpeg/jdmaster.c
Executable file
@ -0,0 +1,580 @@
|
||||
/*
|
||||
* jdmaster.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG decompressor.
|
||||
* These routines are concerned with selecting the modules to be executed
|
||||
* and with determining the number of passes and the work to be done in each
|
||||
* pass.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_decomp_master pub; /* public fields */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
||||
|
||||
/* Saved references to initialized quantizer modules,
|
||||
* in case we need to switch modes.
|
||||
*/
|
||||
struct jpeg_color_quantizer * quantizer_1pass;
|
||||
struct jpeg_color_quantizer * quantizer_2pass;
|
||||
} my_decomp_master;
|
||||
|
||||
typedef my_decomp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used.
|
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
use_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
/* Merging is the equivalent of plain box-filter upsampling */
|
||||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
|
||||
return FALSE;
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
/* jdmerge.c only supports YCC=>RGB565 and YCC=>RGB color conversion */
|
||||
if (cinfo->jpeg_color_space != JCS_YCbCr ||
|
||||
cinfo->num_components != 3 ||
|
||||
cinfo->out_color_components != 3 ||
|
||||
(cinfo->out_color_space != JCS_RGB_565 &&
|
||||
cinfo->out_color_space != JCS_RGB)) {
|
||||
return FALSE;
|
||||
}
|
||||
#else
|
||||
/* jdmerge.c only supports YCC=>RGB color conversion */
|
||||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
|
||||
cinfo->out_color_space != JCS_RGB ||
|
||||
cinfo->out_color_components != RGB_PIXELSIZE)
|
||||
return FALSE;
|
||||
#endif
|
||||
|
||||
/* and it only handles 2h1v or 2h2v sampling ratios */
|
||||
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
||||
cinfo->comp_info[1].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[0].v_samp_factor > 2 ||
|
||||
cinfo->comp_info[1].v_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].v_samp_factor != 1)
|
||||
return FALSE;
|
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
||||
if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
|
||||
cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
|
||||
cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
|
||||
return FALSE;
|
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
||||
return TRUE; /* by golly, it'll work... */
|
||||
#else
|
||||
return FALSE;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
* Also note that it may be called before the master module is initialized!
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
#endif
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
#if ANDROID_TILE_BASED_DECODE
|
||||
// Tile based decoding may call this function several times.
|
||||
if (!cinfo->tile_decode)
|
||||
#endif
|
||||
if (cinfo->global_state != DSTATE_READY)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */
|
||||
if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
|
||||
/* Provide 1/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 8L);
|
||||
cinfo->min_DCT_scaled_size = 1;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
|
||||
/* Provide 1/4 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 4L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 4L);
|
||||
cinfo->min_DCT_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
|
||||
/* Provide 1/2 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_scaled_size = 4;
|
||||
} else {
|
||||
/* Provide 1/1 scaling */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
cinfo->min_DCT_scaled_size = DCTSIZE;
|
||||
}
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling.
|
||||
* This saves time if the upsampler gets to use 1:1 scaling.
|
||||
* Note this code assumes that the supported DCT scalings are powers of 2.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
int ssize = cinfo->min_DCT_scaled_size;
|
||||
while (ssize < DCTSIZE &&
|
||||
(compptr->h_samp_factor * ssize * 2 <=
|
||||
cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
|
||||
(compptr->v_samp_factor * ssize * 2 <=
|
||||
cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
compptr->DCT_scaled_size = ssize;
|
||||
}
|
||||
|
||||
/* Recompute downsampled dimensions of components;
|
||||
* application needs to know these if using raw downsampled data.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Size in samples, after IDCT scaling */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width *
|
||||
(long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height *
|
||||
(long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
}
|
||||
|
||||
#else /* !IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
|
||||
* and has computed unscaled downsampled_width and downsampled_height.
|
||||
*/
|
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Report number of components in selected colorspace. */
|
||||
/* Probably this should be in the color conversion module... */
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
break;
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
#ifdef ANDROID_RGB
|
||||
case JCS_RGB_565:
|
||||
#endif
|
||||
case JCS_YCbCr:
|
||||
cinfo->out_color_components = 3;
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
#ifdef ANDROID_RGB
|
||||
case JCS_RGBA_8888:
|
||||
#endif
|
||||
cinfo->out_color_components = 4;
|
||||
break;
|
||||
default: /* else must be same colorspace as in file */
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
break;
|
||||
}
|
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
||||
cinfo->out_color_components);
|
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */
|
||||
if (use_merged_upsample(cinfo))
|
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
||||
else
|
||||
cinfo->rec_outbuf_height = 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Several decompression processes need to range-limit values to the range
|
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
||||
* due to noise introduced by quantization, roundoff error, etc. These
|
||||
* processes are inner loops and need to be as fast as possible. On most
|
||||
* machines, particularly CPUs with pipelines or instruction prefetch,
|
||||
* a (subscript-check-less) C table lookup
|
||||
* x = sample_range_limit[x];
|
||||
* is faster than explicit tests
|
||||
* if (x < 0) x = 0;
|
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
* These processes all use a common table prepared by the routine below.
|
||||
*
|
||||
* For most steps we can mathematically guarantee that the initial value
|
||||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
|
||||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
|
||||
* limiting step (just after the IDCT), a wildly out-of-range value is
|
||||
* possible if the input data is corrupt. To avoid any chance of indexing
|
||||
* off the end of memory and getting a bad-pointer trap, we perform the
|
||||
* post-IDCT limiting thus:
|
||||
* x = range_limit[x & MASK];
|
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
||||
* samples. Under normal circumstances this is more than enough range and
|
||||
* a correct output will be generated; with bogus input data the mask will
|
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
||||
* So the post-IDCT limiting table ends up looking like this:
|
||||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
|
||||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0,1,...,CENTERJSAMPLE-1
|
||||
* Negative inputs select values from the upper half of the table after
|
||||
* masking.
|
||||
*
|
||||
* We can save some space by overlapping the start of the post-IDCT table
|
||||
* with the simpler range limiting table. The post-IDCT table begins at
|
||||
* sample_range_limit + CENTERJSAMPLE.
|
||||
*
|
||||
* Note that the table is allocated in near data space on PCs; it's small
|
||||
* enough and used often enough to justify this.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
prepare_range_limit_table (j_decompress_ptr cinfo)
|
||||
/* Allocate and fill in the sample_range_limit table */
|
||||
{
|
||||
JSAMPLE * table;
|
||||
int i;
|
||||
|
||||
table = (JSAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
|
||||
cinfo->sample_range_limit = table;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJSAMPLE; i++)
|
||||
table[i] = (JSAMPLE) i;
|
||||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
|
||||
table[i] = MAXJSAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
MEMZERO(table + (2 * (MAXJSAMPLE+1)),
|
||||
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules.
|
||||
* This is done once at jpeg_start_decompress time. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
* We also initialize the decompressor input side to begin consuming data.
|
||||
*
|
||||
* Since jpeg_read_header has finished, we know what is in the SOF
|
||||
* and (first) SOS markers. We also have all the application parameter
|
||||
* settings.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
boolean use_c_buffer;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Initialize dimensions and other stuff */
|
||||
jpeg_calc_output_dimensions(cinfo);
|
||||
prepare_range_limit_table(cinfo);
|
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* Initialize my private state */
|
||||
master->pass_number = 0;
|
||||
master->using_merged_upsample = use_merged_upsample(cinfo);
|
||||
|
||||
/* Color quantizer selection */
|
||||
master->quantizer_1pass = NULL;
|
||||
master->quantizer_2pass = NULL;
|
||||
/* No mode changes if not using buffered-image mode. */
|
||||
if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
if (cinfo->quantize_colors) {
|
||||
if (cinfo->raw_data_out)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
/* 2-pass quantizer only works in 3-component color space. */
|
||||
if (cinfo->out_color_components != 3) {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
cinfo->colormap = NULL;
|
||||
} else if (cinfo->colormap != NULL) {
|
||||
cinfo->enable_external_quant = TRUE;
|
||||
} else if (cinfo->two_pass_quantize) {
|
||||
cinfo->enable_2pass_quant = TRUE;
|
||||
} else {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
}
|
||||
|
||||
if (cinfo->enable_1pass_quant) {
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
jinit_1pass_quantizer(cinfo);
|
||||
master->quantizer_1pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* We use the 2-pass code to map to external colormaps. */
|
||||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
jinit_2pass_quantizer(cinfo);
|
||||
master->quantizer_2pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||
* this is necessary for starting with quantization to an external map.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Post-processing: in particular, color conversion first */
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (master->using_merged_upsample) {
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
jinit_color_deconverter(cinfo);
|
||||
jinit_upsampler(cinfo);
|
||||
}
|
||||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||
}
|
||||
/* Inverse DCT */
|
||||
jinit_inverse_dct(cinfo);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Initialize principal buffer controllers. */
|
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
|
||||
jinit_d_coef_controller(cinfo, use_c_buffer);
|
||||
|
||||
if (! cinfo->raw_data_out)
|
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* If jpeg_start_decompress will read the whole file, initialize
|
||||
* progress monitoring appropriately. The input step is counted
|
||||
* as one pass.
|
||||
*/
|
||||
if (cinfo->progress != NULL && ! cinfo->buffered_image &&
|
||||
cinfo->inputctl->has_multiple_scans) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
|
||||
/* Count the input pass as done */
|
||||
master->pass_number++;
|
||||
}
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each output pass. We determine which
|
||||
* modules will be active during this pass and give them appropriate
|
||||
* start_pass calls. We also set is_dummy_pass to indicate whether this
|
||||
* is a "real" output pass or a dummy pass for color quantization.
|
||||
* (In the latter case, jdapistd.c will crank the pass to completion.)
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
if (master->pub.is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Final pass of 2-pass quantization */
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
|
||||
/* Select new quantization method */
|
||||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
master->pub.is_dummy_pass = TRUE;
|
||||
} else if (cinfo->enable_1pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_1pass;
|
||||
} else {
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
}
|
||||
(*cinfo->idct->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_output_pass) (cinfo);
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (! master->using_merged_upsample)
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->upsample->start_pass) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
|
||||
(*cinfo->post->start_pass) (cinfo,
|
||||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->pass_number +
|
||||
(master->pub.is_dummy_pass ? 2 : 1);
|
||||
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||
* yet reached, but no more passes if EOI has been reached.
|
||||
*/
|
||||
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
|
||||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of an output pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_new_colormap (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
|
||||
cinfo->colormap != NULL) {
|
||||
/* Select 2-pass quantizer for external colormap use */
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
/* Notify quantizer of colormap change */
|
||||
(*cinfo->cquantize->new_color_map) (cinfo);
|
||||
master->pub.is_dummy_pass = FALSE; /* just in case */
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control and select active modules.
|
||||
* This is performed at the start of jpeg_start_decompress.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_master_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master;
|
||||
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_decomp_master));
|
||||
cinfo->master = (struct jpeg_decomp_master *) master;
|
||||
master->pub.prepare_for_output_pass = prepare_for_output_pass;
|
||||
master->pub.finish_output_pass = finish_output_pass;
|
||||
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
|
||||
master_selection(cinfo);
|
||||
}
|
757
TMessagesProj/jni/libjpeg/jdmerge.c
Executable file
@ -0,0 +1,757 @@
|
||||
/*
|
||||
* jdmerge.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*
|
||||
* This file combines functions from jdsample.c and jdcolor.c;
|
||||
* read those files first to understand what's going on.
|
||||
*
|
||||
* When the chroma components are to be upsampled by simple replication
|
||||
* (ie, box filtering), we can save some work in color conversion by
|
||||
* calculating all the output pixels corresponding to a pair of chroma
|
||||
* samples at one time. In the conversion equations
|
||||
* R = Y + K1 * Cr
|
||||
* G = Y + K2 * Cb + K3 * Cr
|
||||
* B = Y + K4 * Cb
|
||||
* only the Y term varies among the group of pixels corresponding to a pair
|
||||
* of chroma samples, so the rest of the terms can be calculated just once.
|
||||
* At typical sampling ratios, this eliminates half or three-quarters of the
|
||||
* multiplications needed for color conversion.
|
||||
*
|
||||
* This file currently provides implementations for the following cases:
|
||||
* YCbCr => RGB color conversion only.
|
||||
* Sampling ratios of 2h1v or 2h2v.
|
||||
* No scaling needed at upsample time.
|
||||
* Corner-aligned (non-CCIR601) sampling alignment.
|
||||
* Other special cases could be added, but in most applications these are
|
||||
* the only common cases. (For uncommon cases we fall back on the more
|
||||
* general code in jdsample.c and jdcolor.c.)
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
*
|
||||
* We use 4x4 ordered dither array packed into 32 bits. This array is
|
||||
* sufficent for dithering RGB_888 to RGB_565.
|
||||
*/
|
||||
|
||||
#define DITHER_MASK 0x3
|
||||
#define DITHER_ROTATE(x) (((x)<<24) | (((x)>>8)&0x00FFFFFF))
|
||||
static const INT32 dither_matrix[4] = {
|
||||
0x0008020A,
|
||||
0x0C040E06,
|
||||
0x030B0109,
|
||||
0x0F070D05
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf));
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
* This is taken directly from jdcolor.c; see that file for more info.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int i;
|
||||
INT32 x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
upsample->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
upsample->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
upsample->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
upsample->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the spare buffer empty */
|
||||
upsample->spare_full = FALSE;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* The control routine just handles the row buffering considerations.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
merged_2v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 2:1 vertical sampling case: may need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPROW work_ptrs[2];
|
||||
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||
|
||||
if (upsample->spare_full) {
|
||||
/* If we have a spare row saved from a previous cycle, just return it. */
|
||||
JDIMENSION size = upsample->out_row_width;
|
||||
#ifdef ANDROID_RGB
|
||||
if (cinfo->out_color_space == JCS_RGB_565)
|
||||
size = cinfo->output_width*2;
|
||||
#endif
|
||||
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
|
||||
1, size);
|
||||
|
||||
num_rows = 1;
|
||||
upsample->spare_full = FALSE;
|
||||
} else {
|
||||
/* Figure number of rows to return to caller. */
|
||||
num_rows = 2;
|
||||
/* Not more than the distance to the end of the image. */
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
/* Create output pointer array for upsampler. */
|
||||
work_ptrs[0] = output_buf[*out_row_ctr];
|
||||
if (num_rows > 1) {
|
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1];
|
||||
} else {
|
||||
work_ptrs[1] = upsample->spare_row;
|
||||
upsample->spare_full = TRUE;
|
||||
}
|
||||
/* Now do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
|
||||
}
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (! upsample->spare_full)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
merged_1v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Just do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||
output_buf + *out_row_ctr);
|
||||
/* Adjust counts */
|
||||
(*out_row_ctr)++;
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do
|
||||
* the actual upsampling/conversion. One row group is processed per call.
|
||||
*
|
||||
* Note: since we may be writing directly into application-supplied buffers,
|
||||
* we have to be honest about the output width; we can't assume the buffer
|
||||
* has been rounded up to an even width.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample_565 (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
unsigned int r, g, b;
|
||||
INT32 rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample_565D (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
JDIMENSION col_index = 0;
|
||||
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
unsigned int r, g, b;
|
||||
INT32 rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_PIXELS(outptr, rgb);
|
||||
outptr += 4;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr = rgb;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr00);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
y = GETJSAMPLE(*inptr01);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample_565 (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
unsigned int r, g, b;
|
||||
INT32 rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_PIXELS(outptr0, rgb);
|
||||
outptr0 += 4;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_PIXELS(outptr1, rgb);
|
||||
outptr1 += 4;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr00);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr0 = rgb;
|
||||
y = GETJSAMPLE(*inptr01);
|
||||
r = range_limit[y + cred];
|
||||
g = range_limit[y + cgreen];
|
||||
b = range_limit[y + cblue];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr1 = rgb;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample_565D (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
JDIMENSION col_index = 0;
|
||||
INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK];
|
||||
INT32 d1 = dither_matrix[(cinfo->output_scanline+1) & DITHER_MASK];
|
||||
unsigned int r, g, b;
|
||||
INT32 rgb;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
r = range_limit[DITHER_565_R(y + cred, d1)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d1)];
|
||||
d1 = DITHER_ROTATE(d1);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_PIXELS(outptr0, rgb);
|
||||
outptr0 += 4;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
d0 = DITHER_ROTATE(d0);
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
r = range_limit[DITHER_565_R(y + cred, d1)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d1)];
|
||||
d1 = DITHER_ROTATE(d1);
|
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r,g,b));
|
||||
WRITE_TWO_PIXELS(outptr1, rgb);
|
||||
outptr1 += 4;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr00);
|
||||
r = range_limit[DITHER_565_R(y + cred, d0)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d0)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr0 = rgb;
|
||||
y = GETJSAMPLE(*inptr01);
|
||||
r = range_limit[DITHER_565_R(y + cred, d1)];
|
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)];
|
||||
b = range_limit[DITHER_565_B(y + cblue, d1)];
|
||||
rgb = PACK_SHORT_565(r,g,b);
|
||||
*(INT16*)outptr1 = rgb;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion.
|
||||
*
|
||||
* NB: this is called under the conditions determined by use_merged_upsample()
|
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities
|
||||
* of this module; no safety checks are made here.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_merged_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||
upsample->pub.need_context_rows = FALSE;
|
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
|
||||
|
||||
if (cinfo->max_v_samp_factor == 2) {
|
||||
upsample->pub.upsample = merged_2v_upsample;
|
||||
upsample->upmethod = h2v2_merged_upsample;
|
||||
#ifdef ANDROID_RGB
|
||||
if (cinfo->out_color_space == JCS_RGB_565) {
|
||||
if (cinfo->dither_mode == JDITHER_NONE) {
|
||||
upsample->upmethod = h2v2_merged_upsample_565;
|
||||
} else {
|
||||
upsample->upmethod = h2v2_merged_upsample_565D;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
/* Allocate a spare row buffer */
|
||||
upsample->spare_row = (JSAMPROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
|
||||
} else {
|
||||
upsample->pub.upsample = merged_1v_upsample;
|
||||
upsample->upmethod = h2v1_merged_upsample;
|
||||
#ifdef ANDROID_RGB
|
||||
if (cinfo->out_color_space == JCS_RGB_565) {
|
||||
if (cinfo->dither_mode == JDITHER_NONE) {
|
||||
upsample->upmethod = h2v1_merged_upsample_565;
|
||||
} else {
|
||||
upsample->upmethod = h2v1_merged_upsample_565D;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
/* No spare row needed */
|
||||
upsample->spare_row = NULL;
|
||||
}
|
||||
|
||||
build_ycc_rgb_table(cinfo);
|
||||
}
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
770
TMessagesProj/jni/libjpeg/jdphuff.c
Executable file
@ -0,0 +1,770 @@
|
||||
/*
|
||||
* jdphuff.c
|
||||
*
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains Huffman entropy decoding routines for progressive JPEG.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting input suspension.
|
||||
* If the data source module demands suspension, we want to be able to back
|
||||
* up to the start of the current MCU. To do this, we copy state variables
|
||||
* into local working storage, and update them back to the permanent
|
||||
* storage only upon successful completion of an MCU.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdhuff.h" /* Declarations shared with jdhuff.c */
|
||||
|
||||
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for progressive Huffman decoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have
|
||||
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
||||
*/
|
||||
|
||||
#ifndef NO_STRUCT_ASSIGN
|
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
||||
#else
|
||||
#if MAX_COMPS_IN_SCAN == 4
|
||||
#define ASSIGN_STATE(dest,src) \
|
||||
((dest).EOBRUN = (src).EOBRUN, \
|
||||
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them.
|
||||
*/
|
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
||||
savable_state saved; /* Other state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
|
||||
} phuff_entropy_decoder;
|
||||
|
||||
typedef phuff_entropy_decoder * phuff_entropy_ptr;
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_phuff_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
boolean is_DC_band, bad;
|
||||
int ci, coefi, tbl;
|
||||
int *coef_bit_ptr;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
is_DC_band = (cinfo->Ss == 0);
|
||||
|
||||
/* Validate scan parameters */
|
||||
bad = FALSE;
|
||||
if (is_DC_band) {
|
||||
if (cinfo->Se != 0)
|
||||
bad = TRUE;
|
||||
} else {
|
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
|
||||
bad = TRUE;
|
||||
/* AC scans may have only one component */
|
||||
if (cinfo->comps_in_scan != 1)
|
||||
bad = TRUE;
|
||||
}
|
||||
if (cinfo->Ah != 0) {
|
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||
if (cinfo->Al != cinfo->Ah-1)
|
||||
bad = TRUE;
|
||||
}
|
||||
if (cinfo->Al > 13) /* need not check for < 0 */
|
||||
bad = TRUE;
|
||||
/* Arguably the maximum Al value should be less than 13 for 8-bit precision,
|
||||
* but the spec doesn't say so, and we try to be liberal about what we
|
||||
* accept. Note: large Al values could result in out-of-range DC
|
||||
* coefficients during early scans, leading to bizarre displays due to
|
||||
* overflows in the IDCT math. But we won't crash.
|
||||
*/
|
||||
if (bad)
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings
|
||||
* not fatal errors ... not clear if this is right way to behave.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
int cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||
coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
||||
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||
if (cinfo->Ah != expected)
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||
coef_bit_ptr[coefi] = cinfo->Al;
|
||||
}
|
||||
}
|
||||
|
||||
/* Select MCU decoding routine */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (is_DC_band)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||
} else {
|
||||
if (is_DC_band)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||
}
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Make sure requested tables are present, and compute derived tables.
|
||||
* We may build same derived table more than once, but it's not expensive.
|
||||
*/
|
||||
if (is_DC_band) {
|
||||
if (cinfo->Ah == 0) { /* DC refinement needs no table */
|
||||
tbl = compptr->dc_tbl_no;
|
||||
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
|
||||
& entropy->derived_tbls[tbl]);
|
||||
}
|
||||
} else {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
|
||||
& entropy->derived_tbls[tbl]);
|
||||
/* remember the single active table */
|
||||
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
|
||||
}
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
}
|
||||
|
||||
/* Initialize bitread state variables */
|
||||
entropy->bitstate.bits_left = 0;
|
||||
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
/* Initialize private state variables */
|
||||
entropy->saved.EOBRUN = 0;
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Figure F.12: extend sign bit.
|
||||
* On some machines, a shift and add will be faster than a table lookup.
|
||||
*/
|
||||
|
||||
#ifdef AVOID_TABLES
|
||||
|
||||
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
|
||||
|
||||
#else
|
||||
|
||||
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
||||
|
||||
static const int extend_test[16] = /* entry n is 2**(n-1) */
|
||||
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
|
||||
|
||||
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
|
||||
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
|
||||
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
|
||||
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
|
||||
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
|
||||
|
||||
#endif /* AVOID_TABLES */
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
* Returns FALSE if must suspend.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
process_restart (j_decompress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
|
||||
/* Throw away any unused bits remaining in bit buffer; */
|
||||
/* include any full bytes in next_marker's count of discarded bytes */
|
||||
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
||||
entropy->bitstate.bits_left = 0;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||
return FALSE;
|
||||
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
/* Re-init EOB run count, too */
|
||||
entropy->saved.EOBRUN = 0;
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
|
||||
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
||||
* against a marker. In that case we will end up treating the next data
|
||||
* segment as empty, and we can avoid producing bogus output pixels by
|
||||
* leaving the flag set.
|
||||
*/
|
||||
if (cinfo->unread_marker == 0)
|
||||
entropy->pub.insufficient_data = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman MCU decoding.
|
||||
* Each of these routines decodes and returns one MCU's worth of
|
||||
* Huffman-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||
*
|
||||
* We return FALSE if data source requested suspension. In that case no
|
||||
* changes have been made to permanent state. (Exception: some output
|
||||
* coefficients may already have been assigned. This is harmless for
|
||||
* spectral selection, since we'll just re-assign them on the next call.
|
||||
* Successive approximation AC refinement has to be more careful, however.)
|
||||
*/
|
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
int Al = cinfo->Al;
|
||||
register int s, r;
|
||||
int blkn, ci;
|
||||
JBLOCKROW block;
|
||||
BITREAD_STATE_VARS;
|
||||
savable_state state;
|
||||
d_derived_tbl * tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment.
|
||||
*/
|
||||
if (! entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
||||
ASSIGN_STATE(state, entropy->saved);
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
|
||||
if (s) {
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
}
|
||||
|
||||
/* Convert DC difference to actual value, update last_dc_val */
|
||||
s += state.last_dc_val[ci];
|
||||
state.last_dc_val[ci] = s;
|
||||
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
|
||||
(*block)[0] = (JCOEF) (s << Al);
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
||||
ASSIGN_STATE(entropy->saved, state);
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
int Se = cinfo->Se;
|
||||
int Al = cinfo->Al;
|
||||
register int s, k, r;
|
||||
unsigned int EOBRUN;
|
||||
JBLOCKROW block;
|
||||
BITREAD_STATE_VARS;
|
||||
d_derived_tbl * tbl;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment.
|
||||
*/
|
||||
if (! entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state.
|
||||
* We can avoid loading/saving bitread state if in an EOB run.
|
||||
*/
|
||||
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
|
||||
if (EOBRUN > 0) /* if it's a band of zeroes... */
|
||||
EOBRUN--; /* ...process it now (we do nothing) */
|
||||
else {
|
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
||||
block = MCU_data[0];
|
||||
tbl = entropy->ac_derived_tbl;
|
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) {
|
||||
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
if (s) {
|
||||
k += r;
|
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
||||
r = GET_BITS(s);
|
||||
s = HUFF_EXTEND(r, s);
|
||||
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
|
||||
} else {
|
||||
if (r == 15) { /* ZRL */
|
||||
k += 15; /* skip 15 zeroes in band */
|
||||
} else { /* EOBr, run length is 2^r + appended bits */
|
||||
EOBRUN = 1 << r;
|
||||
if (r) { /* EOBr, r > 0 */
|
||||
CHECK_BIT_BUFFER(br_state, r, return FALSE);
|
||||
r = GET_BITS(r);
|
||||
EOBRUN += r;
|
||||
}
|
||||
EOBRUN--; /* this band is processed at this moment */
|
||||
break; /* force end-of-band */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan.
|
||||
* Note: we assume such scans can be multi-component, although the spec
|
||||
* is not very clear on the point.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
int blkn;
|
||||
JBLOCKROW block;
|
||||
BITREAD_STATE_VARS;
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Not worth the cycles to check insufficient_data here,
|
||||
* since we will not change the data anyway if we read zeroes.
|
||||
*/
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
|
||||
if (GET_BITS(1))
|
||||
(*block)[0] |= p1;
|
||||
/* Note: since we use |=, repeating the assignment later is safe */
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
int Se = cinfo->Se;
|
||||
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
||||
register int s, k, r;
|
||||
unsigned int EOBRUN;
|
||||
JBLOCKROW block;
|
||||
JCOEFPTR thiscoef;
|
||||
BITREAD_STATE_VARS;
|
||||
d_derived_tbl * tbl;
|
||||
int num_newnz;
|
||||
int newnz_pos[DCTSIZE2];
|
||||
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* If we've run out of data, don't modify the MCU.
|
||||
*/
|
||||
if (! entropy->pub.insufficient_data) {
|
||||
|
||||
/* Load up working state */
|
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
||||
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = entropy->ac_derived_tbl;
|
||||
|
||||
/* If we are forced to suspend, we must undo the assignments to any newly
|
||||
* nonzero coefficients in the block, because otherwise we'd get confused
|
||||
* next time about which coefficients were already nonzero.
|
||||
* But we need not undo addition of bits to already-nonzero coefficients;
|
||||
* instead, we can test the current bit to see if we already did it.
|
||||
*/
|
||||
num_newnz = 0;
|
||||
|
||||
/* initialize coefficient loop counter to start of band */
|
||||
k = cinfo->Ss;
|
||||
|
||||
if (EOBRUN == 0) {
|
||||
for (; k <= Se; k++) {
|
||||
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
if (s) {
|
||||
if (s != 1) /* size of new coef should always be 1 */
|
||||
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
|
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
||||
if (GET_BITS(1))
|
||||
s = p1; /* newly nonzero coef is positive */
|
||||
else
|
||||
s = m1; /* newly nonzero coef is negative */
|
||||
} else {
|
||||
if (r != 15) {
|
||||
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
|
||||
if (r) {
|
||||
CHECK_BIT_BUFFER(br_state, r, goto undoit);
|
||||
r = GET_BITS(r);
|
||||
EOBRUN += r;
|
||||
}
|
||||
break; /* rest of block is handled by EOB logic */
|
||||
}
|
||||
/* note s = 0 for processing ZRL */
|
||||
}
|
||||
/* Advance over already-nonzero coefs and r still-zero coefs,
|
||||
* appending correction bits to the nonzeroes. A correction bit is 1
|
||||
* if the absolute value of the coefficient must be increased.
|
||||
*/
|
||||
do {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef != 0) {
|
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
||||
if (GET_BITS(1)) {
|
||||
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
|
||||
if (*thiscoef >= 0)
|
||||
*thiscoef += p1;
|
||||
else
|
||||
*thiscoef += m1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (--r < 0)
|
||||
break; /* reached target zero coefficient */
|
||||
}
|
||||
k++;
|
||||
} while (k <= Se);
|
||||
if (s) {
|
||||
int pos = jpeg_natural_order[k];
|
||||
/* Output newly nonzero coefficient */
|
||||
(*block)[pos] = (JCOEF) s;
|
||||
/* Remember its position in case we have to suspend */
|
||||
newnz_pos[num_newnz++] = pos;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (EOBRUN > 0) {
|
||||
/* Scan any remaining coefficient positions after the end-of-band
|
||||
* (the last newly nonzero coefficient, if any). Append a correction
|
||||
* bit to each already-nonzero coefficient. A correction bit is 1
|
||||
* if the absolute value of the coefficient must be increased.
|
||||
*/
|
||||
for (; k <= Se; k++) {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef != 0) {
|
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
||||
if (GET_BITS(1)) {
|
||||
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
|
||||
if (*thiscoef >= 0)
|
||||
*thiscoef += p1;
|
||||
else
|
||||
*thiscoef += m1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Count one block completed in EOB run */
|
||||
EOBRUN--;
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
||||
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
||||
}
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
|
||||
undoit:
|
||||
/* Re-zero any output coefficients that we made newly nonzero */
|
||||
while (num_newnz > 0)
|
||||
(*block)[newnz_pos[--num_newnz]] = 0;
|
||||
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Save the current Huffman decoder position and the bit buffer
|
||||
* into bitstream_offset and get_buffer, respectively.
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,
|
||||
huffman_offset_data *offset)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
|
||||
if (cinfo->restart_interval) {
|
||||
// We are at the end of a data segment
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return;
|
||||
}
|
||||
|
||||
// Save restarts_to_go and next_restart_num.
|
||||
offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
|
||||
offset->next_restart_num = cinfo->marker->next_restart_num;
|
||||
|
||||
offset->bitstream_offset =
|
||||
(jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
|
||||
+ entropy->bitstate.bits_left;
|
||||
|
||||
offset->get_buffer = entropy->bitstate.get_buffer;
|
||||
}
|
||||
|
||||
/*
|
||||
* Save the current Huffman deocde position and the DC coefficients
|
||||
* for each component into bitstream_offset and dc_info[], respectively.
|
||||
*/
|
||||
METHODDEF(void)
|
||||
get_huffman_decoder_configuration(j_decompress_ptr cinfo,
|
||||
huffman_offset_data *offset)
|
||||
{
|
||||
int i;
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
jpeg_get_huffman_decoder_configuration_progressive(cinfo, offset);
|
||||
offset->EOBRUN = entropy->saved.EOBRUN;
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++)
|
||||
offset->prev_dc[i] = entropy->saved.last_dc_val[i];
|
||||
}
|
||||
|
||||
/*
|
||||
* Configure the Huffman decoder reader position and bit buffer.
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,
|
||||
huffman_offset_data offset)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
|
||||
// Restore restarts_to_go and next_restart_num
|
||||
cinfo->unread_marker = 0;
|
||||
entropy->restarts_to_go = offset.restarts_to_go;
|
||||
cinfo->marker->next_restart_num = offset.next_restart_num;
|
||||
|
||||
unsigned int bitstream_offset = offset.bitstream_offset;
|
||||
int blkn, i;
|
||||
|
||||
unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
|
||||
unsigned int bit_in_bit_buffer =
|
||||
bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
|
||||
|
||||
jset_input_stream_position_bit(cinfo, byte_offset,
|
||||
bit_in_bit_buffer, offset.get_buffer);
|
||||
}
|
||||
|
||||
/*
|
||||
* Configure the Huffman decoder to decode the image
|
||||
* starting from (iMCU_row_offset, iMCU_col_offset).
|
||||
*/
|
||||
METHODDEF(void)
|
||||
configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
|
||||
{
|
||||
int i;
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
jpeg_configure_huffman_decoder_progressive(cinfo, offset);
|
||||
entropy->saved.EOBRUN = offset.EOBRUN;
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++)
|
||||
entropy->saved.last_dc_val[i] = offset.prev_dc[i];
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,
|
||||
huffman_index *index, int scan_no, int offset)
|
||||
{
|
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
||||
if (scan_no >= index->scan_count) {
|
||||
index->scan = realloc(index->scan,
|
||||
(scan_no + 1) * sizeof(huffman_scan_header));
|
||||
index->mem_used += (scan_no - index->scan_count + 1)
|
||||
* (sizeof(huffman_scan_header) + cinfo->total_iMCU_rows
|
||||
* sizeof(huffman_offset_data*));
|
||||
index->scan_count = scan_no + 1;
|
||||
}
|
||||
index->scan[scan_no].offset = (huffman_offset_data**)malloc(
|
||||
cinfo->total_iMCU_rows * sizeof(huffman_offset_data*));
|
||||
index->scan[scan_no].bitstream_offset = offset;
|
||||
}
|
||||
|
||||
/*
|
||||
* Module initialization routine for progressive Huffman entropy decoding.
|
||||
*/
|
||||
GLOBAL(void)
|
||||
jinit_phuff_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
phuff_entropy_ptr entropy;
|
||||
int *coef_bit_ptr;
|
||||
int ci, i;
|
||||
|
||||
entropy = (phuff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(phuff_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass_phuff_decoder;
|
||||
entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
|
||||
entropy->pub.get_huffman_decoder_configuration =
|
||||
get_huffman_decoder_configuration;
|
||||
|
||||
/* Mark derived tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->derived_tbls[i] = NULL;
|
||||
}
|
||||
|
||||
/* Create progression status table */
|
||||
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
||||
coef_bit_ptr = & cinfo->coef_bits[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++)
|
||||
*coef_bit_ptr++ = -1;
|
||||
}
|
||||
|
||||
#endif /* D_PROGRESSIVE_SUPPORTED */
|
290
TMessagesProj/jni/libjpeg/jdpostct.c
Executable file
@ -0,0 +1,290 @@
|
||||
/*
|
||||
* jdpostct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the decompression postprocessing controller.
|
||||
* This controller manages the upsampling, color conversion, and color
|
||||
* quantization/reduction steps; specifically, it controls the buffering
|
||||
* between upsample/color conversion and color quantization/reduction.
|
||||
*
|
||||
* If no color quantization/reduction is required, then this module has no
|
||||
* work to do, and it just hands off to the upsample/color conversion code.
|
||||
* An integrated upsample/convert/quantize process would replace this module
|
||||
* entirely.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_post_controller pub; /* public fields */
|
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer.
|
||||
* For two-pass color quantization, we need a full-image buffer;
|
||||
* for one-pass operation, a strip buffer is sufficient.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
|
||||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
|
||||
JDIMENSION strip_height; /* buffer size in rows */
|
||||
/* for two-pass mode only: */
|
||||
JDIMENSION starting_row; /* row # of first row in current strip */
|
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */
|
||||
} my_post_controller;
|
||||
|
||||
typedef my_post_controller * my_post_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) post_process_1pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) post_process_prepass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
METHODDEF(void) post_process_2pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->quantize_colors) {
|
||||
/* Single-pass processing with color quantization. */
|
||||
post->pub.post_process_data = post_process_1pass;
|
||||
/* We could be doing buffered-image output before starting a 2-pass
|
||||
* color quantization; in that case, jinit_d_post_controller did not
|
||||
* allocate a strip buffer. Use the virtual-array buffer as workspace.
|
||||
*/
|
||||
if (post->buffer == NULL) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
(JDIMENSION) 0, post->strip_height, TRUE);
|
||||
}
|
||||
} else {
|
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly.
|
||||
*/
|
||||
post->pub.post_process_data = cinfo->upsample->upsample;
|
||||
}
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
/* First pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_prepass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
/* Second pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_2pass;
|
||||
break;
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
post->starting_row = post->next_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case.
|
||||
* This is used for color precision reduction as well as one-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_1pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */
|
||||
/* Note we rely on the upsampler to detect bottom of image. */
|
||||
max_rows = out_rows_avail - *out_row_ctr;
|
||||
if (max_rows > post->strip_height)
|
||||
max_rows = post->strip_height;
|
||||
num_rows = 0;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &num_rows, max_rows);
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_prepass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION old_next_row, num_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, TRUE);
|
||||
}
|
||||
|
||||
/* Upsample some data (up to a strip height's worth). */
|
||||
old_next_row = post->next_row;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &post->next_row, post->strip_height);
|
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */
|
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */
|
||||
if (post->next_row > old_next_row) {
|
||||
num_rows = post->next_row - old_next_row;
|
||||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
|
||||
(JSAMPARRAY) NULL, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_2pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, FALSE);
|
||||
}
|
||||
|
||||
/* Determine number of rows to emit. */
|
||||
num_rows = post->strip_height - post->next_row; /* available in strip */
|
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
/* We have to check bottom of image here, can't depend on upsampler. */
|
||||
max_rows = cinfo->output_height - post->starting_row;
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer + post->next_row, output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
post->next_row += num_rows;
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_post_ptr post;
|
||||
|
||||
post = (my_post_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_post_controller));
|
||||
cinfo->post = (struct jpeg_d_post_controller *) post;
|
||||
post->pub.start_pass = start_pass_dpost;
|
||||
post->whole_image = NULL; /* flag for no virtual arrays */
|
||||
post->buffer = NULL; /* flag for no strip buffer */
|
||||
|
||||
/* Create the quantization buffer, if needed */
|
||||
if (cinfo->quantize_colors) {
|
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return.
|
||||
* (In the presence of output rescaling, we might want to be smarter?)
|
||||
*/
|
||||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
|
||||
if (need_full_buffer) {
|
||||
/* Two-pass color quantization: need full-image storage. */
|
||||
/* We round up the number of rows to a multiple of the strip height. */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
post->whole_image = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_height,
|
||||
(long) post->strip_height),
|
||||
post->strip_height);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
/* One-pass color quantization: just make a strip buffer. */
|
||||
post->buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
post->strip_height);
|
||||
}
|
||||
}
|
||||
}
|
478
TMessagesProj/jni/libjpeg/jdsample.c
Executable file
@ -0,0 +1,478 @@
|
||||
/*
|
||||
* jdsample.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains upsampling routines.
|
||||
*
|
||||
* Upsampling input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. Upsampling will normally produce
|
||||
* max_v_samp_factor pixel rows from each row group (but this could vary
|
||||
* if the upsampler is applying a scale factor of its own).
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */
|
||||
typedef JMETHOD(void, upsample1_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it
|
||||
* has been color converted and output.
|
||||
* Note: we do not allocate any storage for component(s) which are full-size,
|
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
||||
* simply set to point to the input data array, thereby avoiding copying.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
/* Per-component upsampling method pointers */
|
||||
upsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
|
||||
/* Height of an input row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the conversion buffer empty */
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* In this version we upsample each component independently.
|
||||
* We upsample one row group into the conversion buffer, then apply
|
||||
* color conversion a row at a time.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JDIMENSION num_rows;
|
||||
|
||||
/* Fill the conversion buffer, if it's empty */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it.
|
||||
*/
|
||||
(*upsample->methods[ci]) (cinfo, compptr,
|
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
||||
upsample->color_buf + ci);
|
||||
}
|
||||
upsample->next_row_out = 0;
|
||||
}
|
||||
|
||||
/* Color-convert and emit rows */
|
||||
|
||||
/* How many we have in the buffer: */
|
||||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
|
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor:
|
||||
*/
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
|
||||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
||||
(JDIMENSION) upsample->next_row_out,
|
||||
output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
upsample->next_row_out += num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values
|
||||
* of a single component. One row group is processed per call.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the
|
||||
* input buffer, and thus avoid copying any data. Note that this is
|
||||
* safe only because sep_upsample doesn't declare the input row group
|
||||
* "consumed" until we are done color converting and emitting it.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = input_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is a no-op version used for "uninteresting" components.
|
||||
* These components will not be referenced by color conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = NULL; /* safety check */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This version handles any integral sampling ratios.
|
||||
* This is not used for typical JPEG files, so it need not be fast.
|
||||
* Nor, for that matter, is it particularly accurate: the algorithm is
|
||||
* simple replication of the input pixel onto the corresponding output
|
||||
* pixels. The hi-falutin sampling literature refers to this as a
|
||||
* "box filter". A box filter tends to introduce visible artifacts,
|
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
||||
* you would be well advised to improve this code.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
register int h;
|
||||
JSAMPROW outend;
|
||||
int h_expand, v_expand;
|
||||
int inrow, outrow;
|
||||
|
||||
h_expand = upsample->h_expand[compptr->component_index];
|
||||
v_expand = upsample->v_expand[compptr->component_index];
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
/* Generate one output row with proper horizontal expansion */
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
for (h = h_expand; h > 0; h--) {
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
/* Generate any additional output rows by duplicating the first one */
|
||||
if (v_expand > 1) {
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
v_expand-1, cinfo->output_width);
|
||||
}
|
||||
inrow++;
|
||||
outrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int inrow;
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[inrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int inrow, outrow;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
1, cinfo->output_width);
|
||||
inrow++;
|
||||
outrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
*
|
||||
* The upsampling algorithm is linear interpolation between pixel centers,
|
||||
* also known as a "triangle filter". This is a good compromise between
|
||||
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
|
||||
* of the way between input pixel centers.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register int invalue;
|
||||
register JDIMENSION colctr;
|
||||
int inrow;
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[inrow];
|
||||
/* Special case for first column */
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = (JSAMPLE) invalue;
|
||||
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
|
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
|
||||
invalue = GETJSAMPLE(*inptr++) * 3;
|
||||
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
|
||||
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
invalue = GETJSAMPLE(*inptr);
|
||||
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
|
||||
*outptr++ = (JSAMPLE) invalue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* Again a triangle filter; see comments for h2v1 case, above.
|
||||
*
|
||||
* It is OK for us to reference the adjacent input rows because we demanded
|
||||
* context from the main buffer controller (see initialization code).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr0, inptr1, outptr;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
register int thiscolsum, lastcolsum, nextcolsum;
|
||||
#else
|
||||
register INT32 thiscolsum, lastcolsum, nextcolsum;
|
||||
#endif
|
||||
register JDIMENSION colctr;
|
||||
int inrow, outrow, v;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
for (v = 0; v < 2; v++) {
|
||||
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
||||
inptr0 = input_data[inrow];
|
||||
if (v == 0) /* next nearest is row above */
|
||||
inptr1 = input_data[inrow-1];
|
||||
else /* next nearest is row below */
|
||||
inptr1 = input_data[inrow+1];
|
||||
outptr = output_data[outrow++];
|
||||
|
||||
/* Special case for first column */
|
||||
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
||||
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
|
||||
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
|
||||
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
|
||||
}
|
||||
inrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for upsampling.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean need_buffer, do_fancy;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_upsample;
|
||||
upsample->pub.upsample = sep_upsample;
|
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
||||
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
|
||||
* so don't ask for it.
|
||||
*/
|
||||
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
|
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size;
|
||||
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size;
|
||||
h_out_group = cinfo->max_h_samp_factor;
|
||||
v_out_group = cinfo->max_v_samp_factor;
|
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
||||
need_buffer = TRUE;
|
||||
if (! compptr->component_needed) {
|
||||
/* Don't bother to upsample an uninteresting component. */
|
||||
upsample->methods[ci] = noop_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
/* Fullsize components can be processed without any work. */
|
||||
upsample->methods[ci] = fullsize_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group == v_out_group) {
|
||||
/* Special cases for 2h1v upsampling */
|
||||
if (do_fancy && compptr->downsampled_width > 2)
|
||||
upsample->methods[ci] = h2v1_fancy_upsample;
|
||||
else
|
||||
upsample->methods[ci] = h2v1_upsample;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group * 2 == v_out_group) {
|
||||
/* Special cases for 2h2v upsampling */
|
||||
if (do_fancy && compptr->downsampled_width > 2) {
|
||||
upsample->methods[ci] = h2v2_fancy_upsample;
|
||||
upsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
upsample->methods[ci] = h2v2_upsample;
|
||||
} else if ((h_out_group % h_in_group) == 0 &&
|
||||
(v_out_group % v_in_group) == 0) {
|
||||
/* Generic integral-factors upsampling method */
|
||||
upsample->methods[ci] = int_upsample;
|
||||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
|
||||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
if (need_buffer) {
|
||||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_width,
|
||||
(long) cinfo->max_h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
270
TMessagesProj/jni/libjpeg/jdtrans.c
Executable file
@ -0,0 +1,270 @@
|
||||
/*
|
||||
* jdtrans.c
|
||||
*
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains library routines for transcoding decompression,
|
||||
* that is, reading raw DCT coefficient arrays from an input JPEG file.
|
||||
* The routines in jdapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Read the coefficient arrays from a JPEG file.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* The entire image is read into a set of virtual coefficient-block arrays,
|
||||
* one per component. The return value is a pointer to the array of
|
||||
* virtual-array descriptors. These can be manipulated directly via the
|
||||
* JPEG memory manager, or handed off to jpeg_write_coefficients().
|
||||
* To release the memory occupied by the virtual arrays, call
|
||||
* jpeg_finish_decompress() when done with the data.
|
||||
*
|
||||
* An alternative usage is to simply obtain access to the coefficient arrays
|
||||
* during a buffered-image-mode decompression operation. This is allowed
|
||||
* after any jpeg_finish_output() call. The arrays can be accessed until
|
||||
* jpeg_finish_decompress() is called. (Note that any call to the library
|
||||
* may reposition the arrays, so don't rely on access_virt_barray() results
|
||||
* to stay valid across library calls.)
|
||||
*
|
||||
* Returns NULL if suspended. This case need be checked only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(jvirt_barray_ptr *)
|
||||
jpeg_read_coefficients (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize active modules */
|
||||
transdecode_master_selection(cinfo);
|
||||
cinfo->global_state = DSTATE_RDCOEFS;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||
/* Absorb whole file into the coef buffer */
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return NULL;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* startup underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Set state so that jpeg_finish_decompress does the right thing */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
}
|
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||
* to the coefficients during a full buffered-image-mode decompression.
|
||||
*/
|
||||
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||
return cinfo->coef->coef_arrays;
|
||||
}
|
||||
/* Oops, improper usage */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return NULL; /* keep compiler happy */
|
||||
}
|
||||
|
||||
LOCAL(boolean)
|
||||
jpeg_build_huffman_index_progressive(j_decompress_ptr cinfo,
|
||||
huffman_index *index)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
printf("Progressive Mode\n");
|
||||
/* First call: initialize active modules */
|
||||
transdecode_master_selection(cinfo);
|
||||
cinfo->global_state = DSTATE_RDCOEFS;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||
int mcu, i;
|
||||
cinfo->marker->get_sos_marker_position(cinfo, index);
|
||||
|
||||
/* Absorb whole file into the coef buffer */
|
||||
for (mcu = 0; mcu < cinfo->total_iMCU_rows; mcu++) {
|
||||
int retcode = 0;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
jinit_phuff_decoder(cinfo);
|
||||
for (i = 0; i < index->scan_count; i++) {
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
jset_input_stream_position(cinfo, index->scan[i].bitstream_offset);
|
||||
cinfo->unread_marker = 0;
|
||||
retcode = (*cinfo->inputctl->consume_input_build_huffman_index)
|
||||
(cinfo, index, i);
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
cinfo->input_iMCU_row = mcu;
|
||||
if (mcu != 0)
|
||||
(*cinfo->entropy->configure_huffman_decoder)
|
||||
(cinfo, index->scan[i].prev_MCU_offset);
|
||||
cinfo->input_scan_number = i;
|
||||
retcode = (*cinfo->inputctl->consume_input_build_huffman_index)
|
||||
(cinfo, index, i);
|
||||
}
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return FALSE;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* startup underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
}
|
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||
* to the coefficients during a full buffered-image-mode decompression.
|
||||
*/
|
||||
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||
return TRUE;
|
||||
}
|
||||
/* Oops, improper usage */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return FALSE; /* keep compiler happy */
|
||||
}
|
||||
|
||||
LOCAL(boolean)
|
||||
jpeg_build_huffman_index_baseline(j_decompress_ptr cinfo, huffman_index *index)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
printf("Baseline Mode\n");
|
||||
/* First call: initialize active modules */
|
||||
transdecode_master_selection(cinfo);
|
||||
cinfo->global_state = DSTATE_RDCOEFS;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||
/* Absorb whole file into the coef buffer */
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input_build_huffman_index)
|
||||
(cinfo, index, 0);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return FALSE;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
if (retcode == JPEG_SCAN_COMPLETED)
|
||||
break;
|
||||
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* startup underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Set state so that jpeg_finish_decompress does the right thing */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
}
|
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||
* to the coefficients during a full buffered-image-mode decompression.
|
||||
*/
|
||||
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||
return TRUE;
|
||||
}
|
||||
/* Oops, improper usage */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return FALSE; /* keep compiler happy */
|
||||
}
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_build_huffman_index(j_decompress_ptr cinfo, huffman_index *index)
|
||||
{
|
||||
cinfo->tile_decode = TRUE;
|
||||
if (cinfo->progressive_mode)
|
||||
return jpeg_build_huffman_index_progressive(cinfo, index);
|
||||
else
|
||||
return jpeg_build_huffman_index_baseline(cinfo, index);
|
||||
}
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules for transcoding.
|
||||
* This substitutes for jdmaster.c's initialization of the full decompressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transdecode_master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* This is effectively a buffered-image operation. */
|
||||
cinfo->buffered_image = TRUE;
|
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
/* Always get a full-image coefficient buffer. */
|
||||
jinit_d_coef_controller(cinfo, TRUE);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
/* Initialize progress monitoring. */
|
||||
if (cinfo->progress != NULL) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else if (cinfo->inputctl->has_multiple_scans) {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
} else {
|
||||
nscans = 1;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = 1;
|
||||
}
|
||||
}
|
252
TMessagesProj/jni/libjpeg/jerror.c
Executable file
@ -0,0 +1,252 @@
|
||||
/*
|
||||
* jerror.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains simple error-reporting and trace-message routines.
|
||||
* These are suitable for Unix-like systems and others where writing to
|
||||
* stderr is the right thing to do. Many applications will want to replace
|
||||
* some or all of these routines.
|
||||
*
|
||||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
|
||||
* you get a Windows-specific hack to display error messages in a dialog box.
|
||||
* It ain't much, but it beats dropping error messages into the bit bucket,
|
||||
* which is what happens to output to stderr under most Windows C compilers.
|
||||
*
|
||||
* These routines are used by both the compression and decompression code.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jversion.h"
|
||||
#include "jerror.h"
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Create the message string table.
|
||||
* We do this from the master message list in jerror.h by re-reading
|
||||
* jerror.h with a suitable definition for macro JMESSAGE.
|
||||
* The message table is made an external symbol just in case any applications
|
||||
* want to refer to it directly.
|
||||
*/
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_std_message_table jMsgTable
|
||||
#endif
|
||||
|
||||
#define JMESSAGE(code,string) string ,
|
||||
|
||||
const char * const jpeg_std_message_table[] = {
|
||||
#include "jerror.h"
|
||||
NULL
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller.
|
||||
*
|
||||
* Applications may override this if they want to get control back after
|
||||
* an error. Typically one would longjmp somewhere instead of exiting.
|
||||
* The setjmp buffer can be made a private field within an expanded error
|
||||
* handler object. Note that the info needed to generate an error message
|
||||
* is stored in the error object, so you can generate the message now or
|
||||
* later, at your convenience.
|
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
|
||||
* or jpeg_destroy) at some point.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
error_exit (j_common_ptr cinfo)
|
||||
{
|
||||
/* Always display the message */
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
|
||||
/* Let the memory manager delete any temp files before we die */
|
||||
jpeg_destroy(cinfo);
|
||||
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Actual output of an error or trace message.
|
||||
* Applications may override this method to send JPEG messages somewhere
|
||||
* other than stderr.
|
||||
*
|
||||
* On Windows, printing to stderr is generally completely useless,
|
||||
* so we provide optional code to produce an error-dialog popup.
|
||||
* Most Windows applications will still prefer to override this routine,
|
||||
* but if they don't, it'll do something at least marginally useful.
|
||||
*
|
||||
* NOTE: to use the library in an environment that doesn't support the
|
||||
* C stdio library, you may have to delete the call to fprintf() entirely,
|
||||
* not just not use this routine.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
output_message (j_common_ptr cinfo)
|
||||
{
|
||||
char buffer[JMSG_LENGTH_MAX];
|
||||
|
||||
/* Create the message */
|
||||
(*cinfo->err->format_message) (cinfo, buffer);
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
/* Display it in a message dialog box */
|
||||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
|
||||
MB_OK | MB_ICONERROR);
|
||||
#else
|
||||
/* Send it to stderr, adding a newline */
|
||||
fprintf(stderr, "%s\n", buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message.
|
||||
* msg_level is one of:
|
||||
* -1: recoverable corrupt-data warning, may want to abort.
|
||||
* 0: important advisory messages (always display to user).
|
||||
* 1: first level of tracing detail.
|
||||
* 2,3,...: successively more detailed tracing messages.
|
||||
* An application might override this method if it wanted to abort on warnings
|
||||
* or change the policy about which messages to display.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
emit_message (j_common_ptr cinfo, int msg_level)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
|
||||
if (msg_level < 0) {
|
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning,
|
||||
* unless trace_level >= 3.
|
||||
*/
|
||||
if (err->num_warnings == 0 || err->trace_level >= 3)
|
||||
(*err->output_message) (cinfo);
|
||||
/* Always count warnings in num_warnings. */
|
||||
err->num_warnings++;
|
||||
} else {
|
||||
/* It's a trace message. Show it if trace_level >= msg_level. */
|
||||
if (err->trace_level >= msg_level)
|
||||
(*err->output_message) (cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message.
|
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
|
||||
* characters. Note that no '\n' character is added to the string.
|
||||
* Few applications should need to override this method.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
format_message (j_common_ptr cinfo, char * buffer)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
int msg_code = err->msg_code;
|
||||
const char * msgtext = NULL;
|
||||
const char * msgptr;
|
||||
char ch;
|
||||
boolean isstring;
|
||||
|
||||
/* Look up message string in proper table */
|
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
|
||||
msgtext = err->jpeg_message_table[msg_code];
|
||||
} else if (err->addon_message_table != NULL &&
|
||||
msg_code >= err->first_addon_message &&
|
||||
msg_code <= err->last_addon_message) {
|
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
|
||||
}
|
||||
|
||||
/* Defend against bogus message number */
|
||||
if (msgtext == NULL) {
|
||||
err->msg_parm.i[0] = msg_code;
|
||||
msgtext = err->jpeg_message_table[0];
|
||||
}
|
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */
|
||||
isstring = FALSE;
|
||||
msgptr = msgtext;
|
||||
while ((ch = *msgptr++) != '\0') {
|
||||
if (ch == '%') {
|
||||
if (*msgptr == 's') isstring = TRUE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Format the message into the passed buffer */
|
||||
if (isstring)
|
||||
sprintf(buffer, msgtext, err->msg_parm.s);
|
||||
else
|
||||
sprintf(buffer, msgtext,
|
||||
err->msg_parm.i[0], err->msg_parm.i[1],
|
||||
err->msg_parm.i[2], err->msg_parm.i[3],
|
||||
err->msg_parm.i[4], err->msg_parm.i[5],
|
||||
err->msg_parm.i[6], err->msg_parm.i[7]);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image.
|
||||
* This is called during compression startup to reset trace/error
|
||||
* processing to default state, without losing any application-specific
|
||||
* method pointers. An application might possibly want to override
|
||||
* this method if it has additional error processing state.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_error_mgr (j_common_ptr cinfo)
|
||||
{
|
||||
cinfo->err->num_warnings = 0;
|
||||
/* trace_level is not reset since it is an application-supplied parameter */
|
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
|
||||
* Typical call is:
|
||||
* struct jpeg_compress_struct cinfo;
|
||||
* struct jpeg_error_mgr err;
|
||||
*
|
||||
* cinfo.err = jpeg_std_error(&err);
|
||||
* after which the application may override some of the methods.
|
||||
*/
|
||||
|
||||
GLOBAL(struct jpeg_error_mgr *)
|
||||
jpeg_std_error (struct jpeg_error_mgr * err)
|
||||
{
|
||||
err->error_exit = error_exit;
|
||||
err->emit_message = emit_message;
|
||||
err->output_message = output_message;
|
||||
err->format_message = format_message;
|
||||
err->reset_error_mgr = reset_error_mgr;
|
||||
|
||||
err->trace_level = 0; /* default = no tracing */
|
||||
err->num_warnings = 0; /* no warnings emitted yet */
|
||||
err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
|
||||
/* Initialize message table pointers */
|
||||
err->jpeg_message_table = jpeg_std_message_table;
|
||||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
|
||||
|
||||
err->addon_message_table = NULL;
|
||||
err->first_addon_message = 0; /* for safety */
|
||||
err->last_addon_message = 0;
|
||||
|
||||
return err;
|
||||
}
|
291
TMessagesProj/jni/libjpeg/jerror.h
Executable file
@ -0,0 +1,291 @@
|
||||
/*
|
||||
* jerror.h
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines the error and message codes for the JPEG library.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
* A set of error-reporting macros are defined too. Some applications using
|
||||
* the JPEG library may wish to include this file to get the error codes
|
||||
* and/or the macros.
|
||||
*/
|
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without
|
||||
* defining macro JMESSAGE. To create a message string table, include it
|
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example).
|
||||
*/
|
||||
#ifndef JMESSAGE
|
||||
#ifndef JERROR_H
|
||||
/* First time through, define the enum list */
|
||||
#define JMAKE_ENUM_LIST
|
||||
#else
|
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
|
||||
#define JMESSAGE(code,string)
|
||||
#endif /* JERROR_H */
|
||||
#endif /* JMESSAGE */
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code,string) code ,
|
||||
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
|
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */
|
||||
JMESSAGE(JERR_ARITH_NOTIMPL,
|
||||
"Sorry, there are legal restrictions on arithmetic coding")
|
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
|
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
|
||||
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
|
||||
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
|
||||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
|
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
|
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
|
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
|
||||
JMESSAGE(JERR_BAD_LIB_VERSION,
|
||||
"Wrong JPEG library version: library is %d, caller expects %d")
|
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
|
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
|
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
|
||||
JMESSAGE(JERR_BAD_PROGRESSION,
|
||||
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
|
||||
JMESSAGE(JERR_BAD_PROG_SCRIPT,
|
||||
"Invalid progressive parameters at scan script entry %d")
|
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
|
||||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
|
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
|
||||
JMESSAGE(JERR_BAD_STRUCT_SIZE,
|
||||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
|
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
|
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
|
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
|
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
|
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
|
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
|
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
|
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
|
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
|
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
|
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
|
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
|
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
|
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
|
||||
JMESSAGE(JERR_FILE_READ, "Input file read error")
|
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
|
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
|
||||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
|
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
|
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
|
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
|
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
|
||||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
|
||||
"Cannot transcode due to multiple use of quantization table %d")
|
||||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
|
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
|
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
|
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
|
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
|
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
|
||||
JMESSAGE(JERR_QUANT_COMPONENTS,
|
||||
"Cannot quantize more than %d color components")
|
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
|
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
|
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
|
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
|
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
|
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
|
||||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
|
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
|
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_WRITE,
|
||||
"Write failed on temporary file --- out of disk space?")
|
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
|
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
|
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
|
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
|
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
|
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
|
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
|
||||
JMESSAGE(JMSG_VERSION, JVERSION)
|
||||
JMESSAGE(JTRC_16BIT_TABLES,
|
||||
"Caution: quantization tables are too coarse for baseline JPEG")
|
||||
JMESSAGE(JTRC_ADOBE,
|
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
|
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
|
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
|
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
|
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
|
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
|
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
|
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
|
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
|
||||
JMESSAGE(JTRC_EOI, "End Of Image")
|
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
|
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
|
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
|
||||
"Warning: thumbnail image size does not match data length %u")
|
||||
JMESSAGE(JTRC_JFIF_EXTENSION,
|
||||
"JFIF extension marker: type 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
|
||||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
|
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
|
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
|
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
|
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
|
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
|
||||
JMESSAGE(JTRC_RST, "RST%d")
|
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
|
||||
"Smoothing not supported with nonstandard sampling ratios")
|
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
|
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
|
||||
JMESSAGE(JTRC_SOI, "Start of Image")
|
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
|
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
|
||||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
|
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
|
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
|
||||
JMESSAGE(JTRC_THUMB_JPEG,
|
||||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_PALETTE,
|
||||
"JFIF extension marker: palette thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_RGB,
|
||||
"JFIF extension marker: RGB thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr")
|
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION,
|
||||
"Inconsistent progression sequence for component %d coefficient %d")
|
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
|
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
|
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
|
||||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
|
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
|
||||
JMESSAGE(JWRN_MUST_RESYNC,
|
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
|
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
|
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
JMSG_LASTMSGCODE
|
||||
} J_MESSAGE_CODE;
|
||||
|
||||
#undef JMAKE_ENUM_LIST
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
|
||||
#undef JMESSAGE
|
||||
|
||||
|
||||
#ifndef JERROR_H
|
||||
#define JERROR_H
|
||||
|
||||
/* Macros to simplify using the error and trace message stuff */
|
||||
/* The first parameter is either type of cinfo pointer */
|
||||
|
||||
/* Fatal errors (print message and exit) */
|
||||
#define ERREXIT(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT3(cinfo,code,p1,p2,p3) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXITS(cinfo,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
|
||||
#define WARNMS(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
|
||||
/* Informational/debugging messages */
|
||||
#define TRACEMS(cinfo,lvl,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS1(cinfo,lvl,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMSS(cinfo,lvl,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
|
||||
#endif /* JERROR_H */
|
168
TMessagesProj/jni/libjpeg/jfdctflt.c
Executable file
@ -0,0 +1,168 @@
|
||||
/*
|
||||
* jfdctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* DCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_float (FAST_FLOAT * data)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
||||
FAST_FLOAT *dataptr;
|
||||
int ctr;
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
224
TMessagesProj/jni/libjpeg/jfdctfst.c
Executable file
@ -0,0 +1,224 @@
|
||||
/*
|
||||
* jfdctfst.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* Again to save a few shifts, the intermediate results between pass 1 and
|
||||
* pass 2 are not upscaled, but are represented only to integral precision.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#define CONST_BITS 8
|
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
||||
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
||||
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
||||
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
||||
#else
|
||||
#define FIX_0_382683433 FIX(0.382683433)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_707106781 FIX(0.707106781)
|
||||
#define FIX_1_306562965 FIX(1.306562965)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_ifast (DCTELEM * data)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
||||
DCTELEM *dataptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
283
TMessagesProj/jni/libjpeg/jfdctint.c
Executable file
@ -0,0 +1,283 @@
|
||||
/*
|
||||
* jfdctint.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a slow-but-accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on an algorithm described in
|
||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
||||
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
||||
* We use their alternate method with 12 multiplies and 32 adds.
|
||||
* The advantage of this method is that no data path contains more than one
|
||||
* multiplication; this allows a very simple and accurate implementation in
|
||||
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
|
||||
* larger than the true DCT outputs. The final outputs are therefore
|
||||
* a factor of N larger than desired; since N=8 this can be cured by
|
||||
* a simple right shift at the end of the algorithm. The advantage of
|
||||
* this arrangement is that we save two multiplications per 1-D DCT,
|
||||
* because the y0 and y4 outputs need not be divided by sqrt(N).
|
||||
* In the IJG code, this factor of 8 is removed by the quantization step
|
||||
* (in jcdctmgr.c), NOT in this module.
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by CONST_SCALE and convert them to integer constants (thus retaining
|
||||
* CONST_BITS bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by CONST_SCALE, with proper
|
||||
* rounding, to produce the correct output. This division can be done
|
||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
||||
* as long as possible so that partial sums can be added together with
|
||||
* full fractional precision.
|
||||
*
|
||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
||||
* they are represented to better-than-integral precision. These outputs
|
||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
||||
* with the recommended scaling. (For 12-bit sample data, the intermediate
|
||||
* array is INT32 anyway.)
|
||||
*
|
||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
||||
* shows that the values given below are the most effective.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
||||
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
||||
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
||||
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
||||
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
||||
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
||||
#else
|
||||
#define FIX_0_298631336 FIX(0.298631336)
|
||||
#define FIX_0_390180644 FIX(0.390180644)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_175875602 FIX(1.175875602)
|
||||
#define FIX_1_501321110 FIX(1.501321110)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_1_961570560 FIX(1.961570560)
|
||||
#define FIX_2_053119869 FIX(2.053119869)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_072711026 FIX(3.072711026)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
||||
#else
|
||||
#define MULTIPLY(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_islow (DCTELEM * data)
|
||||
{
|
||||
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
INT32 tmp10, tmp11, tmp12, tmp13;
|
||||
INT32 z1, z2, z3, z4, z5;
|
||||
DCTELEM *dataptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
|
||||
/* furthermore, we scale the results by 2**PASS1_BITS. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
||||
*/
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
|
||||
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
||||
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
||||
CONST_BITS-PASS1_BITS);
|
||||
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
||||
CONST_BITS-PASS1_BITS);
|
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16).
|
||||
* i0..i3 in the paper are tmp4..tmp7 here.
|
||||
*/
|
||||
|
||||
z1 = tmp4 + tmp7;
|
||||
z2 = tmp5 + tmp6;
|
||||
z3 = tmp4 + tmp6;
|
||||
z4 = tmp5 + tmp7;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
|
||||
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
|
||||
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
|
||||
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns.
|
||||
* We remove the PASS1_BITS scaling, but leave the results scaled up
|
||||
* by an overall factor of 8.
|
||||
*/
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
||||
*/
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
|
||||
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
||||
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
||||
CONST_BITS+PASS1_BITS);
|
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16).
|
||||
* i0..i3 in the paper are tmp4..tmp7 here.
|
||||
*/
|
||||
|
||||
z1 = tmp4 + tmp7;
|
||||
z2 = tmp5 + tmp6;
|
||||
z3 = tmp4 + tmp6;
|
||||
z4 = tmp5 + tmp7;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_ISLOW_SUPPORTED */
|
242
TMessagesProj/jni/libjpeg/jidctflt.c
Executable file
@ -0,0 +1,242 @@
|
||||
/*
|
||||
* jidctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* IDCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
FLOAT_MULT_TYPE * quantptr;
|
||||
FAST_FLOAT * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||
wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* And testing floats for zero is relatively expensive, so we don't bother.
|
||||
*/
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = wsptr[0] + wsptr[4];
|
||||
tmp11 = wsptr[0] - wsptr[4];
|
||||
|
||||
tmp13 = wsptr[2] + wsptr[6];
|
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = wsptr[5] + wsptr[3];
|
||||
z10 = wsptr[5] - wsptr[3];
|
||||
z11 = wsptr[1] + wsptr[7];
|
||||
z12 = wsptr[1] - wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13;
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7;
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
368
TMessagesProj/jni/libjpeg/jidctfst.c
Executable file
@ -0,0 +1,368 @@
|
||||
/*
|
||||
* jidctfst.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* The dequantized coefficients are not integers because the AA&N scaling
|
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||||
* so that the first and second IDCT rounds have the same input scaling.
|
||||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||||
* avoid a descaling shift; this compromises accuracy rather drastically
|
||||
* for small quantization table entries, but it saves a lot of shifts.
|
||||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
||||
* so we use a much larger scaling factor to preserve accuracy.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
||||
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
||||
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
||||
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
||||
#else
|
||||
#define FIX_1_082392200 FIX(1.082392200)
|
||||
#define FIX_1_414213562 FIX(1.414213562)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_613125930 FIX(2.613125930)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||||
* multiplication will do. For 12-bit data, the multiplier table is
|
||||
* declared INT32, so a 32-bit multiply will be used.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
||||
#else
|
||||
#define DEQUANTIZE(coef,quantval) \
|
||||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
||||
#endif
|
||||
|
||||
|
||||
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
||||
#else
|
||||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
||||
#endif
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
#ifdef USE_ACCURATE_ROUNDING
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
||||
#else
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
IFAST_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS /* for DESCALE */
|
||||
ISHIFT_TEMPS /* for IDESCALE */
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
|
||||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
|
||||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
|
||||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
|
||||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
|
||||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
|
||||
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
|
||||
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
|
||||
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
|
||||
|
||||
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
|
||||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
|
||||
- tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
|
||||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
|
||||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
|
||||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
389
TMessagesProj/jni/libjpeg/jidctint.c
Executable file
@ -0,0 +1,389 @@
|
||||
/*
|
||||
* jidctint.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a slow-but-accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on an algorithm described in
|
||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
||||
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
||||
* We use their alternate method with 12 multiplies and 32 adds.
|
||||
* The advantage of this method is that no data path contains more than one
|
||||
* multiplication; this allows a very simple and accurate implementation in
|
||||
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
||||
* larger than the true IDCT outputs. The final outputs are therefore
|
||||
* a factor of N larger than desired; since N=8 this can be cured by
|
||||
* a simple right shift at the end of the algorithm. The advantage of
|
||||
* this arrangement is that we save two multiplications per 1-D IDCT,
|
||||
* because the y0 and y4 inputs need not be divided by sqrt(N).
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by CONST_SCALE and convert them to integer constants (thus retaining
|
||||
* CONST_BITS bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by CONST_SCALE, with proper
|
||||
* rounding, to produce the correct output. This division can be done
|
||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
||||
* as long as possible so that partial sums can be added together with
|
||||
* full fractional precision.
|
||||
*
|
||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
||||
* they are represented to better-than-integral precision. These outputs
|
||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
||||
* with the recommended scaling. (To scale up 12-bit sample data further, an
|
||||
* intermediate INT32 array would be needed.)
|
||||
*
|
||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
||||
* shows that the values given below are the most effective.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
||||
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
||||
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
||||
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
||||
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
||||
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
||||
#else
|
||||
#define FIX_0_298631336 FIX(0.298631336)
|
||||
#define FIX_0_390180644 FIX(0.390180644)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_175875602 FIX(1.175875602)
|
||||
#define FIX_1_501321110 FIX(1.501321110)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_1_961570560 FIX(1.961570560)
|
||||
#define FIX_2_053119869 FIX(2.053119869)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_072711026 FIX(3.072711026)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
||||
#else
|
||||
#define MULTIPLY(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce an int result. In this module, both inputs and result
|
||||
* are 16 bits or less, so either int or short multiply will work.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
INT32 tmp0, tmp1, tmp2, tmp3;
|
||||
INT32 tmp10, tmp11, tmp12, tmp13;
|
||||
INT32 z1, z2, z3, z4, z5;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
||||
/* furthermore, we scale the results by 2**PASS1_BITS. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part: reverse the even part of the forward DCT. */
|
||||
/* The rotator is sqrt(2)*c(-6). */
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
||||
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
||||
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
|
||||
tmp0 = (z2 + z3) << CONST_BITS;
|
||||
tmp1 = (z2 - z3) << CONST_BITS;
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Odd part per figure 8; the matrix is unitary and hence its
|
||||
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
||||
*/
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
|
||||
z1 = tmp0 + tmp3;
|
||||
z2 = tmp1 + tmp2;
|
||||
z3 = tmp0 + tmp2;
|
||||
z4 = tmp1 + tmp3;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
tmp0 += z1 + z3;
|
||||
tmp1 += z2 + z4;
|
||||
tmp2 += z2 + z3;
|
||||
tmp3 += z1 + z4;
|
||||
|
||||
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part: reverse the even part of the forward DCT. */
|
||||
/* The rotator is sqrt(2)*c(-6). */
|
||||
|
||||
z2 = (INT32) wsptr[2];
|
||||
z3 = (INT32) wsptr[6];
|
||||
|
||||
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
||||
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
||||
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
||||
|
||||
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
|
||||
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Odd part per figure 8; the matrix is unitary and hence its
|
||||
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
||||
*/
|
||||
|
||||
tmp0 = (INT32) wsptr[7];
|
||||
tmp1 = (INT32) wsptr[5];
|
||||
tmp2 = (INT32) wsptr[3];
|
||||
tmp3 = (INT32) wsptr[1];
|
||||
|
||||
z1 = tmp0 + tmp3;
|
||||
z2 = tmp1 + tmp2;
|
||||
z3 = tmp0 + tmp2;
|
||||
z4 = tmp1 + tmp3;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
tmp0 += z1 + z3;
|
||||
tmp1 += z2 + z4;
|
||||
tmp2 += z2 + z3;
|
||||
tmp3 += z1 + z4;
|
||||
|
||||
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_ISLOW_SUPPORTED */
|
398
TMessagesProj/jni/libjpeg/jidctred.c
Executable file
@ -0,0 +1,398 @@
|
||||
/*
|
||||
* jidctred.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains inverse-DCT routines that produce reduced-size output:
|
||||
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
|
||||
*
|
||||
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
|
||||
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
|
||||
* with an 8-to-4 step that produces the four averages of two adjacent outputs
|
||||
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
|
||||
* These steps were derived by computing the corresponding values at the end
|
||||
* of the normal LL&M code, then simplifying as much as possible.
|
||||
*
|
||||
* 1x1 is trivial: just take the DC coefficient divided by 8.
|
||||
*
|
||||
* See jidctint.c for additional comments.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling is the same as in jidctint.c. */
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
|
||||
#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
|
||||
#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
|
||||
#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
|
||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
|
||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
|
||||
#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
|
||||
#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
|
||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
||||
#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
|
||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
|
||||
#else
|
||||
#define FIX_0_211164243 FIX(0.211164243)
|
||||
#define FIX_0_509795579 FIX(0.509795579)
|
||||
#define FIX_0_601344887 FIX(0.601344887)
|
||||
#define FIX_0_720959822 FIX(0.720959822)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_850430095 FIX(0.850430095)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_061594337 FIX(1.061594337)
|
||||
#define FIX_1_272758580 FIX(1.272758580)
|
||||
#define FIX_1_451774981 FIX(1.451774981)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_172734803 FIX(2.172734803)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_624509785 FIX(3.624509785)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
||||
#else
|
||||
#define MULTIPLY(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce an int result. In this module, both inputs and result
|
||||
* are 16 bits or less, so either int or short multiply will work.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 4x4 output block.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
INT32 tmp0, tmp2, tmp10, tmp12;
|
||||
INT32 z1, z2, z3, z4;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE*4]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
||||
/* Don't bother to process column 4, because second pass won't use it */
|
||||
if (ctr == DCTSIZE-4)
|
||||
continue;
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
|
||||
inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero; we need not examine term 4 for 4x4 output */
|
||||
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp0 <<= (CONST_BITS+1);
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
|
||||
|
||||
tmp10 = tmp0 + tmp2;
|
||||
tmp12 = tmp0 - tmp2;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
||||
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
||||
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
||||
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
||||
|
||||
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
||||
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
||||
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
||||
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
|
||||
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
|
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
|
||||
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
|
||||
}
|
||||
|
||||
/* Pass 2: process 4 rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < 4; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* It's not clear whether a zero row test is worthwhile here ... */
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
|
||||
|
||||
tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
|
||||
+ MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
|
||||
|
||||
tmp10 = tmp0 + tmp2;
|
||||
tmp12 = tmp0 - tmp2;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = (INT32) wsptr[7];
|
||||
z2 = (INT32) wsptr[5];
|
||||
z3 = (INT32) wsptr[3];
|
||||
z4 = (INT32) wsptr[1];
|
||||
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
||||
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
||||
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
||||
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
||||
|
||||
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
||||
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
||||
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
||||
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 2x2 output block.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
INT32 tmp0, tmp10, z1;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE*2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
||||
/* Don't bother to process columns 2,4,6 */
|
||||
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
|
||||
continue;
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
|
||||
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp10 = z1 << (CONST_BITS+2);
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
|
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
|
||||
}
|
||||
|
||||
/* Pass 2: process 2 rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < 2; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* It's not clear whether a zero row test is worthwhile here ... */
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
|
||||
+ MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
|
||||
+ MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
|
||||
+ MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+2)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+2)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 1x1 output block.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
int dcval;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* We hardly need an inverse DCT routine for this: just take the
|
||||
* average pixel value, which is one-eighth of the DC coefficient.
|
||||
*/
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
||||
dcval = (int) DESCALE((INT32) dcval, 3);
|
||||
|
||||
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
|
||||
}
|
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
91
TMessagesProj/jni/libjpeg/jinclude.h
Executable file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
* jinclude.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file exists to provide a single place to fix any problems with
|
||||
* including the wrong system include files. (Common problems are taken
|
||||
* care of by the standard jconfig symbols, but on really weird systems
|
||||
* you may have to edit this file.)
|
||||
*
|
||||
* NOTE: this file is NOT intended to be included by applications using the
|
||||
* JPEG library. Most applications need only include jpeglib.h.
|
||||
*/
|
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */
|
||||
|
||||
#include "jconfig.h" /* auto configuration options */
|
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||
|
||||
/*
|
||||
* We need the NULL macro and size_t typedef.
|
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
|
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
|
||||
* pull in <sys/types.h> as well.
|
||||
* Note that the core JPEG library does not require <stdio.h>;
|
||||
* only the default error handler and data source/destination modules do.
|
||||
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||
* You can remove those references if you want to compile without <stdio.h>.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_STDDEF_H
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_STDLIB_H
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* We need memory copying and zeroing functions, plus strncpy().
|
||||
* ANSI and System V implementations declare these in <string.h>.
|
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||
* Some systems may declare memset and memcpy in <memory.h>.
|
||||
*
|
||||
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||
* Change the casts in these macros if not!
|
||||
*/
|
||||
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
|
||||
#include <strings.h>
|
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
|
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */
|
||||
|
||||
#include <string.h>
|
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In ANSI C, and indeed any rational implementation, size_t is also the
|
||||
* type returned by sizeof(). However, it seems there are some irrational
|
||||
* implementations out there, in which sizeof() returns an int even though
|
||||
* size_t is defined as long or unsigned long. To ensure consistent results
|
||||
* we always use this SIZEOF() macro in place of using sizeof() directly.
|
||||
*/
|
||||
|
||||
#define SIZEOF(object) ((size_t) sizeof(object))
|
||||
|
||||
/*
|
||||
* The modules that use fread() and fwrite() always invoke them through
|
||||
* these macros. On some systems you may need to twiddle the argument casts.
|
||||
* CAUTION: argument order is different from underlying functions!
|
||||
*/
|
||||
|
||||
#define JFREAD(file,buf,sizeofbuf) \
|
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
#define JFWRITE(file,buf,sizeofbuf) \
|
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
1118
TMessagesProj/jni/libjpeg/jmemmgr.c
Executable file
109
TMessagesProj/jni/libjpeg/jmemnobs.c
Executable file
@ -0,0 +1,109 @@
|
||||
/*
|
||||
* jmemnobs.c
|
||||
*
|
||||
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a really simple implementation of the system-
|
||||
* dependent portion of the JPEG memory manager. This implementation
|
||||
* assumes that no backing-store files are needed: all required space
|
||||
* can be obtained from malloc().
|
||||
* This is very portable in the sense that it'll compile on almost anything,
|
||||
* but you'd better have lots of main memory (or virtual memory) if you want
|
||||
* to process big images.
|
||||
* Note that the max_memory_to_use option is ignored by this implementation.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* Here we always say, "we got all you want bud!"
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return max_bytes_needed;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Since jpeg_mem_available always promised the moon,
|
||||
* this should never be called and we can just error out.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Here, there isn't any.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
return 0; /* just set max_memory_to_use to 0 */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
204
TMessagesProj/jni/libjpeg/jmemsys.h
Executable file
@ -0,0 +1,204 @@
|
||||
/*
|
||||
* jmemsys.h
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file defines the interface between the system-independent
|
||||
* and system-dependent portions of the JPEG memory manager. No other
|
||||
* modules need include it. (The system-independent portion is jmemmgr.c;
|
||||
* there are several different versions of the system-dependent portion.)
|
||||
*
|
||||
* This file works as-is for the system-dependent memory managers supplied
|
||||
* in the IJG distribution. You may need to modify it if you write a
|
||||
* custom memory manager. If system-dependent changes are needed in
|
||||
* this file, the best method is to #ifdef them based on a configuration
|
||||
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
|
||||
* and USE_MAC_MEMMGR.
|
||||
*/
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_get_small jGetSmall
|
||||
#define jpeg_free_small jFreeSmall
|
||||
#define jpeg_get_large jGetLarge
|
||||
#define jpeg_free_large jFreeLarge
|
||||
#define jpeg_mem_available jMemAvail
|
||||
#define jpeg_open_backing_store jOpenBackStore
|
||||
#define jpeg_mem_init jMemInit
|
||||
#define jpeg_mem_term jMemTerm
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of
|
||||
* memory. (Typically the total amount requested through jpeg_get_small is
|
||||
* no more than 20K or so; this will be requested in chunks of a few K each.)
|
||||
* Behavior should be the same as for the standard library functions malloc
|
||||
* and free; in particular, jpeg_get_small must return NULL on failure.
|
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
|
||||
* size of the object being freed, just in case it's needed.
|
||||
* On an 80x86 machine using small-data memory model, these manage near heap.
|
||||
*/
|
||||
|
||||
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
|
||||
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of
|
||||
* memory (up to the total free space designated by jpeg_mem_available).
|
||||
* The interface is the same as above, except that on an 80x86 machine,
|
||||
* far pointers are used. On most other machines these are identical to
|
||||
* the jpeg_get/free_small routines; but we keep them separate anyway,
|
||||
* in case a different allocation strategy is desirable for large chunks.
|
||||
*/
|
||||
|
||||
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
|
||||
size_t sizeofobject));
|
||||
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
|
||||
* matter, but that case should never come into play). This macro is needed
|
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||
* On those machines, we expect that jconfig.h will provide a proper value.
|
||||
* On machines with 32-bit flat address spaces, any large constant may be used.
|
||||
*
|
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
|
||||
* size_t and will be a multiple of sizeof(align_type).
|
||||
*/
|
||||
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
|
||||
#define MAX_ALLOC_CHUNK 1000000000L
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This routine computes the total space still available for allocation by
|
||||
* jpeg_get_large. If more space than this is needed, backing store will be
|
||||
* used. NOTE: any memory already allocated must not be counted.
|
||||
*
|
||||
* There is a minimum space requirement, corresponding to the minimum
|
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
|
||||
* all working storage in memory, is also passed in case it is useful.
|
||||
* Finally, the total space already allocated is passed. If no better
|
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated
|
||||
* is often a suitable calculation.
|
||||
*
|
||||
* It is OK for jpeg_mem_available to underestimate the space available
|
||||
* (that'll just lead to more backing-store access than is really necessary).
|
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||
* a slop factor from the true available space. 5% should be enough.
|
||||
*
|
||||
* On machines with lots of virtual memory, any large constant may be returned.
|
||||
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
|
||||
long min_bytes_needed,
|
||||
long max_bytes_needed,
|
||||
long already_allocated));
|
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single
|
||||
* backing-store object. The read/write/close method pointers are called
|
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields
|
||||
* are private to the system-dependent backing store routines.
|
||||
*/
|
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||
|
||||
|
||||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
|
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */
|
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */
|
||||
|
||||
typedef union {
|
||||
short file_handle; /* DOS file handle if it's a temp file */
|
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */
|
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */
|
||||
} handle_union;
|
||||
|
||||
#endif /* USE_MSDOS_MEMMGR */
|
||||
|
||||
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
|
||||
#include <Files.h>
|
||||
#endif /* USE_MAC_MEMMGR */
|
||||
|
||||
|
||||
typedef struct backing_store_struct * backing_store_ptr;
|
||||
|
||||
typedef struct backing_store_struct {
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info));
|
||||
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
#ifdef USE_MSDOS_MEMMGR
|
||||
/* For the MS-DOS manager (jmemdos.c), we need: */
|
||||
handle_union handle; /* reference to backing-store storage object */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
#ifdef USE_MAC_MEMMGR
|
||||
/* For the Mac manager (jmemmac.c), we need: */
|
||||
short temp_file; /* file reference number to temp file */
|
||||
FSSpec tempSpec; /* the FSSpec for the temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
#ifdef USE_ANDROID_ASHMEM
|
||||
short temp_file; /* file reference number to temp file */
|
||||
unsigned char* addr; /* the memory address mapped to ashmem */
|
||||
long size; /* the requested ashmem size */
|
||||
#else
|
||||
/* For a typical implementation with temp files, we need: */
|
||||
FILE * temp_file; /* stdio reference to temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
} backing_store_info;
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the
|
||||
* read/write/close pointers in the object. The read/write routines
|
||||
* may take an error exit if the specified maximum file size is exceeded.
|
||||
* (If jpeg_mem_available always returns a large value, this routine can
|
||||
* just take an error exit.)
|
||||
*/
|
||||
|
||||
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
long total_bytes_needed));
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. jpeg_mem_init will be called before anything is
|
||||
* allocated (and, therefore, nothing in cinfo is of use except the error
|
||||
* manager pointer). It should return a suitable default value for
|
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding
|
||||
* application. (Note that max_memory_to_use is only important if
|
||||
* jpeg_mem_available chooses to consult it ... no one else will.)
|
||||
* jpeg_mem_term may assume that all requested memory has been freed and that
|
||||
* all opened backing-store objects have been closed.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
|
||||
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
|
395
TMessagesProj/jni/libjpeg/jmorecfg.h
Executable file
@ -0,0 +1,395 @@
|
||||
/*
|
||||
* jmorecfg.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains additional configuration options that customize the
|
||||
* JPEG software for special applications or support machine-dependent
|
||||
* optimizations. Most users will not need to touch this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Define ANDROID_RGB to enable specific optimizations for Android
|
||||
* JCS_RGBA_8888 support
|
||||
* JCS_RGB_565 support
|
||||
*
|
||||
*/
|
||||
|
||||
#define ANDROID_RGB
|
||||
|
||||
#ifdef ANDROID_RGB
|
||||
#define PACK_SHORT_565(r,g,b) ((((r)<<8)&0xf800)|(((g)<<3)&0x7E0)|((b)>>3))
|
||||
#define PACK_TWO_PIXELS(l,r) ((r<<16) | l)
|
||||
#define PACK_NEED_ALIGNMENT(ptr) (((uintptr_t)(ptr))&3)
|
||||
#define WRITE_TWO_PIXELS(addr, pixels) do { \
|
||||
((INT16*)(addr))[0] = (pixels); \
|
||||
((INT16*)(addr))[1] = (pixels)>>16; \
|
||||
} while(0)
|
||||
#define WRITE_TWO_ALIGNED_PIXELS(addr, pixels) ((*(INT32*)(addr)) = pixels)
|
||||
#define DITHER_565_R(r, dither) ((r) + ((dither)&0xFF))
|
||||
#define DITHER_565_G(g, dither) ((g) + (((dither)&0xFF)>>1))
|
||||
#define DITHER_565_B(b, dither) ((b) + ((dither)&0xFF))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Define BITS_IN_JSAMPLE as either
|
||||
* 8 for 8-bit sample values (the usual setting)
|
||||
* 12 for 12-bit sample values
|
||||
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
|
||||
* JPEG standard, and the IJG code does not support anything else!
|
||||
* We do not support run-time selection of data precision, sorry.
|
||||
*/
|
||||
|
||||
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
|
||||
|
||||
|
||||
/*
|
||||
* Maximum number of components (color channels) allowed in JPEG image.
|
||||
* To meet the letter of the JPEG spec, set this to 255. However, darn
|
||||
* few applications need more than 4 channels (maybe 5 for CMYK + alpha
|
||||
* mask). We recommend 10 as a reasonable compromise; use 4 if you are
|
||||
* really short on memory. (Each allowed component costs a hundred or so
|
||||
* bytes of storage, whether actually used in an image or not.)
|
||||
*/
|
||||
|
||||
#define MAX_COMPONENTS 10 /* maximum number of image components */
|
||||
|
||||
|
||||
/*
|
||||
* Basic data types.
|
||||
* You may need to change these if you have a machine with unusual data
|
||||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
|
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
|
||||
* but it had better be at least 16.
|
||||
*/
|
||||
|
||||
/* Representation of a single sample (pixel element value).
|
||||
* We frequently allocate large arrays of these, so it's important to keep
|
||||
* them small. But if you have memory to burn and access to char or short
|
||||
* arrays is very slow on your hardware, you might want to change these.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
|
||||
typedef char JSAMPLE;
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
#else
|
||||
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
#define MAXJSAMPLE 255
|
||||
#define CENTERJSAMPLE 128
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 12
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
|
||||
* On nearly all machines "short" will do nicely.
|
||||
*/
|
||||
|
||||
typedef short JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
|
||||
#define MAXJSAMPLE 4095
|
||||
#define CENTERJSAMPLE 2048
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 12 */
|
||||
|
||||
|
||||
/* Representation of a DCT frequency coefficient.
|
||||
* This should be a signed value of at least 16 bits; "short" is usually OK.
|
||||
* Again, we allocate large arrays of these, but you can change to int
|
||||
* if you have memory to burn and "short" is really slow.
|
||||
*/
|
||||
|
||||
typedef short JCOEF;
|
||||
|
||||
|
||||
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||
* These must be EXACTLY 8 bits wide, at least once they are written to
|
||||
* external storage. Note that when using the stdio data source/destination
|
||||
* managers, this is also the data type passed to fread/fwrite.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JOCTET;
|
||||
#define GETJOCTET(value) (value)
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
|
||||
typedef char JOCTET;
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define GETJOCTET(value) (value)
|
||||
#else
|
||||
#define GETJOCTET(value) ((value) & 0xFF)
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
|
||||
/* These typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big
|
||||
* won't cost a huge amount of memory, so we don't provide special
|
||||
* extraction code like we did for JSAMPLE. (In other words, these
|
||||
* typedefs live at a different point on the speed/space tradeoff curve.)
|
||||
*/
|
||||
|
||||
/* UINT8 must hold at least the values 0..255. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
typedef unsigned char UINT8;
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
typedef char UINT8;
|
||||
#else /* not CHAR_IS_UNSIGNED */
|
||||
typedef short UINT8;
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
typedef unsigned short UINT16;
|
||||
#else /* not HAVE_UNSIGNED_SHORT */
|
||||
typedef unsigned int UINT16;
|
||||
#endif /* HAVE_UNSIGNED_SHORT */
|
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
|
||||
typedef short INT16;
|
||||
#endif
|
||||
|
||||
/* INT32 must hold at least signed 32-bit values. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
|
||||
typedef long INT32;
|
||||
#endif
|
||||
|
||||
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
|
||||
* "unsigned int" is sufficient on all machines. However, if you need to
|
||||
* handle larger images and you don't mind deviating from the spec, you
|
||||
* can change this datatype.
|
||||
*/
|
||||
|
||||
typedef unsigned int JDIMENSION;
|
||||
|
||||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
||||
|
||||
|
||||
/* These macros are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions;
|
||||
* in particular, you'll need to do that to make the library a Windows DLL.
|
||||
* Another application is to make all functions global for use with debuggers
|
||||
* or code profilers that require it.
|
||||
*/
|
||||
|
||||
/* a function called through method pointers: */
|
||||
#define METHODDEF(type) static type
|
||||
/* a function used only in its module: */
|
||||
#define LOCAL(type) static type
|
||||
/* a function referenced thru EXTERNs: */
|
||||
#define GLOBAL(type) type
|
||||
/* a reference to a GLOBAL function: */
|
||||
#define EXTERN(type) extern type
|
||||
|
||||
|
||||
/* This macro is used to declare a "method", that is, a function pointer.
|
||||
* We want to supply prototype parameters if the compiler can cope.
|
||||
* Note that the arglist parameter must be parenthesized!
|
||||
* Again, you can customize this if you need special linkage keywords.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
|
||||
#else
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
|
||||
#endif
|
||||
|
||||
|
||||
/* Here is the pseudo-keyword for declaring pointers that must be "far"
|
||||
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
|
||||
* by just saying "FAR *" where such a pointer is needed. In a few places
|
||||
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
|
||||
*/
|
||||
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
#define FAR far
|
||||
#else
|
||||
#define FAR
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
|
||||
* in standard header files. Or you may have conflicts with application-
|
||||
* specific header files that you want to include together with these files.
|
||||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
|
||||
*/
|
||||
|
||||
#ifndef HAVE_BOOLEAN
|
||||
typedef int boolean;
|
||||
#endif
|
||||
#ifndef FALSE /* in case these macros already exist */
|
||||
#define FALSE 0 /* values of boolean */
|
||||
#endif
|
||||
#ifndef TRUE
|
||||
#define TRUE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The remaining options affect code selection within the JPEG library,
|
||||
* but they don't need to be visible to most applications using the library.
|
||||
* To minimize application namespace pollution, the symbols won't be
|
||||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
#define JPEG_INTERNAL_OPTIONS
|
||||
#endif
|
||||
|
||||
#ifdef JPEG_INTERNAL_OPTIONS
|
||||
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions.
|
||||
* Undefining some of these symbols will produce a smaller but less capable
|
||||
* library. Note that you can leave certain source files out of the
|
||||
* compilation/linking process if you've #undef'd the corresponding symbols.
|
||||
* (You may HAVE to do that if your compiler doesn't like null source files.)
|
||||
*/
|
||||
|
||||
/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
|
||||
|
||||
/* Capability options common to encoder and decoder: */
|
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
|
||||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
|
||||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
|
||||
|
||||
/* Encoder capability options: */
|
||||
|
||||
#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
* precision, so jchuff.c normally uses entropy optimization to compute
|
||||
* usable tables for higher precision. If you don't want to do optimization,
|
||||
* you'll have to supply different default Huffman tables.
|
||||
* The exact same statements apply for progressive JPEG: the default tables
|
||||
* don't work for progressive mode. (This may get fixed, however.)
|
||||
*/
|
||||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
|
||||
|
||||
/* Decoder capability options: */
|
||||
|
||||
#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
|
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
|
||||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
|
||||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
|
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
|
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
|
||||
|
||||
/* more capability options later, no doubt */
|
||||
|
||||
|
||||
/*
|
||||
* Ordering of RGB data in scanlines passed to or from the application.
|
||||
* If your application wants to deal with data in the order B,G,R, just
|
||||
* change these macros. You can also deal with formats such as R,G,B,X
|
||||
* (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
|
||||
* the offsets will also change the order in which colormap data is organized.
|
||||
* RESTRICTIONS:
|
||||
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
|
||||
* 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
|
||||
* useful if you are using JPEG color spaces other than YCbCr or grayscale.
|
||||
* 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
|
||||
* is not 3 (they don't understand about dummy color components!). So you
|
||||
* can't use color quantization if you change that value.
|
||||
*/
|
||||
|
||||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
|
||||
#define RGB_GREEN 1 /* Offset of Green */
|
||||
#define RGB_BLUE 2 /* Offset of Blue */
|
||||
#ifdef ANDROID_RGB
|
||||
#define RGB_ALPHA 3 /* Offset of Alpha */
|
||||
#endif
|
||||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
|
||||
|
||||
/* Definitions for speed-related optimizations. */
|
||||
|
||||
|
||||
/* If your compiler supports inline functions, define INLINE
|
||||
* as the inline keyword; otherwise define it as empty.
|
||||
*/
|
||||
|
||||
#ifndef INLINE
|
||||
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
|
||||
#define INLINE __inline__
|
||||
#endif
|
||||
#ifndef INLINE
|
||||
#define INLINE /* default is to define it as empty */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
|
||||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
|
||||
*/
|
||||
|
||||
#ifndef MULTIPLIER
|
||||
#ifdef ANDROID_INTELSSE2_IDCT
|
||||
#define MULTIPLIER short
|
||||
#elif ANDROID_MIPS_IDCT
|
||||
#define MULTIPLIER short
|
||||
#elif NV_ARM_NEON
|
||||
#define MULTIPLIER short
|
||||
#else
|
||||
#define MULTIPLIER int /* type for fastest integer multiply */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||
* by your compiler. (Note that this type is only used in the floating point
|
||||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
|
||||
* Typically, float is faster in ANSI C compilers, while double is faster in
|
||||
* pre-ANSI compilers (because they insist on converting to double anyway).
|
||||
* The code below therefore chooses float if we have ANSI-style prototypes.
|
||||
*/
|
||||
|
||||
#ifndef FAST_FLOAT
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define FAST_FLOAT float
|
||||
#else
|
||||
#define FAST_FLOAT double
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif /* JPEG_INTERNAL_OPTIONS */
|
432
TMessagesProj/jni/libjpeg/jpegint.h
Executable file
@ -0,0 +1,432 @@
|
||||
/*
|
||||
* jpegint.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides common declarations for the various JPEG modules.
|
||||
* These declarations are considered internal to the JPEG library; most
|
||||
* applications using the library shouldn't need to include this file.
|
||||
*/
|
||||
|
||||
|
||||
/* Declarations for both compression & decompression */
|
||||
|
||||
typedef enum { /* Operating modes for buffer controllers */
|
||||
JBUF_PASS_THRU, /* Plain stripwise operation */
|
||||
/* Remaining modes require a full-image buffer to have been created */
|
||||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
|
||||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
|
||||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
|
||||
} J_BUF_MODE;
|
||||
|
||||
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
|
||||
#define CSTATE_START 100 /* after create_compress */
|
||||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
|
||||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
|
||||
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
|
||||
#define DSTATE_START 200 /* after create_decompress */
|
||||
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
|
||||
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
|
||||
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
|
||||
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
|
||||
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
|
||||
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
|
||||
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
|
||||
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
|
||||
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
|
||||
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
|
||||
|
||||
|
||||
/* Declarations for compression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_comp_master {
|
||||
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean call_pass_startup; /* True if pass_startup must be called */
|
||||
boolean is_last_pass; /* True during last pass */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_c_main_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, process_data, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail));
|
||||
};
|
||||
|
||||
/* Compression preprocessing (downsampling input buffer control) */
|
||||
struct jpeg_c_prep_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail));
|
||||
};
|
||||
|
||||
/* Coefficient buffer control */
|
||||
struct jpeg_c_coef_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf));
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_converter {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, color_convert, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows));
|
||||
};
|
||||
|
||||
/* Downsampling */
|
||||
struct jpeg_downsampler {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, downsample, (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index));
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Forward DCT (also controls coefficient quantization) */
|
||||
struct jpeg_forward_dct {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
/* perhaps this should be an array??? */
|
||||
JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
|
||||
jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks));
|
||||
};
|
||||
|
||||
/* Entropy encoding */
|
||||
struct jpeg_entropy_encoder {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
|
||||
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
|
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||
};
|
||||
|
||||
/* Marker writing */
|
||||
struct jpeg_marker_writer {
|
||||
JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
|
||||
/* These routines are exported to allow insertion of extra markers */
|
||||
/* Probably only COM and APPn markers should be written this way */
|
||||
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
|
||||
unsigned int datalen));
|
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for decompression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_decomp_master {
|
||||
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
|
||||
};
|
||||
|
||||
/* Input control module */
|
||||
struct jpeg_input_controller {
|
||||
JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
|
||||
JMETHOD(int, consume_input_build_huffman_index, (j_decompress_ptr cinfo,
|
||||
huffman_index *index, int scan_count));
|
||||
JMETHOD(int, consume_markers, (j_decompress_ptr cinfo,
|
||||
huffman_index *index, int scan_count));
|
||||
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean has_multiple_scans; /* True if file has multiple scans */
|
||||
boolean eoi_reached; /* True when EOI has been consumed */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_d_main_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, process_data, (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
};
|
||||
|
||||
/* Coefficient buffer control */
|
||||
struct jpeg_d_coef_controller {
|
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
|
||||
JMETHOD(int, consume_data_build_huffman_index, (j_decompress_ptr cinfo,
|
||||
huffman_index* index, int scan_count));
|
||||
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE output_buf));
|
||||
/* Pointer to array of coefficient virtual arrays, or NULL if none */
|
||||
jvirt_barray_ptr *coef_arrays;
|
||||
|
||||
/* column number of the first and last tile, respectively */
|
||||
int column_left_boundary;
|
||||
int column_right_boundary;
|
||||
|
||||
/* column number of the first and last MCU, respectively */
|
||||
int MCU_column_left_boundary;
|
||||
int MCU_column_right_boundary;
|
||||
|
||||
/* the number of MCU columns to skip from the indexed MCU, iM,
|
||||
* to the requested MCU boundary, rM, where iM is the MCU that we sample
|
||||
* into our index and is the nearest one to the left of rM.
|
||||
*/
|
||||
int MCU_columns_to_skip;
|
||||
};
|
||||
|
||||
/* Decompression postprocessing (color quantization buffer control) */
|
||||
struct jpeg_d_post_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
};
|
||||
|
||||
/* Marker reading & parsing */
|
||||
struct jpeg_marker_reader {
|
||||
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
|
||||
/* Read markers until SOS or EOI.
|
||||
* Returns same codes as are defined for jpeg_consume_input:
|
||||
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*/
|
||||
JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, get_sos_marker_position, (j_decompress_ptr cinfo,
|
||||
huffman_index *index));
|
||||
/* Read a restart marker --- exported for use by entropy decoder only */
|
||||
jpeg_marker_parser_method read_restart_marker;
|
||||
|
||||
/* State of marker reader --- nominally internal, but applications
|
||||
* supplying COM or APPn handlers might like to know the state.
|
||||
*/
|
||||
boolean saw_SOI; /* found SOI? */
|
||||
boolean saw_SOF; /* found SOF? */
|
||||
int next_restart_num; /* next restart number expected (0-7) */
|
||||
int current_sos_marker_position;
|
||||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
|
||||
};
|
||||
|
||||
/* Entropy decoding */
|
||||
struct jpeg_entropy_decoder {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
JMETHOD(boolean, decode_mcu_discard_coef, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, configure_huffman_decoder, (j_decompress_ptr cinfo,
|
||||
huffman_offset_data offset));
|
||||
JMETHOD(void, get_huffman_decoder_configuration, (j_decompress_ptr cinfo,
|
||||
huffman_offset_data *offset));
|
||||
|
||||
/* This is here to share code between baseline and progressive decoders; */
|
||||
/* other modules probably should not use it */
|
||||
boolean insufficient_data; /* set TRUE after emitting warning */
|
||||
|
||||
huffman_index *index;
|
||||
};
|
||||
|
||||
/* Inverse DCT (also performs dequantization) */
|
||||
typedef JMETHOD(void, inverse_DCT_method_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
struct jpeg_inverse_dct {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
/* It is useful to allow each component to have a separate IDCT method. */
|
||||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
|
||||
};
|
||||
|
||||
/* Upsampling (note that upsampler must also call color converter) */
|
||||
struct jpeg_upsampler {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, upsample, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_deconverter {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows));
|
||||
};
|
||||
|
||||
/* Color quantization or color precision reduction */
|
||||
struct jpeg_color_quantizer {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
|
||||
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPARRAY output_buf,
|
||||
int num_rows));
|
||||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* Miscellaneous useful macros */
|
||||
|
||||
#undef MAX
|
||||
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
||||
#undef MIN
|
||||
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic
|
||||
* shift" instructions that shift in copies of the sign bit. But some
|
||||
* C compilers implement >> with an unsigned shift. For these machines you
|
||||
* must define RIGHT_SHIFT_IS_UNSIGNED.
|
||||
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
|
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be
|
||||
* included in the variables of any routine using RIGHT_SHIFT.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define SHIFT_TEMPS INT32 shift_temp;
|
||||
#define RIGHT_SHIFT(x,shft) \
|
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
|
||||
(shift_temp >> (shft)))
|
||||
#else
|
||||
#define SHIFT_TEMPS
|
||||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jinit_compress_master jICompress
|
||||
#define jinit_c_master_control jICMaster
|
||||
#define jinit_c_main_controller jICMainC
|
||||
#define jinit_c_prep_controller jICPrepC
|
||||
#define jinit_c_coef_controller jICCoefC
|
||||
#define jinit_color_converter jICColor
|
||||
#define jinit_downsampler jIDownsampler
|
||||
#define jinit_forward_dct jIFDCT
|
||||
#define jinit_huff_encoder jIHEncoder
|
||||
#define jinit_phuff_encoder jIPHEncoder
|
||||
#define jinit_marker_writer jIMWriter
|
||||
#define jinit_master_decompress jIDMaster
|
||||
#define jinit_d_main_controller jIDMainC
|
||||
#define jinit_d_coef_controller jIDCoefC
|
||||
#define jinit_d_post_controller jIDPostC
|
||||
#define jinit_input_controller jIInCtlr
|
||||
#define jinit_marker_reader jIMReader
|
||||
#define jinit_huff_decoder jIHDecoder
|
||||
#define jinit_phuff_decoder jIPHDecoder
|
||||
#define jinit_inverse_dct jIIDCT
|
||||
#define jinit_upsampler jIUpsampler
|
||||
#define jinit_color_deconverter jIDColor
|
||||
#define jinit_1pass_quantizer jI1Quant
|
||||
#define jinit_2pass_quantizer jI2Quant
|
||||
#define jinit_merged_upsampler jIMUpsampler
|
||||
#define jinit_memory_mgr jIMemMgr
|
||||
#define jdiv_round_up jDivRound
|
||||
#define jround_up jRound
|
||||
#define jcopy_sample_rows jCopySamples
|
||||
#define jcopy_block_row jCopyBlocks
|
||||
#define jzero_far jZeroFar
|
||||
#define jpeg_zigzag_order jZIGTable
|
||||
#define jpeg_natural_order jZAGTable
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/* Compression module initialization routines */
|
||||
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
|
||||
boolean transcode_only));
|
||||
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
|
||||
/* Decompression module initialization routines */
|
||||
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_decoder_no_data JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jpeg_decompress_per_scan_setup (j_decompress_ptr cinfo);
|
||||
/* Memory manager initialization */
|
||||
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
|
||||
|
||||
/* Utility routines in jutils.c */
|
||||
EXTERN(long) jdiv_round_up JPP((long a, long b));
|
||||
EXTERN(long) jround_up JPP((long a, long b));
|
||||
EXTERN(long) jmin JPP((long a, long b));
|
||||
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols));
|
||||
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks));
|
||||
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
|
||||
|
||||
EXTERN(void) jset_input_stream_position JPP((j_decompress_ptr cinfo,
|
||||
int offset));
|
||||
EXTERN(void) jset_input_stream_position_bit JPP((j_decompress_ptr cinfo,
|
||||
int byte_offset, int bit_left, INT32 buf));
|
||||
|
||||
EXTERN(int) jget_input_stream_position JPP((j_decompress_ptr cinfo));
|
||||
/* Constant tables in jutils.c */
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
|
||||
#endif
|
||||
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
|
||||
|
||||
/* Suppress undefined-structure complaints if necessary. */
|
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
|
||||
struct jvirt_sarray_control { long dummy; };
|
||||
struct jvirt_barray_control { long dummy; };
|
||||
#endif
|
||||
#endif /* INCOMPLETE_TYPES_BROKEN */
|
1184
TMessagesProj/jni/libjpeg/jpeglib.h
Executable file
856
TMessagesProj/jni/libjpeg/jquant1.c
Executable file
@ -0,0 +1,856 @@
|
||||
/*
|
||||
* jquant1.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains 1-pass color quantization (color mapping) routines.
|
||||
* These routines provide mapping to a fixed color map using equally spaced
|
||||
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* The main purpose of 1-pass quantization is to provide a fast, if not very
|
||||
* high quality, colormapped output capability. A 2-pass quantizer usually
|
||||
* gives better visual quality; however, for quantized grayscale output this
|
||||
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
||||
* quantizer, though you can turn it off if you really want to.
|
||||
*
|
||||
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
||||
* image. We use a map consisting of all combinations of Ncolors[i] color
|
||||
* values for the i'th component. The Ncolors[] values are chosen so that
|
||||
* their product, the total number of colors, is no more than that requested.
|
||||
* (In most cases, the product will be somewhat less.)
|
||||
*
|
||||
* Since the colormap is orthogonal, the representative value for each color
|
||||
* component can be determined without considering the other components;
|
||||
* then these indexes can be combined into a colormap index by a standard
|
||||
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
||||
* can be precalculated and stored in the lookup table colorindex[].
|
||||
* colorindex[i][j] maps pixel value j in component i to the nearest
|
||||
* representative value (grid plane) for that component; this index is
|
||||
* multiplied by the array stride for component i, so that the
|
||||
* index of the colormap entry closest to a given pixel value is just
|
||||
* sum( colorindex[component-number][pixel-component-value] )
|
||||
* Aside from being fast, this scheme allows for variable spacing between
|
||||
* representative values with no additional lookup cost.
|
||||
*
|
||||
* If gamma correction has been applied in color conversion, it might be wise
|
||||
* to adjust the color grid spacing so that the representative colors are
|
||||
* equidistant in linear space. At this writing, gamma correction is not
|
||||
* implemented by jdcolor, so nothing is done here.
|
||||
*/
|
||||
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
*
|
||||
* We use a standard 16x16 ordered dither array. The basic concept of ordered
|
||||
* dithering is described in many references, for instance Dale Schumacher's
|
||||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
||||
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
||||
* "dither" value to the input pixel and then round the result to the nearest
|
||||
* output value. The dither value is equivalent to (0.5 - threshold) times
|
||||
* the distance between output values. For ordered dithering, we assume that
|
||||
* the output colors are equally spaced; if not, results will probably be
|
||||
* worse, since the dither may be too much or too little at a given point.
|
||||
*
|
||||
* The normal calculation would be to form pixel value + dither, range-limit
|
||||
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
||||
* We can skip the separate range-limiting step by extending the colorindex
|
||||
* table in both directions.
|
||||
*/
|
||||
|
||||
#define ODITHER_SIZE 16 /* dimension of dither matrix */
|
||||
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
||||
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
||||
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
||||
|
||||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
||||
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
||||
|
||||
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
||||
/* Bayer's order-4 dither array. Generated by the code given in
|
||||
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
||||
* The values in this array must range from 0 to ODITHER_CELLS-1.
|
||||
*/
|
||||
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
||||
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
||||
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
||||
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
||||
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
||||
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
||||
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
||||
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
||||
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
||||
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
||||
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
||||
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
||||
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
||||
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
||||
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
||||
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for Floyd-Steinberg dithering.
|
||||
*
|
||||
* Errors are accumulated into the array fserrors[], at a resolution of
|
||||
* 1/16th of a pixel count. The error at a given pixel is propagated
|
||||
* to its not-yet-processed neighbors using the standard F-S fractions,
|
||||
* ... (here) 7/16
|
||||
* 3/16 5/16 1/16
|
||||
* We work left-to-right on even rows, right-to-left on odd rows.
|
||||
*
|
||||
* We can get away with a single array (holding one row's worth of errors)
|
||||
* by using it to store the current row's errors at pixel columns not yet
|
||||
* processed, but the next row's errors at columns already processed. We
|
||||
* need only a few extra variables to hold the errors immediately around the
|
||||
* current column. (If we are lucky, those variables are in registers, but
|
||||
* even if not, they're probably cheaper to access than array elements are.)
|
||||
*
|
||||
* The fserrors[] array is indexed [component#][position].
|
||||
* We provide (#columns + 2) entries per component; the extra entry at each
|
||||
* end saves us from special-casing the first and last pixels.
|
||||
*
|
||||
* Note: on a wide image, we might not have enough room in a PC's near data
|
||||
* segment to hold the error array; so it is allocated with alloc_large.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef INT16 FSERROR; /* 16 bits should be enough */
|
||||
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
||||
#else
|
||||
typedef INT32 FSERROR; /* may need more than 16 bits */
|
||||
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
||||
#endif
|
||||
|
||||
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
#define MAX_Q_COMPS 4 /* max components I can handle */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_quantizer pub; /* public fields */
|
||||
|
||||
/* Initially allocated colormap is saved here */
|
||||
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
||||
int sv_actual; /* number of entries in use */
|
||||
|
||||
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into
|
||||
* JSAMPLEs, the entries of this array will too.
|
||||
*/
|
||||
boolean is_padded; /* is the colorindex padded for odither? */
|
||||
|
||||
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
||||
|
||||
/* Variables for ordered dithering */
|
||||
int row_index; /* cur row's vertical index in dither matrix */
|
||||
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
||||
|
||||
/* Variables for Floyd-Steinberg dithering */
|
||||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
||||
boolean on_odd_row; /* flag to remember which row we are on */
|
||||
} my_cquantizer;
|
||||
|
||||
typedef my_cquantizer * my_cquantize_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Policy-making subroutines for create_colormap and create_colorindex.
|
||||
* These routines determine the colormap to be used. The rest of the module
|
||||
* only assumes that the colormap is orthogonal.
|
||||
*
|
||||
* * select_ncolors decides how to divvy up the available colors
|
||||
* among the components.
|
||||
* * output_value defines the set of representative values for a component.
|
||||
* * largest_input_value defines the mapping from input values to
|
||||
* representative values for a component.
|
||||
* Note that the latter two routines may impose different policies for
|
||||
* different components, though this is not currently done.
|
||||
*/
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
||||
/* Determine allocation of desired colors to components, */
|
||||
/* and fill in Ncolors[] array to indicate choice. */
|
||||
/* Return value is total number of colors (product of Ncolors[] values). */
|
||||
{
|
||||
int nc = cinfo->out_color_components; /* number of color components */
|
||||
int max_colors = cinfo->desired_number_of_colors;
|
||||
int total_colors, iroot, i, j;
|
||||
boolean changed;
|
||||
long temp;
|
||||
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
||||
|
||||
/* We can allocate at least the nc'th root of max_colors per component. */
|
||||
/* Compute floor(nc'th root of max_colors). */
|
||||
iroot = 1;
|
||||
do {
|
||||
iroot++;
|
||||
temp = iroot; /* set temp = iroot ** nc */
|
||||
for (i = 1; i < nc; i++)
|
||||
temp *= iroot;
|
||||
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
||||
iroot--; /* now iroot = floor(root) */
|
||||
|
||||
/* Must have at least 2 color values per component */
|
||||
if (iroot < 2)
|
||||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
||||
|
||||
/* Initialize to iroot color values for each component */
|
||||
total_colors = 1;
|
||||
for (i = 0; i < nc; i++) {
|
||||
Ncolors[i] = iroot;
|
||||
total_colors *= iroot;
|
||||
}
|
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented.
|
||||
* Sometimes, the first component can be incremented more than once!
|
||||
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
||||
* In RGB colorspace, try to increment G first, then R, then B.
|
||||
*/
|
||||
do {
|
||||
changed = FALSE;
|
||||
for (i = 0; i < nc; i++) {
|
||||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
||||
/* calculate new total_colors if Ncolors[j] is incremented */
|
||||
temp = total_colors / Ncolors[j];
|
||||
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
||||
if (temp > (long) max_colors)
|
||||
break; /* won't fit, done with this pass */
|
||||
Ncolors[j]++; /* OK, apply the increment */
|
||||
total_colors = (int) temp;
|
||||
changed = TRUE;
|
||||
}
|
||||
} while (changed);
|
||||
|
||||
return total_colors;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return j'th output value, where j will range from 0 to maxj */
|
||||
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
||||
{
|
||||
/* We always provide values 0 and MAXJSAMPLE for each component;
|
||||
* any additional values are equally spaced between these limits.
|
||||
* (Forcing the upper and lower values to the limits ensures that
|
||||
* dithering can't produce a color outside the selected gamut.)
|
||||
*/
|
||||
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return largest input value that should map to j'th output value */
|
||||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
||||
{
|
||||
/* Breakpoints are halfway between values returned by output_value */
|
||||
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the colormap.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_colormap (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPARRAY colormap; /* Created colormap */
|
||||
int total_colors; /* Number of distinct output colors */
|
||||
int i,j,k, nci, blksize, blkdist, ptr, val;
|
||||
|
||||
/* Select number of colors for each component */
|
||||
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
||||
|
||||
/* Report selected color counts */
|
||||
if (cinfo->out_color_components == 3)
|
||||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
||||
total_colors, cquantize->Ncolors[0],
|
||||
cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
||||
else
|
||||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
||||
|
||||
/* Allocate and fill in the colormap. */
|
||||
/* The colors are ordered in the map in standard row-major order, */
|
||||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
||||
|
||||
colormap = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
/* blkdist is distance between groups of identical entries for a component */
|
||||
blkdist = total_colors;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colormap entries for i'th color component */
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blkdist / nci;
|
||||
for (j = 0; j < nci; j++) {
|
||||
/* Compute j'th output value (out of nci) for component */
|
||||
val = output_value(cinfo, i, j, nci-1);
|
||||
/* Fill in all colormap entries that have this value of this component */
|
||||
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
||||
/* fill in blksize entries beginning at ptr */
|
||||
for (k = 0; k < blksize; k++)
|
||||
colormap[i][ptr+k] = (JSAMPLE) val;
|
||||
}
|
||||
}
|
||||
blkdist = blksize; /* blksize of this color is blkdist of next */
|
||||
}
|
||||
|
||||
/* Save the colormap in private storage,
|
||||
* where it will survive color quantization mode changes.
|
||||
*/
|
||||
cquantize->sv_colormap = colormap;
|
||||
cquantize->sv_actual = total_colors;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the color index table.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_colorindex (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPROW indexptr;
|
||||
int i,j,k, nci, blksize, val, pad;
|
||||
|
||||
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||||
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
||||
* This is not necessary in the other dithering modes. However, we
|
||||
* flag whether it was done in case user changes dithering mode.
|
||||
*/
|
||||
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
||||
pad = MAXJSAMPLE*2;
|
||||
cquantize->is_padded = TRUE;
|
||||
} else {
|
||||
pad = 0;
|
||||
cquantize->is_padded = FALSE;
|
||||
}
|
||||
|
||||
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (MAXJSAMPLE+1 + pad),
|
||||
(JDIMENSION) cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
blksize = cquantize->sv_actual;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colorindex entries for i'th color component */
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blksize / nci;
|
||||
|
||||
/* adjust colorindex pointers to provide padding at negative indexes. */
|
||||
if (pad)
|
||||
cquantize->colorindex[i] += MAXJSAMPLE;
|
||||
|
||||
/* in loop, val = index of current output value, */
|
||||
/* and k = largest j that maps to current val */
|
||||
indexptr = cquantize->colorindex[i];
|
||||
val = 0;
|
||||
k = largest_input_value(cinfo, i, 0, nci-1);
|
||||
for (j = 0; j <= MAXJSAMPLE; j++) {
|
||||
while (j > k) /* advance val if past boundary */
|
||||
k = largest_input_value(cinfo, i, ++val, nci-1);
|
||||
/* premultiply so that no multiplication needed in main processing */
|
||||
indexptr[j] = (JSAMPLE) (val * blksize);
|
||||
}
|
||||
/* Pad at both ends if necessary */
|
||||
if (pad)
|
||||
for (j = 1; j <= MAXJSAMPLE; j++) {
|
||||
indexptr[-j] = indexptr[0];
|
||||
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create an ordered-dither array for a component having ncolors
|
||||
* distinct output values.
|
||||
*/
|
||||
|
||||
LOCAL(ODITHER_MATRIX_PTR)
|
||||
make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
||||
{
|
||||
ODITHER_MATRIX_PTR odither;
|
||||
int j,k;
|
||||
INT32 num,den;
|
||||
|
||||
odither = (ODITHER_MATRIX_PTR)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(ODITHER_MATRIX));
|
||||
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
||||
* Hence the dither value for the matrix cell with fill order f
|
||||
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
||||
* On 16-bit-int machine, be careful to avoid overflow.
|
||||
*/
|
||||
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
||||
for (j = 0; j < ODITHER_SIZE; j++) {
|
||||
for (k = 0; k < ODITHER_SIZE; k++) {
|
||||
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
||||
* MAXJSAMPLE;
|
||||
/* Ensure round towards zero despite C's lack of consistency
|
||||
* about rounding negative values in integer division...
|
||||
*/
|
||||
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
||||
}
|
||||
}
|
||||
return odither;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the ordered-dither tables.
|
||||
* Components having the same number of representative colors may
|
||||
* share a dither table.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_odither_tables (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
ODITHER_MATRIX_PTR odither;
|
||||
int i, j, nci;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
odither = NULL; /* search for matching prior component */
|
||||
for (j = 0; j < i; j++) {
|
||||
if (nci == cquantize->Ncolors[j]) {
|
||||
odither = cquantize->odither[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (odither == NULL) /* need a new table? */
|
||||
odither = make_odither_array(cinfo, nci);
|
||||
cquantize->odither[i] = odither;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Map some rows of pixels to the output colormapped representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPARRAY colorindex = cquantize->colorindex;
|
||||
register int pixcode, ci;
|
||||
register JSAMPROW ptrin, ptrout;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
register int nc = cinfo->out_color_components;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = 0;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
||||
}
|
||||
*ptrout++ = (JSAMPLE) pixcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register JSAMPROW ptrin, ptrout;
|
||||
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
||||
*ptrout++ = (JSAMPLE) pixcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex_ci;
|
||||
int * dither; /* points to active row of dither matrix */
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int nc = cinfo->out_color_components;
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void FAR *) output_buf[row],
|
||||
(size_t) (width * SIZEOF(JSAMPLE)));
|
||||
row_index = cquantize->row_index;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
dither = cquantize->odither[ci][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||||
* select output value, accumulate into output code for this pixel.
|
||||
* Range-limiting need not be done explicitly, as we have extended
|
||||
* the colorindex table to produce the right answers for out-of-range
|
||||
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
||||
* required amount of padding.
|
||||
*/
|
||||
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
||||
input_ptr += nc;
|
||||
output_ptr++;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
}
|
||||
/* Advance row index for next row */
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int * dither0; /* points to active row of dither matrix */
|
||||
int * dither1;
|
||||
int * dither2;
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
row_index = cquantize->row_index;
|
||||
input_ptr = input_buf[row];
|
||||
output_ptr = output_buf[row];
|
||||
dither0 = cquantize->odither[0][row_index];
|
||||
dither1 = cquantize->odither[1][row_index];
|
||||
dither2 = cquantize->odither[2][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
||||
dither0[col_index]]);
|
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
||||
dither1[col_index]]);
|
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
||||
dither2[col_index]]);
|
||||
*output_ptr++ = (JSAMPLE) pixcode;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with Floyd-Steinberg dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register LOCFSERROR cur; /* current error or pixel value */
|
||||
LOCFSERROR belowerr; /* error for pixel below cur */
|
||||
LOCFSERROR bpreverr; /* error for below/prev col */
|
||||
LOCFSERROR bnexterr; /* error for below/next col */
|
||||
LOCFSERROR delta;
|
||||
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex_ci;
|
||||
JSAMPROW colormap_ci;
|
||||
int pixcode;
|
||||
int nc = cinfo->out_color_components;
|
||||
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
||||
int dirnc; /* dir * nc */
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void FAR *) output_buf[row],
|
||||
(size_t) (width * SIZEOF(JSAMPLE)));
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
if (cquantize->on_odd_row) {
|
||||
/* work right to left in this row */
|
||||
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
||||
output_ptr += width-1;
|
||||
dir = -1;
|
||||
dirnc = -nc;
|
||||
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
||||
} else {
|
||||
/* work left to right in this row */
|
||||
dir = 1;
|
||||
dirnc = nc;
|
||||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
||||
}
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
colormap_ci = cquantize->sv_colormap[ci];
|
||||
/* Preset error values: no error propagated to first pixel from left */
|
||||
cur = 0;
|
||||
/* and no error propagated to row below yet */
|
||||
belowerr = bpreverr = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* cur holds the error propagated from the previous pixel on the
|
||||
* current line. Add the error propagated from the previous line
|
||||
* to form the complete error correction term for this pixel, and
|
||||
* round the error term (which is expressed * 16) to an integer.
|
||||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
||||
* for either sign of the error value.
|
||||
* Note: errorptr points to *previous* column's array entry.
|
||||
*/
|
||||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
||||
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||||
* The maximum error is +- MAXJSAMPLE; this sets the required size
|
||||
* of the range_limit array.
|
||||
*/
|
||||
cur += GETJSAMPLE(*input_ptr);
|
||||
cur = GETJSAMPLE(range_limit[cur]);
|
||||
/* Select output value, accumulate into output code for this pixel */
|
||||
pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
||||
*output_ptr += (JSAMPLE) pixcode;
|
||||
/* Compute actual representation error at this pixel */
|
||||
/* Note: we can do this even though we don't have the final */
|
||||
/* pixel code, because the colormap is orthogonal. */
|
||||
cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
||||
/* Compute error fractions to be propagated to adjacent pixels.
|
||||
* Add these into the running sums, and simultaneously shift the
|
||||
* next-line error sums left by 1 column.
|
||||
*/
|
||||
bnexterr = cur;
|
||||
delta = cur * 2;
|
||||
cur += delta; /* form error * 3 */
|
||||
errorptr[0] = (FSERROR) (bpreverr + cur);
|
||||
cur += delta; /* form error * 5 */
|
||||
bpreverr = belowerr + cur;
|
||||
belowerr = bnexterr;
|
||||
cur += delta; /* form error * 7 */
|
||||
/* At this point cur contains the 7/16 error value to be propagated
|
||||
* to the next pixel on the current line, and all the errors for the
|
||||
* next line have been shifted over. We are therefore ready to move on.
|
||||
*/
|
||||
input_ptr += dirnc; /* advance input ptr to next column */
|
||||
output_ptr += dir; /* advance output ptr to next column */
|
||||
errorptr += dir; /* advance errorptr to current column */
|
||||
}
|
||||
/* Post-loop cleanup: we must unload the final error value into the
|
||||
* final fserrors[] entry. Note we need not unload belowerr because
|
||||
* it is for the dummy column before or after the actual array.
|
||||
*/
|
||||
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
||||
}
|
||||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Allocate workspace for Floyd-Steinberg errors.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
alloc_fs_workspace (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
cquantize->fserrors[i] = (FSERRPTR)
|
||||
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for one-pass color quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
/* Install my colormap. */
|
||||
cinfo->colormap = cquantize->sv_colormap;
|
||||
cinfo->actual_number_of_colors = cquantize->sv_actual;
|
||||
|
||||
/* Initialize for desired dithering mode. */
|
||||
switch (cinfo->dither_mode) {
|
||||
case JDITHER_NONE:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub.color_quantize = color_quantize3;
|
||||
else
|
||||
cquantize->pub.color_quantize = color_quantize;
|
||||
break;
|
||||
case JDITHER_ORDERED:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub.color_quantize = quantize3_ord_dither;
|
||||
else
|
||||
cquantize->pub.color_quantize = quantize_ord_dither;
|
||||
cquantize->row_index = 0; /* initialize state for ordered dither */
|
||||
/* If user changed to ordered dither from another mode,
|
||||
* we must recreate the color index table with padding.
|
||||
* This will cost extra space, but probably isn't very likely.
|
||||
*/
|
||||
if (! cquantize->is_padded)
|
||||
create_colorindex(cinfo);
|
||||
/* Create ordered-dither tables if we didn't already. */
|
||||
if (cquantize->odither[0] == NULL)
|
||||
create_odither_tables(cinfo);
|
||||
break;
|
||||
case JDITHER_FS:
|
||||
cquantize->pub.color_quantize = quantize_fs_dither;
|
||||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
||||
/* Allocate Floyd-Steinberg workspace if didn't already. */
|
||||
if (cquantize->fserrors[0] == NULL)
|
||||
alloc_fs_workspace(cinfo);
|
||||
/* Initialize the propagated errors to zero. */
|
||||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++)
|
||||
jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_1_quant (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work in 1-pass case */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
* Shouldn't get to this module!
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
new_color_map_1_quant (j_decompress_ptr cinfo)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for 1-pass color quantization.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize;
|
||||
|
||||
cquantize = (my_cquantize_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_cquantizer));
|
||||
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
||||
cquantize->pub.start_pass = start_pass_1_quant;
|
||||
cquantize->pub.finish_pass = finish_pass_1_quant;
|
||||
cquantize->pub.new_color_map = new_color_map_1_quant;
|
||||
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
||||
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
||||
|
||||
/* Make sure my internal arrays won't overflow */
|
||||
if (cinfo->out_color_components > MAX_Q_COMPS)
|
||||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
||||
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
||||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
||||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
||||
|
||||
/* Create the colormap and color index table. */
|
||||
create_colormap(cinfo);
|
||||
create_colorindex(cinfo);
|
||||
|
||||
/* Allocate Floyd-Steinberg workspace now if requested.
|
||||
* We do this now since it is FAR storage and may affect the memory
|
||||
* manager's space calculations. If the user changes to FS dither
|
||||
* mode in a later pass, we will allocate the space then, and will
|
||||
* possibly overrun the max_memory_to_use setting.
|
||||
*/
|
||||
if (cinfo->dither_mode == JDITHER_FS)
|
||||
alloc_fs_workspace(cinfo);
|
||||
}
|
||||
|
||||
#endif /* QUANT_1PASS_SUPPORTED */
|
1310
TMessagesProj/jni/libjpeg/jquant2.c
Executable file
185
TMessagesProj/jni/libjpeg/jutils.c
Executable file
@ -0,0 +1,185 @@
|
||||
/*
|
||||
* jutils.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains tables and miscellaneous utility routines needed
|
||||
* for both compression and decompression.
|
||||
* Note we prefix all global names with "j" to minimize conflicts with
|
||||
* a surrounding application.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
|
||||
* of a DCT block read in natural order (left to right, top to bottom).
|
||||
*/
|
||||
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
|
||||
const int jpeg_zigzag_order[DCTSIZE2] = {
|
||||
0, 1, 5, 6, 14, 15, 27, 28,
|
||||
2, 4, 7, 13, 16, 26, 29, 42,
|
||||
3, 8, 12, 17, 25, 30, 41, 43,
|
||||
9, 11, 18, 24, 31, 40, 44, 53,
|
||||
10, 19, 23, 32, 39, 45, 52, 54,
|
||||
20, 22, 33, 38, 46, 51, 55, 60,
|
||||
21, 34, 37, 47, 50, 56, 59, 61,
|
||||
35, 36, 48, 49, 57, 58, 62, 63
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* jpeg_natural_order[i] is the natural-order position of the i'th element
|
||||
* of zigzag order.
|
||||
*
|
||||
* When reading corrupted data, the Huffman decoders could attempt
|
||||
* to reference an entry beyond the end of this array (if the decoded
|
||||
* zero run length reaches past the end of the block). To prevent
|
||||
* wild stores without adding an inner-loop test, we put some extra
|
||||
* "63"s after the real entries. This will cause the extra coefficient
|
||||
* to be stored in location 63 of the block, not somewhere random.
|
||||
* The worst case would be a run-length of 15, which means we need 16
|
||||
* fake entries.
|
||||
*/
|
||||
|
||||
const int jpeg_natural_order[DCTSIZE2+16] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63,
|
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||
63, 63, 63, 63, 63, 63, 63, 63
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic utilities
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jdiv_round_up (long a, long b)
|
||||
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
|
||||
/* Assumes a >= 0, b > 0 */
|
||||
{
|
||||
return (a + b - 1L) / b;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(long)
|
||||
jround_up (long a, long b)
|
||||
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
|
||||
/* Assumes a >= 0, b > 0 */
|
||||
{
|
||||
a += b - 1L;
|
||||
return a - (a % b);
|
||||
}
|
||||
|
||||
GLOBAL(long)
|
||||
jmin (long a, long b)
|
||||
{
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
|
||||
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
||||
* and coefficient-block arrays. This won't work on 80x86 because the arrays
|
||||
* are FAR and we're assuming a small-pointer memory model. However, some
|
||||
* DOS compilers provide far-pointer versions of memcpy() and memset() even
|
||||
* in the small-model libraries. These will be used if USE_FMEM is defined.
|
||||
* Otherwise, the routines below do it the hard way. (The performance cost
|
||||
* is not all that great, because these routines aren't very heavily used.)
|
||||
*/
|
||||
|
||||
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
|
||||
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
|
||||
#define FMEMZERO(target,size) MEMZERO(target,size)
|
||||
#else /* 80x86 case, define if we can */
|
||||
#ifdef USE_FMEM
|
||||
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
|
||||
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols)
|
||||
/* Copy some rows of samples from one place to another.
|
||||
* num_rows rows are copied from input_array[source_row++]
|
||||
* to output_array[dest_row++]; these areas may overlap for duplication.
|
||||
* The source and destination arrays must be at least as wide as num_cols.
|
||||
*/
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
#ifdef FMEMCOPY
|
||||
register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
|
||||
#else
|
||||
register JDIMENSION count;
|
||||
#endif
|
||||
register int row;
|
||||
|
||||
input_array += source_row;
|
||||
output_array += dest_row;
|
||||
|
||||
for (row = num_rows; row > 0; row--) {
|
||||
inptr = *input_array++;
|
||||
outptr = *output_array++;
|
||||
#ifdef FMEMCOPY
|
||||
FMEMCOPY(outptr, inptr, count);
|
||||
#else
|
||||
for (count = num_cols; count > 0; count--)
|
||||
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks)
|
||||
/* Copy a row of coefficient blocks from one place to another. */
|
||||
{
|
||||
#ifdef FMEMCOPY
|
||||
FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
|
||||
#else
|
||||
register JCOEFPTR inptr, outptr;
|
||||
register long count;
|
||||
|
||||
inptr = (JCOEFPTR) input_row;
|
||||
outptr = (JCOEFPTR) output_row;
|
||||
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
|
||||
*outptr++ = *inptr++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jzero_far (void FAR * target, size_t bytestozero)
|
||||
/* Zero out a chunk of FAR memory. */
|
||||
/* This might be sample-array data, block-array data, or alloc_large data. */
|
||||
{
|
||||
#ifdef FMEMZERO
|
||||
FMEMZERO(target, bytestozero);
|
||||
#else
|
||||
register char FAR * ptr = (char FAR *) target;
|
||||
register size_t count;
|
||||
|
||||
for (count = bytestozero; count > 0; count--) {
|
||||
*ptr++ = 0;
|
||||
}
|
||||
#endif
|
||||
}
|
14
TMessagesProj/jni/libjpeg/jversion.h
Executable file
@ -0,0 +1,14 @@
|
||||
/*
|
||||
* jversion.h
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains software version identification.
|
||||
*/
|
||||
|
||||
|
||||
#define JVERSION "6b 27-Mar-1998"
|
||||
|
||||
#define JCOPYRIGHT "Copyright (C) 1998, Thomas G. Lane"
|
14
TMessagesProj/jni/utils.c
Normal file
@ -0,0 +1,14 @@
|
||||
#include "utils.h"
|
||||
|
||||
void throwException(JNIEnv *env, char *format, ...) {
|
||||
jclass exClass = (*env)->FindClass(env, "java/lang/UnsupportedOperationException");
|
||||
if (!exClass) {
|
||||
return;
|
||||
}
|
||||
char dest[256];
|
||||
va_list argptr;
|
||||
va_start(argptr, format);
|
||||
vsprintf(dest, format, argptr);
|
||||
va_end(argptr);
|
||||
(*env)->ThrowNew(env, exClass, dest);
|
||||
}
|
@ -2,6 +2,7 @@
|
||||
#define log_h
|
||||
|
||||
#include <android/log.h>
|
||||
#include <jni.h>
|
||||
|
||||
#define LOG_TAG "tmessages_native"
|
||||
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
|
||||
@ -16,4 +17,6 @@
|
||||
#define min(x, y) ((x) < (y)) ? (x) : (y)
|
||||
#endif
|
||||
|
||||
void throwException(JNIEnv *env, char *format, ...);
|
||||
|
||||
#endif
|
||||
|
BIN
TMessagesProj/src/main/assets/emoji/emoji2.0x.jpg
Normal file
After Width: | Height: | Size: 621 KiB |
BIN
TMessagesProj/src/main/assets/emoji/emoji2.0x_a.jpg
Normal file
After Width: | Height: | Size: 280 KiB |
BIN
TMessagesProj/src/main/assets/emoji/emoji3.0x.jpg
Normal file
After Width: | Height: | Size: 1.1 MiB |
BIN
TMessagesProj/src/main/assets/emoji/emoji3.0x_a.jpg
Normal file
After Width: | Height: | Size: 475 KiB |
Before Width: | Height: | Size: 722 KiB |
Before Width: | Height: | Size: 531 KiB |
Before Width: | Height: | Size: 944 KiB |
Before Width: | Height: | Size: 402 KiB |
Before Width: | Height: | Size: 470 KiB |
@ -0,0 +1,109 @@
|
||||
/*
|
||||
* This is the source code of Telegram for Android v. 1.4.x.
|
||||
* It is licensed under GNU GPL v. 2 or later.
|
||||
* You should have received a copy of the license in this archive (see LICENSE).
|
||||
*
|
||||
* Copyright Nikolai Kudashov, 2013-2014.
|
||||
*/
|
||||
|
||||
package org.telegram.messenger;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
import jawnae.pyronet.PyroClientAdapter;
|
||||
|
||||
public class ConnectionContext extends PyroClientAdapter {
|
||||
|
||||
public static final boolean isDebugSession = false;
|
||||
private long sessionId;
|
||||
|
||||
private ArrayList<Long> processedMessageIds = new ArrayList<Long>();
|
||||
private ArrayList<Long> messagesIdsForConfirmation = new ArrayList<Long>();
|
||||
private ArrayList<Long> processedSessionChanges = new ArrayList<Long>();
|
||||
private int nextSeqNo = 0;
|
||||
|
||||
public ConnectionContext() {
|
||||
genereateNewSessionId();
|
||||
}
|
||||
|
||||
public void recreateSession() {
|
||||
processedMessageIds.clear();
|
||||
messagesIdsForConfirmation.clear();
|
||||
processedSessionChanges.clear();
|
||||
nextSeqNo = 0;
|
||||
|
||||
genereateNewSessionId();
|
||||
}
|
||||
|
||||
private void genereateNewSessionId() {
|
||||
long newSessionId = Utilities.random.nextLong();
|
||||
sessionId = isDebugSession ? (0xabcd000000000000L | (newSessionId & 0x0000ffffffffffffL)) : newSessionId;
|
||||
}
|
||||
|
||||
public long getSissionId() {
|
||||
return sessionId;
|
||||
}
|
||||
|
||||
public int generateMessageSeqNo(boolean increment) {
|
||||
int value = nextSeqNo;
|
||||
if (increment) {
|
||||
nextSeqNo++;
|
||||
}
|
||||
return value * 2 + (increment ? 1 : 0);
|
||||
}
|
||||
|
||||
boolean isMessageIdProcessed(long messageId) {
|
||||
return processedMessageIds.contains(messageId);
|
||||
}
|
||||
|
||||
public void addProcessedMessageId(long messageId) {
|
||||
if (processedMessageIds.size() > 1000 + 224) {
|
||||
for (int a = 0; a < Math.min(processedMessageIds.size(), 225); a++) {
|
||||
processedMessageIds.remove(0);
|
||||
}
|
||||
}
|
||||
processedMessageIds.add(messageId);
|
||||
}
|
||||
|
||||
public boolean hasMessagesToConfirm() {
|
||||
return !messagesIdsForConfirmation.isEmpty();
|
||||
}
|
||||
|
||||
public void addMessageToConfirm(long messageId) {
|
||||
messagesIdsForConfirmation.add(messageId);
|
||||
}
|
||||
|
||||
public NetworkMessage generateConfirmationRequest() {
|
||||
NetworkMessage networkMessage = null;
|
||||
|
||||
if (!messagesIdsForConfirmation.isEmpty()) {
|
||||
TLRPC.TL_msgs_ack msgAck = new TLRPC.TL_msgs_ack();
|
||||
msgAck.msg_ids = new ArrayList<Long>();
|
||||
msgAck.msg_ids.addAll(messagesIdsForConfirmation);
|
||||
|
||||
ByteBufferDesc os = new ByteBufferDesc(true);
|
||||
msgAck.serializeToStream(os);
|
||||
|
||||
networkMessage = new NetworkMessage();
|
||||
networkMessage.protoMessage = new TLRPC.TL_protoMessage();
|
||||
|
||||
networkMessage.protoMessage.msg_id = ConnectionsManager.getInstance().generateMessageId();
|
||||
networkMessage.protoMessage.seqno = generateMessageSeqNo(false);
|
||||
|
||||
networkMessage.protoMessage.bytes = os.length();
|
||||
networkMessage.protoMessage.body = msgAck;
|
||||
|
||||
messagesIdsForConfirmation.clear();
|
||||
}
|
||||
|
||||
return networkMessage;
|
||||
}
|
||||
|
||||
public boolean isSessionProcessed(long sessionId) {
|
||||
return processedSessionChanges.contains(sessionId);
|
||||
}
|
||||
|
||||
public void addProcessedSession(long sessionId) {
|
||||
processedSessionChanges.add(sessionId);
|
||||
}
|
||||
}
|
@ -31,13 +31,12 @@ import java.util.regex.Pattern;
|
||||
|
||||
public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.TcpConnectionDelegate {
|
||||
private HashMap<Integer, Datacenter> datacenters = new HashMap<Integer, Datacenter>();
|
||||
private HashMap<Long, ArrayList<Long>> processedMessageIdsSet = new HashMap<Long, ArrayList<Long>>();
|
||||
private HashMap<Long, Integer> nextSeqNoInSession = new HashMap<Long, Integer>();
|
||||
|
||||
private ArrayList<Long> sessionsToDestroy = new ArrayList<Long>();
|
||||
private ArrayList<Long> destroyingSessions = new ArrayList<Long>();
|
||||
private HashMap<Integer, ArrayList<Long>> quickAckIdToRequestIds = new HashMap<Integer, ArrayList<Long>>();
|
||||
private HashMap<Long, ArrayList<Long>> messagesIdsForConfirmation = new HashMap<Long, ArrayList<Long>>();
|
||||
private HashMap<Long, ArrayList<Long>> processedSessionChanges = new HashMap<Long, ArrayList<Long>>();
|
||||
|
||||
|
||||
private HashMap<Long, Integer> pingIdToDate = new HashMap<Long, Integer>();
|
||||
private ConcurrentHashMap<Integer, ArrayList<Long>> requestsByGuids = new ConcurrentHashMap<Integer, ArrayList<Long>>(100, 1.0f, 2);
|
||||
private ConcurrentHashMap<Long, Integer> requestsByClass = new ConcurrentHashMap<Long, Integer>(100, 1.0f, 2);
|
||||
@ -57,7 +56,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
public int timeDifference = 0;
|
||||
public int currentPingTime;
|
||||
private int lastDestroySessionRequestTime;
|
||||
public static final boolean isDebugSession = false;
|
||||
private boolean updatingDcSettings = false;
|
||||
private int updatingDcStartTime = 0;
|
||||
private int lastDcUpdateTime = 0;
|
||||
@ -327,10 +325,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
fillDatacenters();
|
||||
|
||||
for (Datacenter datacenter : datacenters.values()) {
|
||||
datacenter.authSessionId = getNewSessionId();
|
||||
}
|
||||
|
||||
if (datacenters.size() != 0 && currentDatacenterId == 0) {
|
||||
currentDatacenterId = 1;
|
||||
saveSession();
|
||||
@ -350,7 +344,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
datacenter = new Datacenter();
|
||||
datacenter.datacenterId = 2;
|
||||
datacenter.addAddressAndPort("109.239.131.193", 443);
|
||||
datacenter.addAddressAndPort("149.154.167.50", 443);
|
||||
datacenters.put(datacenter.datacenterId, datacenter);
|
||||
|
||||
datacenter = new Datacenter();
|
||||
@ -375,7 +369,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
datacenter = new Datacenter();
|
||||
datacenter.datacenterId = 2;
|
||||
datacenter.addAddressAndPort("109.239.131.195", 443);
|
||||
datacenter.addAddressAndPort("149.154.167.40", 443);
|
||||
datacenters.put(datacenter.datacenterId, datacenter);
|
||||
|
||||
datacenter = new Datacenter();
|
||||
@ -386,7 +380,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
} else if (datacenters.size() == 1) {
|
||||
Datacenter datacenter = new Datacenter();
|
||||
datacenter.datacenterId = 2;
|
||||
datacenter.addAddressAndPort("109.239.131.193", 443);
|
||||
datacenter.addAddressAndPort("149.154.167.50", 443);
|
||||
datacenters.put(datacenter.datacenterId, datacenter);
|
||||
|
||||
datacenter = new Datacenter();
|
||||
@ -421,14 +415,14 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
editor.putInt("lastDcUpdateTime", lastDcUpdateTime);
|
||||
|
||||
ArrayList<Long> sessions = new ArrayList<Long>();
|
||||
if (currentDatacenter.authSessionId != 0) {
|
||||
sessions.add(currentDatacenter.authSessionId);
|
||||
if (currentDatacenter.connection != null) {
|
||||
sessions.add(currentDatacenter.connection.getSissionId());
|
||||
}
|
||||
if (currentDatacenter.authDownloadSessionId != 0) {
|
||||
sessions.add(currentDatacenter.authDownloadSessionId);
|
||||
if (currentDatacenter.downloadConnection != null) {
|
||||
sessions.add(currentDatacenter.downloadConnection.getSissionId());
|
||||
}
|
||||
if (currentDatacenter.authUploadSessionId != 0) {
|
||||
sessions.add(currentDatacenter.authUploadSessionId);
|
||||
if (currentDatacenter.uploadConnection != null) {
|
||||
sessions.add(currentDatacenter.uploadConnection.getSissionId());
|
||||
}
|
||||
|
||||
if (!sessions.isEmpty()) {
|
||||
@ -488,39 +482,23 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
@Override
|
||||
public void run() {
|
||||
Datacenter datacenter = datacenterWithId(currentDatacenterId);
|
||||
recreateSession(datacenter.authSessionId, datacenter);
|
||||
recreateSession(datacenter.authDownloadSessionId, datacenter);
|
||||
recreateSession(datacenter.authUploadSessionId, datacenter);
|
||||
if (datacenter.connection != null) {
|
||||
datacenter.connection.recreateSession();
|
||||
}
|
||||
if (datacenter.downloadConnection != null) {
|
||||
datacenter.downloadConnection.recreateSession();
|
||||
}
|
||||
if (datacenter.uploadConnection != null) {
|
||||
datacenter.uploadConnection.recreateSession();
|
||||
}
|
||||
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassGeneric, datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassDownloadMedia, datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassUploadMedia, datacenter);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void recreateSession(long sessionId, Datacenter datacenter) {
|
||||
messagesIdsForConfirmation.remove(sessionId);
|
||||
processedMessageIdsSet.remove(sessionId);
|
||||
nextSeqNoInSession.remove(sessionId);
|
||||
processedSessionChanges.remove(sessionId);
|
||||
|
||||
if (sessionId == datacenter.authSessionId) {
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassGeneric, datacenter);
|
||||
FileLog.d("tmessages", "***** Recreate generic session");
|
||||
datacenter.authSessionId = getNewSessionId();
|
||||
} else if (sessionId == datacenter.authDownloadSessionId) {
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassDownloadMedia, datacenter);
|
||||
FileLog.d("tmessages", "***** Recreate download session");
|
||||
datacenter.authDownloadSessionId = getNewSessionId();
|
||||
} else if (sessionId == datacenter.authUploadSessionId) {
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassUploadMedia, datacenter);
|
||||
FileLog.d("tmessages", "***** Recreate upload session");
|
||||
datacenter.authUploadSessionId = getNewSessionId();
|
||||
}
|
||||
}
|
||||
|
||||
long getNewSessionId() {
|
||||
long newSessionId = MessagesController.random.nextLong();
|
||||
return isDebugSession ? (0xabcd000000000000L | (newSessionId & 0x0000ffffffffffffL)) : newSessionId;
|
||||
}
|
||||
|
||||
long generateMessageId() {
|
||||
long messageId = (long)((((double)System.currentTimeMillis() + ((double)timeDifference) * 1000) * 4294967296.0) / 1000.0);
|
||||
if (messageId <= lastOutgoingMessageId) {
|
||||
@ -537,41 +515,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
return (long)(messageId / 4294967296.0 * 1000);
|
||||
}
|
||||
|
||||
int generateMessageSeqNo(long session, boolean increment) {
|
||||
int value = 0;
|
||||
if (nextSeqNoInSession.containsKey(session)) {
|
||||
value = nextSeqNoInSession.get(session);
|
||||
}
|
||||
if (increment) {
|
||||
nextSeqNoInSession.put(session, value + 1);
|
||||
}
|
||||
return value * 2 + (increment ? 1 : 0);
|
||||
}
|
||||
|
||||
boolean isMessageIdProcessed(long sessionId, long messageId) {
|
||||
ArrayList<Long> set = processedMessageIdsSet.get(sessionId);
|
||||
return set != null && set.contains(messageId);
|
||||
}
|
||||
|
||||
void addProcessedMessageId(long sessionId, long messageId) {
|
||||
ArrayList<Long> set = processedMessageIdsSet.get(sessionId);
|
||||
if (set != null) {
|
||||
final int eraseLimit = 1000;
|
||||
final int eraseThreshold = 224;
|
||||
|
||||
if (set.size() > eraseLimit + eraseThreshold) {
|
||||
for (int a = 0; a < Math.min(set.size(), eraseThreshold + 1); a++) {
|
||||
set.remove(0);
|
||||
}
|
||||
}
|
||||
set.add(messageId);
|
||||
} else {
|
||||
ArrayList<Long> sessionMap = new ArrayList<Long>();
|
||||
sessionMap.add(messageId);
|
||||
processedMessageIdsSet.put(sessionId, sessionMap);
|
||||
}
|
||||
}
|
||||
|
||||
//================================================================================
|
||||
// Requests manage
|
||||
//================================================================================
|
||||
@ -704,7 +647,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
if (existing == null) {
|
||||
existing = new Datacenter();
|
||||
existing.datacenterId = datacenterDesc.id;
|
||||
existing.authSessionId = MessagesController.random.nextLong();
|
||||
datacentersArr.add(existing);
|
||||
datacenterMap.put(existing.datacenterId, existing);
|
||||
}
|
||||
@ -988,7 +930,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
datacenter.downloadConnection = new TcpConnection(datacenter.datacenterId);
|
||||
datacenter.downloadConnection.delegate = this;
|
||||
datacenter.downloadConnection.transportRequestClass = RPCRequest.RPCRequestClassDownloadMedia;
|
||||
datacenter.authDownloadSessionId = getNewSessionId();
|
||||
}
|
||||
datacenter.downloadConnection.connect();
|
||||
}
|
||||
@ -1000,7 +941,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
datacenter.uploadConnection = new TcpConnection(datacenter.datacenterId);
|
||||
datacenter.uploadConnection.delegate = this;
|
||||
datacenter.uploadConnection.transportRequestClass = RPCRequest.RPCRequestClassUploadMedia;
|
||||
datacenter.authUploadSessionId = getNewSessionId();
|
||||
}
|
||||
datacenter.uploadConnection.connect();
|
||||
}
|
||||
@ -1094,13 +1034,13 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
maxTimeout = 30.0;
|
||||
}
|
||||
|
||||
long sessionId = 0;
|
||||
TcpConnection connection = null;
|
||||
if ((request.flags & RPCRequest.RPCRequestClassGeneric) != 0) {
|
||||
sessionId = requestDatacenter.authSessionId;
|
||||
connection = requestDatacenter.connection;
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassDownloadMedia) != 0) {
|
||||
sessionId = requestDatacenter.authDownloadSessionId;
|
||||
connection = requestDatacenter.downloadConnection;
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassUploadMedia) != 0 ) {
|
||||
sessionId = requestDatacenter.authUploadSessionId;
|
||||
connection = requestDatacenter.uploadConnection;
|
||||
}
|
||||
|
||||
boolean forceThisRequest = (request.flags & requestClass) != 0 && (_datacenterId == Integer.MIN_VALUE || requestDatacenter.datacenterId == _datacenterId);
|
||||
@ -1138,7 +1078,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
networkMessage.protoMessage = new TLRPC.TL_protoMessage();
|
||||
|
||||
if (request.runningMessageSeqNo == 0) {
|
||||
request.runningMessageSeqNo = generateMessageSeqNo(sessionId, true);
|
||||
request.runningMessageSeqNo = connection.generateMessageSeqNo(true);
|
||||
request.runningMessageId = generateMessageId();
|
||||
}
|
||||
networkMessage.protoMessage.msg_id = request.runningMessageId;
|
||||
@ -1157,12 +1097,12 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
request.transportChannelToken = datacenterDownloadTransportToken;
|
||||
ArrayList<NetworkMessage> arr = new ArrayList<NetworkMessage>();
|
||||
arr.add(networkMessage);
|
||||
proceedToSendingMessages(arr, sessionId, requestDatacenter.downloadConnection, false, false);
|
||||
proceedToSendingMessages(arr, connection, false, false);
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassUploadMedia) != 0) {
|
||||
request.transportChannelToken = datacenterUploadTransportToken;
|
||||
ArrayList<NetworkMessage> arr = new ArrayList<NetworkMessage>();
|
||||
arr.add(networkMessage);
|
||||
proceedToSendingMessages(arr, sessionId, requestDatacenter.uploadConnection, false, false);
|
||||
proceedToSendingMessages(arr, connection, false, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1184,7 +1124,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
destroyingSessions.add(it);
|
||||
|
||||
NetworkMessage networkMessage = new NetworkMessage();
|
||||
networkMessage.protoMessage = wrapMessage(destroySession, currentDatacenter.authSessionId, false);
|
||||
networkMessage.protoMessage = wrapMessage(destroySession, currentDatacenter.connection, false);
|
||||
if (networkMessage.protoMessage != null) {
|
||||
addMessageToDatacenter(genericMessagesToDatacenters, currentDatacenter.datacenterId, networkMessage);
|
||||
}
|
||||
@ -1226,7 +1166,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
break;
|
||||
}
|
||||
}
|
||||
Datacenter newDc = allDc.get(Math.abs(MessagesController.random.nextInt()) % allDc.size());
|
||||
Datacenter newDc = allDc.get(Math.abs(Utilities.random.nextInt() % allDc.size()));
|
||||
request.runningDatacenterId = newDc.datacenterId;
|
||||
}
|
||||
}
|
||||
@ -1312,13 +1252,13 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
int requestLength = os.length();
|
||||
|
||||
if (requestLength != 0) {
|
||||
long sessionId = 0;
|
||||
TcpConnection connection = null;
|
||||
if ((request.flags & RPCRequest.RPCRequestClassGeneric) != 0) {
|
||||
sessionId = requestDatacenter.authSessionId;
|
||||
connection = requestDatacenter.connection;
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassDownloadMedia) != 0) {
|
||||
sessionId = requestDatacenter.authDownloadSessionId;
|
||||
connection = requestDatacenter.downloadConnection;
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassUploadMedia) != 0) {
|
||||
sessionId = requestDatacenter.authUploadSessionId;
|
||||
connection = requestDatacenter.uploadConnection;
|
||||
}
|
||||
|
||||
if (canCompress) {
|
||||
@ -1340,7 +1280,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
NetworkMessage networkMessage = new NetworkMessage();
|
||||
networkMessage.protoMessage = new TLRPC.TL_protoMessage();
|
||||
networkMessage.protoMessage.msg_id = messageId;
|
||||
networkMessage.protoMessage.seqno = generateMessageSeqNo(sessionId, true);
|
||||
networkMessage.protoMessage.seqno = connection.generateMessageSeqNo(true);
|
||||
networkMessage.protoMessage.bytes = requestLength;
|
||||
networkMessage.protoMessage.body = request.rpcRequest;
|
||||
networkMessage.rawRequest = request.rawRequest;
|
||||
@ -1359,11 +1299,11 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassDownloadMedia) != 0) {
|
||||
ArrayList<NetworkMessage> arr = new ArrayList<NetworkMessage>();
|
||||
arr.add(networkMessage);
|
||||
proceedToSendingMessages(arr, sessionId, requestDatacenter.downloadConnection, false, false);
|
||||
proceedToSendingMessages(arr, requestDatacenter.downloadConnection, false, false);
|
||||
} else if ((request.flags & RPCRequest.RPCRequestClassUploadMedia) != 0) {
|
||||
ArrayList<NetworkMessage> arr = new ArrayList<NetworkMessage>();
|
||||
arr.add(networkMessage);
|
||||
proceedToSendingMessages(arr, sessionId, requestDatacenter.uploadConnection, false, false);
|
||||
proceedToSendingMessages(arr, requestDatacenter.uploadConnection, false, false);
|
||||
} else {
|
||||
FileLog.e("tmessages", "***** Error: request " + request.rawRequest + " has undefined session");
|
||||
}
|
||||
@ -1376,13 +1316,10 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
}
|
||||
|
||||
for (Datacenter datacenter : datacenters.values()) {
|
||||
if (genericMessagesToDatacenters.get(datacenter.datacenterId) == null && datacenter.connection != null && datacenter.connection.channelToken != 0) {
|
||||
ArrayList<Long> arr = messagesIdsForConfirmation.get(datacenter.authSessionId);
|
||||
if (arr != null && arr.size() != 0) {
|
||||
if (genericMessagesToDatacenters.get(datacenter.datacenterId) == null && datacenter.connection != null && datacenter.connection.channelToken != 0 && datacenter.connection.hasMessagesToConfirm()) {
|
||||
genericMessagesToDatacenters.put(datacenter.datacenterId, new ArrayList<NetworkMessage>());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int iter : genericMessagesToDatacenters.keySet()) {
|
||||
Datacenter datacenter = datacenterWithId(iter);
|
||||
@ -1457,7 +1394,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
datacenter.connection.transportRequestClass = RPCRequest.RPCRequestClassGeneric;
|
||||
}
|
||||
|
||||
proceedToSendingMessages(arr, datacenter.authSessionId, datacenter.connection, hasSendMessage, arr.size() != 0);
|
||||
proceedToSendingMessages(arr, datacenter.connection, hasSendMessage, arr.size() != 0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1531,7 +1468,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
arr.add(message);
|
||||
}
|
||||
|
||||
TLRPC.TL_protoMessage wrapMessage(TLObject message, long sessionId, boolean meaningful) {
|
||||
TLRPC.TL_protoMessage wrapMessage(TLObject message, TcpConnection connection, boolean meaningful) {
|
||||
ByteBufferDesc os = new ByteBufferDesc(true);
|
||||
message.serializeToStream(os);
|
||||
|
||||
@ -1540,7 +1477,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
protoMessage.msg_id = generateMessageId();
|
||||
protoMessage.bytes = os.length();
|
||||
protoMessage.body = message;
|
||||
protoMessage.seqno = generateMessageSeqNo(sessionId, meaningful);
|
||||
protoMessage.seqno = connection.generateMessageSeqNo(meaningful);
|
||||
return protoMessage;
|
||||
} else {
|
||||
FileLog.e("tmessages", "***** Couldn't serialize " + message);
|
||||
@ -1548,8 +1485,8 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
}
|
||||
}
|
||||
|
||||
void proceedToSendingMessages(ArrayList<NetworkMessage> messageList, long sessionId, TcpConnection connection, boolean reportAck, boolean requestShortTimeout) {
|
||||
if (sessionId == 0) {
|
||||
void proceedToSendingMessages(ArrayList<NetworkMessage> messageList, TcpConnection connection, boolean reportAck, boolean requestShortTimeout) {
|
||||
if (connection.getSissionId() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1558,43 +1495,20 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
messages.addAll(messageList);
|
||||
}
|
||||
|
||||
final ArrayList<Long> arr = messagesIdsForConfirmation.get(sessionId);
|
||||
if (arr != null && arr.size() != 0) {
|
||||
TLRPC.TL_msgs_ack msgAck = new TLRPC.TL_msgs_ack();
|
||||
msgAck.msg_ids = new ArrayList<Long>();
|
||||
msgAck.msg_ids.addAll(arr);
|
||||
|
||||
ByteBufferDesc os = new ByteBufferDesc(true);
|
||||
msgAck.serializeToStream(os);
|
||||
|
||||
if (os.length() != 0) {
|
||||
NetworkMessage networkMessage = new NetworkMessage();
|
||||
networkMessage.protoMessage = new TLRPC.TL_protoMessage();
|
||||
|
||||
networkMessage.protoMessage.msg_id = generateMessageId();
|
||||
networkMessage.protoMessage.seqno = generateMessageSeqNo(sessionId, false);
|
||||
|
||||
networkMessage.protoMessage.bytes = os.length();
|
||||
networkMessage.protoMessage.body = msgAck;
|
||||
|
||||
messages.add(networkMessage);
|
||||
} else {
|
||||
FileLog.e("tmessages", "***** Couldn't serialize ");
|
||||
NetworkMessage message = connection.generateConfirmationRequest();
|
||||
if (message != null) {
|
||||
messages.add(message);
|
||||
}
|
||||
|
||||
arr.clear();
|
||||
sendMessagesToTransport(messages, connection, reportAck, requestShortTimeout);
|
||||
}
|
||||
|
||||
sendMessagesToTransport(messages, connection, sessionId, reportAck, requestShortTimeout);
|
||||
}
|
||||
|
||||
void sendMessagesToTransport(ArrayList<NetworkMessage> messagesToSend, TcpConnection connection, long sessionId, boolean reportAck, boolean requestShortTimeout) {
|
||||
void sendMessagesToTransport(ArrayList<NetworkMessage> messagesToSend, TcpConnection connection, boolean reportAck, boolean requestShortTimeout) {
|
||||
if (messagesToSend.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (connection == null) {
|
||||
FileLog.e("tmessages", String.format("***** Transport for session 0x%x not found", sessionId));
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1611,7 +1525,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
if (currentSize >= 3 * 1024 || a == messagesToSend.size() - 1) {
|
||||
ArrayList<Integer> quickAckId = new ArrayList<Integer>();
|
||||
ByteBufferDesc transportData = createConnectionData(currentMessages, sessionId, quickAckId, connection);
|
||||
ByteBufferDesc transportData = createConnectionData(currentMessages, quickAckId, connection);
|
||||
|
||||
if (transportData != null) {
|
||||
if (reportAck && quickAckId.size() != 0) {
|
||||
@ -1646,7 +1560,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
}
|
||||
|
||||
@SuppressWarnings("unused")
|
||||
ByteBufferDesc createConnectionData(ArrayList<NetworkMessage> messages, long sessionId, ArrayList<Integer> quickAckId, TcpConnection connection) {
|
||||
ByteBufferDesc createConnectionData(ArrayList<NetworkMessage> messages, ArrayList<Integer> quickAckId, TcpConnection connection) {
|
||||
Datacenter datacenter = datacenterWithId(connection.getDatacenterId());
|
||||
if (datacenter.authKey == null) {
|
||||
return null;
|
||||
@ -1662,16 +1576,16 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
if (BuildVars.DEBUG_VERSION) {
|
||||
if (message.body instanceof TLRPC.invokeWithLayer12) {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)message.body).query);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)message.body).query);
|
||||
} else if (message.body instanceof TLRPC.initConnection) {
|
||||
TLRPC.initConnection r = (TLRPC.initConnection)message.body;
|
||||
if (r.query instanceof TLRPC.invokeWithLayer12) {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)r.query).query);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)r.query).query);
|
||||
} else {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + r.query);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + r.query);
|
||||
}
|
||||
} else {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + message.body);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + message.body);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1686,7 +1600,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
messageId = generateMessageId();
|
||||
messageBody = messageContainer;
|
||||
messageSeqNo = generateMessageSeqNo(sessionId, false);
|
||||
messageSeqNo = connection.generateMessageSeqNo(false);
|
||||
} else {
|
||||
messageId = message.msg_id;
|
||||
messageBody = message.body;
|
||||
@ -1702,16 +1616,16 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
containerMessages.add(message);
|
||||
if (BuildVars.DEBUG_VERSION) {
|
||||
if (message.body instanceof TLRPC.invokeWithLayer12) {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)message.body).query);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)message.body).query);
|
||||
} else if (message.body instanceof TLRPC.initConnection) {
|
||||
TLRPC.initConnection r = (TLRPC.initConnection)message.body;
|
||||
if (r.query instanceof TLRPC.invokeWithLayer12) {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)r.query).query);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + ((TLRPC.invokeWithLayer12)r.query).query);
|
||||
} else {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + r.query);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + r.query);
|
||||
}
|
||||
} else {
|
||||
FileLog.d("tmessages", sessionId + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + message.body);
|
||||
FileLog.d("tmessages", connection.getSissionId() + ":DC" + datacenter.datacenterId + "> Send message (" + message.seqno + ", " + message.msg_id + "): " + message.body);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1720,7 +1634,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
messageId = generateMessageId();
|
||||
messageBody = messageContainer;
|
||||
messageSeqNo = generateMessageSeqNo(sessionId, false);
|
||||
messageSeqNo = connection.generateMessageSeqNo(false);
|
||||
}
|
||||
|
||||
ByteBufferDesc sizeBuffer = new ByteBufferDesc(true);
|
||||
@ -1734,7 +1648,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
} else {
|
||||
innerOs.writeInt64(serverSalt);
|
||||
}
|
||||
innerOs.writeInt64(sessionId);
|
||||
innerOs.writeInt64(connection.getSissionId());
|
||||
innerOs.writeInt64(messageId);
|
||||
innerOs.writeInt32(messageSeqNo);
|
||||
innerOs.writeInt32(sizeBuffer.length());
|
||||
@ -1761,7 +1675,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
BuffersStorage.getInstance().reuseFreeBuffer(innerOs);
|
||||
byte[] b = new byte[1];
|
||||
for (int a = 0; a < zeroCount; a++) {
|
||||
MessagesController.random.nextBytes(b);
|
||||
Utilities.random.nextBytes(b);
|
||||
dataForEncryption.writeByte(b[0]);
|
||||
}
|
||||
|
||||
@ -1836,7 +1750,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
});
|
||||
}
|
||||
|
||||
void processMessage(TLObject message, long messageId, int messageSeqNo, long messageSalt, TcpConnection connection, long sessionId, long innerMsgId, long containerMessageId) {
|
||||
void processMessage(TLObject message, long messageId, int messageSeqNo, long messageSalt, TcpConnection connection, long innerMsgId, long containerMessageId) {
|
||||
if (message == null) {
|
||||
FileLog.e("tmessages", "message is null");
|
||||
return;
|
||||
@ -1845,12 +1759,8 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
if (message instanceof TLRPC.TL_new_session_created) {
|
||||
TLRPC.TL_new_session_created newSession = (TLRPC.TL_new_session_created)message;
|
||||
ArrayList<Long> arr = processedSessionChanges.get(sessionId);
|
||||
if (arr == null) {
|
||||
arr = new ArrayList<Long>();
|
||||
processedSessionChanges.put(sessionId, arr);
|
||||
}
|
||||
if (!arr.contains(newSession.unique_id)) {
|
||||
|
||||
if (!connection.isSessionProcessed(newSession.unique_id)) {
|
||||
FileLog.d("tmessages", "New session:");
|
||||
FileLog.d("tmessages", String.format(" first message id: %d", newSession.first_msg_id));
|
||||
FileLog.d("tmessages", String.format(" server salt: %d", newSession.server_salt));
|
||||
@ -1877,10 +1787,10 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
saveSession();
|
||||
|
||||
if (sessionId == datacenter.authSessionId && datacenter.datacenterId == currentDatacenterId && UserConfig.clientActivated) {
|
||||
if ((connection.transportRequestClass & RPCRequest.RPCRequestClassGeneric) != 0 && datacenter.datacenterId == currentDatacenterId && UserConfig.clientActivated) {
|
||||
MessagesController.getInstance().getDifference();
|
||||
}
|
||||
arr.add(newSession.unique_id);
|
||||
connection.addProcessedSession(newSession.unique_id);
|
||||
}
|
||||
} else if (message instanceof TLRPC.TL_msg_container) {
|
||||
/*if (messageId != 0) {
|
||||
@ -1893,18 +1803,13 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
for (TLRPC.TL_protoMessage innerMessage : messageContainer.messages) {
|
||||
long innerMessageId = innerMessage.msg_id;
|
||||
if (innerMessage.seqno % 2 != 0) {
|
||||
ArrayList<Long> set = messagesIdsForConfirmation.get(sessionId);
|
||||
if (set == null) {
|
||||
set = new ArrayList<Long>();
|
||||
messagesIdsForConfirmation.put(sessionId, set);
|
||||
connection.addMessageToConfirm(innerMessageId);
|
||||
}
|
||||
set.add(innerMessageId);
|
||||
}
|
||||
if (isMessageIdProcessed(sessionId, innerMessageId)) {
|
||||
if (connection.isMessageIdProcessed(innerMessageId)) {
|
||||
continue;
|
||||
}
|
||||
processMessage(innerMessage.body, 0, innerMessage.seqno, messageSalt, connection, sessionId, innerMessageId, messageId);
|
||||
addProcessedMessageId(sessionId, innerMessageId);
|
||||
processMessage(innerMessage.body, 0, innerMessage.seqno, messageSalt, connection, innerMessageId, messageId);
|
||||
connection.addProcessedMessageId(innerMessageId);
|
||||
}
|
||||
} else if (message instanceof TLRPC.TL_pong) {
|
||||
TLRPC.TL_pong pong = (TLRPC.TL_pong)message;
|
||||
@ -2194,14 +2099,23 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
timeDifference = (int)((time - currentTime) / 1000 - currentPingTime / 2.0);
|
||||
}
|
||||
|
||||
recreateSession(datacenter.authSessionId, datacenter);
|
||||
recreateSession(datacenter.authDownloadSessionId, datacenter);
|
||||
recreateSession(datacenter.authUploadSessionId, datacenter);
|
||||
if (datacenter.connection != null) {
|
||||
datacenter.connection.recreateSession();
|
||||
}
|
||||
if (datacenter.downloadConnection != null) {
|
||||
datacenter.downloadConnection.recreateSession();
|
||||
}
|
||||
if (datacenter.uploadConnection != null) {
|
||||
datacenter.uploadConnection.recreateSession();
|
||||
}
|
||||
|
||||
saveSession();
|
||||
|
||||
lastOutgoingMessageId = 0;
|
||||
clearRequestsForRequestClass(connection.transportRequestClass, datacenter);
|
||||
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassGeneric, datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassDownloadMedia, datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassUploadMedia, datacenter);
|
||||
}
|
||||
} else if (message instanceof TLRPC.TL_bad_server_salt) {
|
||||
if (messageId != 0) {
|
||||
@ -2240,7 +2154,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (!isMessageIdProcessed(sessionId, messageId)) {
|
||||
if (!connection.isMessageIdProcessed(messageId)) {
|
||||
requestResend = true;
|
||||
}
|
||||
}
|
||||
@ -2250,23 +2164,18 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
resendReq.msg_ids.add(detailedInfo.answer_msg_id);
|
||||
|
||||
NetworkMessage networkMessage = new NetworkMessage();
|
||||
networkMessage.protoMessage = wrapMessage(resendReq, sessionId, false);
|
||||
networkMessage.protoMessage = wrapMessage(resendReq, connection, false);
|
||||
|
||||
ArrayList<NetworkMessage> arr = new ArrayList<NetworkMessage>();
|
||||
arr.add(networkMessage);
|
||||
sendMessagesToTransport(arr, connection, sessionId, false, true);
|
||||
sendMessagesToTransport(arr, connection, false, true);
|
||||
} else {
|
||||
ArrayList<Long> set = messagesIdsForConfirmation.get(sessionId);
|
||||
if (set == null) {
|
||||
set = new ArrayList<Long>();
|
||||
messagesIdsForConfirmation.put(sessionId, set);
|
||||
}
|
||||
set.add(detailedInfo.answer_msg_id);
|
||||
connection.addMessageToConfirm(detailedInfo.answer_msg_id);
|
||||
}
|
||||
} else if (message instanceof TLRPC.TL_gzip_packed) {
|
||||
TLRPC.TL_gzip_packed packet = (TLRPC.TL_gzip_packed)message;
|
||||
TLObject result = Utilities.decompress(packet.packed_data, getRequestWithMessageId(messageId));
|
||||
processMessage(result, messageId, messageSeqNo, messageSalt, connection, sessionId, innerMsgId, containerMessageId);
|
||||
processMessage(result, messageId, messageSeqNo, messageSalt, connection, innerMsgId, containerMessageId);
|
||||
} else if (message instanceof TLRPC.Updates) {
|
||||
MessagesController.getInstance().processUpdates((TLRPC.Updates)message, false);
|
||||
} else {
|
||||
@ -2284,25 +2193,26 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
static long nextPingId = 0;
|
||||
ByteBufferDesc generatePingData(Datacenter datacenter, boolean recordTime) {
|
||||
long sessionId = datacenter.authSessionId;
|
||||
if (sessionId == 0) {
|
||||
return null;
|
||||
if (datacenter.connection == null) {
|
||||
datacenter.connection = new TcpConnection(datacenter.datacenterId);
|
||||
datacenter.connection.delegate = this;
|
||||
datacenter.connection.transportRequestClass = RPCRequest.RPCRequestClassGeneric;
|
||||
}
|
||||
|
||||
TLRPC.TL_ping_delay_disconnect ping = new TLRPC.TL_ping_delay_disconnect();
|
||||
ping.ping_id = nextPingId++;
|
||||
ping.disconnect_delay = 35;
|
||||
|
||||
if (recordTime && sessionId == datacenter.authSessionId) {
|
||||
if (recordTime) {
|
||||
pingIdToDate.put(ping.ping_id, (int)(System.currentTimeMillis() / 1000));
|
||||
}
|
||||
|
||||
NetworkMessage networkMessage = new NetworkMessage();
|
||||
networkMessage.protoMessage = wrapMessage(ping, sessionId, false);
|
||||
networkMessage.protoMessage = wrapMessage(ping, datacenter.connection, false);
|
||||
|
||||
ArrayList<NetworkMessage> arr = new ArrayList<NetworkMessage>();
|
||||
arr.add(networkMessage);
|
||||
return createConnectionData(arr, sessionId, null, datacenter.connection);
|
||||
return createConnectionData(arr, null, datacenter.connection);
|
||||
}
|
||||
|
||||
void generatePing(Datacenter datacenter) {
|
||||
@ -2349,8 +2259,8 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
long messageServerSalt = messageIs.readInt64();
|
||||
long messageSessionId = messageIs.readInt64();
|
||||
|
||||
if (messageSessionId != datacenter.authSessionId && messageSessionId != datacenter.authDownloadSessionId && messageSessionId != datacenter.authUploadSessionId) {
|
||||
FileLog.e("tmessages", String.format("***** Error: invalid message session ID (%d instead of %d)", messageSessionId, datacenter.authSessionId));
|
||||
if (messageSessionId != connection.getSissionId()) {
|
||||
FileLog.e("tmessages", String.format("***** Error: invalid message session ID (%d instead of %d)", messageSessionId, connection.getSissionId()));
|
||||
finishUpdatingState(connection);
|
||||
return -1;
|
||||
}
|
||||
@ -2552,7 +2462,7 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
long keyId = data.readInt64();
|
||||
if (keyId == 0) {
|
||||
long messageId = data.readInt64();
|
||||
if (isMessageIdProcessed(0, messageId)) {
|
||||
if (connection.isMessageIdProcessed(messageId)) {
|
||||
finishUpdatingState(connection);
|
||||
return;
|
||||
}
|
||||
@ -2562,10 +2472,10 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
|
||||
TLObject object = TLClassStore.Instance().TLdeserialize(data, constructor, getRequestWithMessageId(messageId));
|
||||
|
||||
processMessage(object, messageId, 0, 0, connection, 0, 0, 0);
|
||||
processMessage(object, messageId, 0, 0, connection, 0, 0);
|
||||
|
||||
if (object != null) {
|
||||
addProcessedMessageId(0, messageId);
|
||||
connection.addProcessedMessageId(messageId);
|
||||
}
|
||||
} else {
|
||||
if (datacenter.authKeyId == 0 || keyId != datacenter.authKeyId) {
|
||||
@ -2582,18 +2492,12 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
data.position(0);
|
||||
|
||||
Utilities.aesIgeEncryption2(data.buffer, keyData.aesKey, keyData.aesIv, false, false, length - 24);
|
||||
// if (messageData == null) {
|
||||
// FileLog.e("tmessages", "Error: can't decrypt message data " + connection);
|
||||
// connection.suspendConnection(true);
|
||||
// connection.connect();
|
||||
// return;
|
||||
// }
|
||||
|
||||
long messageServerSalt = data.readInt64();
|
||||
long messageSessionId = data.readInt64();
|
||||
|
||||
if (messageSessionId != datacenter.authSessionId && messageSessionId != datacenter.authDownloadSessionId && messageSessionId != datacenter.authUploadSessionId) {
|
||||
FileLog.e("tmessages", String.format("***** Error: invalid message session ID (%d instead of %d)", messageSessionId, datacenter.authSessionId));
|
||||
if (messageSessionId != connection.getSissionId()) {
|
||||
FileLog.e("tmessages", String.format("***** Error: invalid message session ID (%d instead of %d)", messageSessionId, connection.getSissionId()));
|
||||
finishUpdatingState(connection);
|
||||
return;
|
||||
}
|
||||
@ -2604,17 +2508,12 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
int messageSeqNo = data.readInt32();
|
||||
int messageLength = data.readInt32();
|
||||
|
||||
if (isMessageIdProcessed(messageSessionId, messageId)) {
|
||||
if (connection.isMessageIdProcessed(messageId)) {
|
||||
doNotProcess = true;
|
||||
}
|
||||
|
||||
if (messageSeqNo % 2 != 0) {
|
||||
ArrayList<Long> set = messagesIdsForConfirmation.get(messageSessionId);
|
||||
if (set == null) {
|
||||
set = new ArrayList<Long>();
|
||||
messagesIdsForConfirmation.put(messageSessionId, set);
|
||||
}
|
||||
set.add(messageId);
|
||||
connection.addMessageToConfirm(messageId);
|
||||
}
|
||||
|
||||
byte[] realMessageKeyFull = Utilities.computeSHA1(data.buffer, 0, Math.min(messageLength + 32, data.limit()));
|
||||
@ -2638,12 +2537,11 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
if (message == null) {
|
||||
FileLog.e("tmessages", "***** Error parsing message: " + constructor);
|
||||
} else {
|
||||
processMessage(message, messageId, messageSeqNo, messageServerSalt, connection, messageSessionId, 0, 0);
|
||||
|
||||
addProcessedMessageId(messageSessionId, messageId);
|
||||
processMessage(message, messageId, messageSeqNo, messageServerSalt, connection, 0, 0);
|
||||
connection.addProcessedMessageId(messageId);
|
||||
}
|
||||
} else {
|
||||
proceedToSendingMessages(null, messageSessionId, connection, false, false);
|
||||
proceedToSendingMessages(null, connection, false, false);
|
||||
}
|
||||
finishUpdatingState(connection);
|
||||
}
|
||||
@ -2707,9 +2605,19 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
return;
|
||||
}
|
||||
|
||||
recreateSession(datacenter.authSessionId, datacenter);
|
||||
recreateSession(datacenter.authDownloadSessionId, datacenter);
|
||||
recreateSession(datacenter.authUploadSessionId, datacenter);
|
||||
if (datacenter.connection != null) {
|
||||
datacenter.connection.recreateSession();
|
||||
}
|
||||
if (datacenter.downloadConnection != null) {
|
||||
datacenter.downloadConnection.recreateSession();
|
||||
}
|
||||
if (datacenter.uploadConnection != null) {
|
||||
datacenter.uploadConnection.recreateSession();
|
||||
}
|
||||
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassGeneric, datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassDownloadMedia, datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassUploadMedia, datacenter);
|
||||
|
||||
if (datacenter.authKey == null) {
|
||||
datacenter.clearServerSalts();
|
||||
@ -2761,12 +2669,6 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
actionQueue.add(actor);
|
||||
}
|
||||
|
||||
public void cancelActor(final Action actor) {
|
||||
if (actor != null) {
|
||||
actionQueue.remove(actor);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void ActionDidFinishExecution(final Action action, HashMap<String, Object> params) {
|
||||
if (action instanceof HandshakeAction) {
|
||||
@ -2777,9 +2679,19 @@ public class ConnectionsManager implements Action.ActionDelegate, TcpConnection.
|
||||
if (eactor.datacenter.datacenterId == currentDatacenterId || eactor.datacenter.datacenterId == movingToDatacenterId) {
|
||||
timeDifference = (Integer)params.get("timeDifference");
|
||||
|
||||
recreateSession(eactor.datacenter.authSessionId, eactor.datacenter);
|
||||
recreateSession(eactor.datacenter.authDownloadSessionId, eactor.datacenter);
|
||||
recreateSession(eactor.datacenter.authUploadSessionId, eactor.datacenter);
|
||||
if (eactor.datacenter.connection != null) {
|
||||
eactor.datacenter.connection.recreateSession();
|
||||
}
|
||||
if (eactor.datacenter.downloadConnection != null) {
|
||||
eactor.datacenter.downloadConnection.recreateSession();
|
||||
}
|
||||
if (eactor.datacenter.uploadConnection != null) {
|
||||
eactor.datacenter.uploadConnection.recreateSession();
|
||||
}
|
||||
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassGeneric, eactor.datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassDownloadMedia, eactor.datacenter);
|
||||
clearRequestsForRequestClass(RPCRequest.RPCRequestClassUploadMedia, eactor.datacenter);
|
||||
}
|
||||
processRequestQueue(RPCRequest.RPCRequestClassTransportMask, eactor.datacenter.datacenterId);
|
||||
} else if (action instanceof ExportAuthorizationAction) {
|
||||
|
@ -27,9 +27,6 @@ public class Datacenter {
|
||||
public int[] defaultPorts = new int[] {-1, 80, -1, 443, -1, 443, -1, 80, -1, 443, -1};
|
||||
public int[] defaultPorts8888 = new int[] {-1, 8888, -1, 443, -1, 8888, -1, 80, -1, 8888, -1};
|
||||
public boolean authorized;
|
||||
public long authSessionId;
|
||||
public long authDownloadSessionId;
|
||||
public long authUploadSessionId;
|
||||
public byte[] authKey;
|
||||
public long authKeyId;
|
||||
public int lastInitVersion = 0;
|
||||
|
@ -8,8 +8,10 @@
|
||||
|
||||
package org.telegram.messenger;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.InputStream;
|
||||
import java.util.HashMap;
|
||||
import java.util.Locale;
|
||||
|
||||
import android.graphics.Bitmap;
|
||||
import android.graphics.BitmapFactory;
|
||||
@ -28,132 +30,26 @@ import android.widget.TextView;
|
||||
import org.telegram.ui.ApplicationLoader;
|
||||
|
||||
public class Emoji {
|
||||
private static final int[] ROW_SIZES = {27, 29, 33, 34, 34};
|
||||
private static HashMap<Long, DrawableInfo> rects = new HashMap<Long, DrawableInfo>();
|
||||
private static int imgSize, drawImgSize, bigImgSize;
|
||||
private static int drawImgSize, bigImgSize;
|
||||
private static boolean inited = false;
|
||||
private static Paint placeholderPaint;
|
||||
private static Bitmap[] bmps = new Bitmap[5];
|
||||
private static boolean[] loading = new boolean[5];
|
||||
private static Bitmap emojiBmp = null;
|
||||
private static boolean loadingEmoji = false;
|
||||
|
||||
private static final char[] emojiChars={
|
||||
0x00A9,
|
||||
0x00AE,
|
||||
0x203C,
|
||||
0x2049,
|
||||
0x2122,
|
||||
0x2139,
|
||||
0x2194,
|
||||
0x2195,
|
||||
0x2196,
|
||||
0x2197,
|
||||
0x2198,
|
||||
0x2199,
|
||||
0x21A9,
|
||||
0x21AA,
|
||||
0x231A,
|
||||
0x231B,
|
||||
0x23E9,
|
||||
0x23EA,
|
||||
0x23EB,
|
||||
0x23EC,
|
||||
0x23F0,
|
||||
0x23F3,
|
||||
0x24C2,
|
||||
0x25AA,
|
||||
0x25AB,
|
||||
0x25B6,
|
||||
0x25C0,
|
||||
0x25FB,
|
||||
0x25FC,
|
||||
0x25FD,
|
||||
0x25FE,
|
||||
0x2600,
|
||||
0x2601,
|
||||
0x260E,
|
||||
0x2611,
|
||||
0x2614,
|
||||
0x2615,
|
||||
0x261D,
|
||||
0x263A,
|
||||
0x2648,
|
||||
0x2649,
|
||||
0x264A,
|
||||
0x264B,
|
||||
0x264C,
|
||||
0x264D,
|
||||
0x264E,
|
||||
0x264F,
|
||||
0x2650,
|
||||
0x2651,
|
||||
0x2652,
|
||||
0x2653,
|
||||
0x2660,
|
||||
0x2663,
|
||||
0x2665,
|
||||
0x2666,
|
||||
0x2668,
|
||||
0x267B,
|
||||
0x267F,
|
||||
0x2693,
|
||||
0x26A0,
|
||||
0x26A1,
|
||||
0x26AA,
|
||||
0x26AB,
|
||||
0x26BD,
|
||||
0x26BE,
|
||||
0x26C4,
|
||||
0x26C5,
|
||||
0x26CE,
|
||||
0x26D4,
|
||||
0x26EA,
|
||||
0x26F2,
|
||||
0x26F3,
|
||||
0x26F5,
|
||||
0x26FA,
|
||||
0x26FD,
|
||||
0x2702,
|
||||
0x2705,
|
||||
0x2708,
|
||||
0x2709,
|
||||
0x270A,
|
||||
0x270B,
|
||||
0x270C,
|
||||
0x270F,
|
||||
0x2712,
|
||||
0x2714,
|
||||
0x2716,
|
||||
0x2728,
|
||||
0x2733,
|
||||
0x2734,
|
||||
0x2744,
|
||||
0x2747,
|
||||
0x274C,
|
||||
0x274E,
|
||||
0x2753,
|
||||
0x2754,
|
||||
0x2755,
|
||||
0x2757,
|
||||
0x2764,
|
||||
0x2795,
|
||||
0x2796,
|
||||
0x2797,
|
||||
0x27A1,
|
||||
0x27B0,
|
||||
0x27BF,
|
||||
0x2934,
|
||||
0x2935,
|
||||
0x2B05,
|
||||
0x2B06,
|
||||
0x2B07,
|
||||
0x2B1B,
|
||||
0x2B1C,
|
||||
0x2B50,
|
||||
0x2B55,
|
||||
0x3030,
|
||||
0x303D,
|
||||
0x3297,
|
||||
0x3299
|
||||
private static final char[] emojiChars = {
|
||||
0x00A9, 0x00AE, 0x203C, 0x2049, 0x2122, 0x2139, 0x2194, 0x2195, 0x2196, 0x2197,
|
||||
0x2198, 0x2199, 0x21A9, 0x21AA, 0x231A, 0x231B, 0x23E9, 0x23EA, 0x23EB, 0x23EC,
|
||||
0x23F0, 0x23F3, 0x24C2, 0x25AA, 0x25AB, 0x25B6, 0x25C0, 0x25FB, 0x25FC, 0x25FD,
|
||||
0x25FE, 0x2600, 0x2601, 0x260E, 0x2611, 0x2614, 0x2615, 0x261D, 0x263A, 0x2648,
|
||||
0x2649, 0x264A, 0x264B, 0x264C, 0x264D, 0x264E, 0x264F, 0x2650, 0x2651, 0x2652,
|
||||
0x2653, 0x2660, 0x2663, 0x2665, 0x2666, 0x2668, 0x267B, 0x267F, 0x2693, 0x26A0,
|
||||
0x26A1, 0x26AA, 0x26AB, 0x26BD, 0x26BE, 0x26C4, 0x26C5, 0x26CE, 0x26D4, 0x26EA,
|
||||
0x26F2, 0x26F3, 0x26F5, 0x26FA, 0x26FD, 0x2702, 0x2705, 0x2708, 0x2709, 0x270A,
|
||||
0x270B, 0x270C, 0x270F, 0x2712, 0x2714, 0x2716, 0x2728, 0x2733, 0x2734, 0x2744,
|
||||
0x2747, 0x274C, 0x274E, 0x2753, 0x2754, 0x2755, 0x2757, 0x2764, 0x2795, 0x2796,
|
||||
0x2797, 0x27A1, 0x27B0, 0x27BF, 0x2934, 0x2935, 0x2B05, 0x2B06, 0x2B07, 0x2B1B,
|
||||
0x2B1C, 0x2B50, 0x2B55, 0x3030, 0x303D, 0x3297, 0x3299
|
||||
};
|
||||
|
||||
public static long[][] data = {
|
||||
@ -287,120 +183,121 @@ public class Emoji {
|
||||
0x00000000D83DDD34L, 0x00000000D83DDD35L, 0x00000000D83DDD3BL, 0x00000000D83DDD36L, 0x00000000D83DDD37L, 0x00000000D83DDD38L, 0x00000000D83DDD39L}};
|
||||
|
||||
static {
|
||||
imgSize = Math.min(scale(30), Utilities.density < 1.5f ? 28 : 56);
|
||||
drawImgSize = scale(20);
|
||||
bigImgSize = scale(30);
|
||||
if(Math.abs(imgSize - bigImgSize) < 5) {
|
||||
bigImgSize = imgSize;
|
||||
int imgSize = 30;
|
||||
if (Utilities.density <= 1.0f) {
|
||||
imgSize = 30;
|
||||
} else if (Utilities.density <= 1.5f) {
|
||||
imgSize = 45;
|
||||
} else if (Utilities.density <= 2.0f) {
|
||||
imgSize = 60;
|
||||
} else {
|
||||
imgSize = 90;
|
||||
}
|
||||
drawImgSize = Utilities.dp(20);
|
||||
bigImgSize = Utilities.dp(30);
|
||||
|
||||
int num = 0;
|
||||
for (int j = 1; j < data.length; j++) {
|
||||
int rsize = ROW_SIZES[j - 1];
|
||||
for(int i = 0; i < data[j].length; i++) {
|
||||
Rect rect = new Rect((i % rsize) * imgSize, (i / rsize) * imgSize, (i % rsize + 1) * imgSize, (i / rsize + 1) * imgSize);
|
||||
rects.put(data[j][i], new DrawableInfo(rect, j - 1));
|
||||
for (int i = 0; i < data[j].length; i++) {
|
||||
Rect rect = new Rect((num % 28) * imgSize, (num / 28) * imgSize, (num % 28 + 1) * imgSize, (num / 28 + 1) * imgSize);
|
||||
rects.put(data[j][i], new DrawableInfo(rect));
|
||||
num++;
|
||||
}
|
||||
}
|
||||
placeholderPaint = new Paint();
|
||||
placeholderPaint.setColor(0x55000000);
|
||||
}
|
||||
|
||||
public static int scale(float value) {
|
||||
return (int)(ApplicationLoader.applicationContext.getResources().getDisplayMetrics().density * value);
|
||||
private static Bitmap loadEmoji() {
|
||||
try {
|
||||
float scale = 1.0f;
|
||||
int imageResize = 1;
|
||||
if (Utilities.density <= 1.0f) {
|
||||
scale = 2.0f;
|
||||
imageResize = 2;
|
||||
} else if (Utilities.density <= 1.5f) {
|
||||
scale = 3.0f;
|
||||
imageResize = 2;
|
||||
} else if (Utilities.density <= 2.0f) {
|
||||
scale = 2.0f;
|
||||
} else {
|
||||
scale = 3.0f;
|
||||
}
|
||||
|
||||
private static Bitmap loadPage(final int page){
|
||||
try {
|
||||
int rsize = ROW_SIZES[page];
|
||||
String imageName = String.format(Locale.US, "emoji%.01fx.jpg", scale);
|
||||
File imageFile = ApplicationLoader.applicationContext.getFileStreamPath(imageName);
|
||||
if (!imageFile.exists()) {
|
||||
InputStream is = ApplicationLoader.applicationContext.getAssets().open("emoji/" + imageName);
|
||||
Utilities.copyFile(is, imageFile);
|
||||
is.close();
|
||||
}
|
||||
|
||||
BitmapFactory.Options opts = new BitmapFactory.Options();
|
||||
opts.inPreferredConfig = Bitmap.Config.ARGB_8888;
|
||||
opts.inJustDecodeBounds = true;
|
||||
BitmapFactory.decodeFile(imageFile.getAbsolutePath(), opts);
|
||||
|
||||
opts.inDither = false;
|
||||
if (Utilities.density < 1.5f) {
|
||||
opts.inSampleSize = 2;
|
||||
}
|
||||
final Bitmap colorsBitmap = Bitmap.createBitmap(opts.outWidth / imageResize, opts.outHeight / imageResize, Bitmap.Config.ARGB_8888);
|
||||
Utilities.loadBitmap(imageFile.getAbsolutePath(), colorsBitmap, imageResize);
|
||||
|
||||
int iw, ih;
|
||||
|
||||
InputStream is = ApplicationLoader.applicationContext.getAssets().open("emojisprite_" + page + ".png");
|
||||
Bitmap color = BitmapFactory.decodeStream(is, null, opts);
|
||||
imageName = String.format(Locale.US, "emoji%.01fx_a.jpg", scale);
|
||||
imageFile = ApplicationLoader.applicationContext.getFileStreamPath(imageName);
|
||||
if (!imageFile.exists()) {
|
||||
InputStream is = ApplicationLoader.applicationContext.getAssets().open("emoji/" + imageName);
|
||||
Utilities.copyFile(is, imageFile);
|
||||
is.close();
|
||||
|
||||
iw = color.getWidth();
|
||||
ih = color.getHeight();
|
||||
|
||||
ih = (int)Math.round(((double)imgSize * rsize) * ((double)ih / iw));
|
||||
iw = imgSize * rsize;
|
||||
|
||||
if(iw < color.getWidth() && ih < color.getWidth()) {
|
||||
color = Bitmap.createScaledBitmap(color, iw, ih, true);
|
||||
}
|
||||
|
||||
bmps[page] = color;
|
||||
Utilities.loadBitmap(imageFile.getAbsolutePath(), colorsBitmap, imageResize);
|
||||
|
||||
final Bitmap img = color;
|
||||
Utilities.RunOnUIThread(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
/*for (int a = 0; a < drawables.size(); a++) {
|
||||
WeakReference<EmojiDrawable> it = drawables.get(a);
|
||||
if (it.get() == null) {
|
||||
drawables.remove(a);
|
||||
a--;
|
||||
} else {
|
||||
EmojiDrawable drawable = it.get();
|
||||
if (drawable.page == page) {
|
||||
drawable.bmp = img;
|
||||
}
|
||||
drawable.invalidateSelf();
|
||||
}
|
||||
}*/
|
||||
emojiBmp = colorsBitmap;
|
||||
NotificationCenter.getInstance().postNotificationName(999);
|
||||
}
|
||||
});
|
||||
|
||||
return color;
|
||||
return colorsBitmap;
|
||||
} catch(Throwable x) {
|
||||
FileLog.e("tmessages", "Error loading emoji", x);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
private static void loadPageAsync(final int page) {
|
||||
if(loading[page]) {
|
||||
private static void loadEmojiAsync() {
|
||||
if (loadingEmoji) {
|
||||
return;
|
||||
}
|
||||
loading[page] = true;
|
||||
loadingEmoji = true;
|
||||
new Thread(new Runnable() {
|
||||
public void run() {
|
||||
loadPage(page);
|
||||
loading[page] = false;
|
||||
loadEmoji();
|
||||
loadingEmoji = false;
|
||||
}
|
||||
}).start();
|
||||
}
|
||||
|
||||
public static void invalidateAll(View view){
|
||||
if(view instanceof ViewGroup) {
|
||||
public static void invalidateAll(View view) {
|
||||
if (view instanceof ViewGroup) {
|
||||
ViewGroup g = (ViewGroup)view;
|
||||
for(int i = 0; i < g.getChildCount(); i++){
|
||||
for (int i = 0; i < g.getChildCount(); i++) {
|
||||
invalidateAll(g.getChildAt(i));
|
||||
}
|
||||
} else if(view instanceof TextView) {
|
||||
} else if (view instanceof TextView) {
|
||||
view.invalidate();
|
||||
}
|
||||
}
|
||||
|
||||
public static Drawable getEmojiDrawable(long code){
|
||||
public static Drawable getEmojiDrawable(long code) {
|
||||
DrawableInfo info = rects.get(code);
|
||||
if(info == null){
|
||||
if (info == null) {
|
||||
FileLog.e("tmessages", "No emoji drawable for code " + String.format("%016X", code));
|
||||
return null;
|
||||
}
|
||||
EmojiDrawable ed = new EmojiDrawable(info);
|
||||
ed.setBounds(0, 0, drawImgSize, drawImgSize);
|
||||
if(bmps[info.page] == null) {
|
||||
loadPageAsync(info.page);
|
||||
if (emojiBmp == null) {
|
||||
loadEmojiAsync();
|
||||
}
|
||||
return ed;
|
||||
}
|
||||
@ -417,29 +314,23 @@ public class Emoji {
|
||||
|
||||
public static class EmojiDrawable extends Drawable {
|
||||
Rect rect;
|
||||
int page;
|
||||
boolean fullSize = false;
|
||||
private static Paint paint;
|
||||
Bitmap bmp;
|
||||
|
||||
static {
|
||||
paint = new Paint();
|
||||
paint.setFilterBitmap(true);
|
||||
paint.setFlags(Paint.FILTER_BITMAP_FLAG | Paint.ANTI_ALIAS_FLAG);
|
||||
}
|
||||
|
||||
public EmojiDrawable(DrawableInfo info){
|
||||
public EmojiDrawable(DrawableInfo info) {
|
||||
rect = info.rect;
|
||||
page = info.page;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void draw(Canvas canvas) {
|
||||
if(bmps[page] == null){
|
||||
if (emojiBmp == null) {
|
||||
canvas.drawRect(getBounds(), placeholderPaint);
|
||||
return;
|
||||
}
|
||||
if(bmp == null) {
|
||||
bmp = bmps[page];
|
||||
}
|
||||
Rect b = copyBounds();
|
||||
int cX = b.centerX(), cY = b.centerY();
|
||||
@ -447,7 +338,9 @@ public class Emoji {
|
||||
b.right = cX + (fullSize ? bigImgSize : drawImgSize) / 2;
|
||||
b.top = cY - (fullSize ? bigImgSize : drawImgSize) / 2;
|
||||
b.bottom = cY + (fullSize ? bigImgSize : drawImgSize) / 2;
|
||||
canvas.drawBitmap(bmp, rect, b, paint);
|
||||
if (!canvas.quickReject(b.left, b.top, b.right, b.bottom, Canvas.EdgeType.AA)) {
|
||||
canvas.drawBitmap(emojiBmp, rect, b, paint);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -468,28 +361,26 @@ public class Emoji {
|
||||
|
||||
private static class DrawableInfo {
|
||||
Rect rect;
|
||||
int page;
|
||||
public DrawableInfo(Rect rect, int p) {
|
||||
public DrawableInfo(Rect rect) {
|
||||
this.rect = rect;
|
||||
page = p;
|
||||
}
|
||||
}
|
||||
|
||||
private static boolean inArray(char c, char[] a) {
|
||||
for(char cc : a) {
|
||||
if(cc == c) {
|
||||
for (char cc : a) {
|
||||
if (cc == c) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public static CharSequence replaceEmoji(CharSequence cs) {
|
||||
public static CharSequence replaceEmoji(CharSequence cs, Paint.FontMetricsInt fontMetrics, int size) {
|
||||
if (cs == null || cs.length() == 0) {
|
||||
return cs;
|
||||
}
|
||||
Spannable s;
|
||||
if (cs instanceof Spannable){
|
||||
if (cs instanceof Spannable) {
|
||||
s = (Spannable)cs;
|
||||
} else {
|
||||
s = Spannable.Factory.getInstance().newSpannable(cs);
|
||||
@ -505,8 +396,8 @@ public class Emoji {
|
||||
buf <<= 16;
|
||||
buf |= c;
|
||||
Drawable d = Emoji.getEmojiDrawable(buf);
|
||||
if (d != null){
|
||||
EmojiSpan span = new EmojiSpan(d, DynamicDrawableSpan.ALIGN_BOTTOM);
|
||||
if (d != null) {
|
||||
EmojiSpan span = new EmojiSpan(d, DynamicDrawableSpan.ALIGN_BOTTOM, size, fontMetrics);
|
||||
emojiCount++;
|
||||
if (c>= 0xDDE6 && c <= 0xDDFA) {
|
||||
s.setSpan(span, i - 3, i + 1, 0);
|
||||
@ -518,23 +409,23 @@ public class Emoji {
|
||||
} else if (c == 0x20E3) {
|
||||
if (i > 0) {
|
||||
char c2 = cs.charAt(i - 1);
|
||||
if((c2 >= '0' && c2 <= '9') || c2 == '#') {
|
||||
if ((c2 >= '0' && c2 <= '9') || c2 == '#') {
|
||||
buf = c2;
|
||||
buf <<= 16;
|
||||
buf |= c;
|
||||
Drawable d = Emoji.getEmojiDrawable(buf);
|
||||
if(d != null) {
|
||||
EmojiSpan span = new EmojiSpan(d, DynamicDrawableSpan.ALIGN_BOTTOM);
|
||||
if (d != null) {
|
||||
EmojiSpan span = new EmojiSpan(d, DynamicDrawableSpan.ALIGN_BOTTOM, size, fontMetrics);
|
||||
emojiCount++;
|
||||
s.setSpan(span, i - 1, i + 1, 0);
|
||||
}
|
||||
buf = 0;
|
||||
}
|
||||
}
|
||||
} else if(inArray(c, emojiChars)){
|
||||
} else if (inArray(c, emojiChars)) {
|
||||
Drawable d = Emoji.getEmojiDrawable(c);
|
||||
if(d != null){
|
||||
EmojiSpan span = new EmojiSpan(d, DynamicDrawableSpan.ALIGN_BOTTOM);
|
||||
if (d != null) {
|
||||
EmojiSpan span = new EmojiSpan(d, DynamicDrawableSpan.ALIGN_BOTTOM, size, fontMetrics);
|
||||
emojiCount++;
|
||||
s.setSpan(span, i, i + 1, 0);
|
||||
}
|
||||
@ -547,8 +438,13 @@ public class Emoji {
|
||||
}
|
||||
|
||||
public static class EmojiSpan extends ImageSpan {
|
||||
public EmojiSpan(Drawable d, int verticalAlignment) {
|
||||
private Paint.FontMetricsInt fontMetrics = null;
|
||||
private int size = Utilities.dp(20);
|
||||
|
||||
public EmojiSpan(Drawable d, int verticalAlignment, int s, Paint.FontMetricsInt original) {
|
||||
super(d, verticalAlignment);
|
||||
fontMetrics = original;
|
||||
size = s;
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -557,6 +453,7 @@ public class Emoji {
|
||||
fm = new Paint.FontMetricsInt();
|
||||
}
|
||||
|
||||
if (fontMetrics == null) {
|
||||
int sz = super.getSize(paint, text, start, end, fm);
|
||||
|
||||
int offset = Utilities.dp(8);
|
||||
@ -568,48 +465,16 @@ public class Emoji {
|
||||
fm.descent = w - offset;
|
||||
|
||||
return sz;
|
||||
} else {
|
||||
if (fm != null) {
|
||||
fm.ascent = fontMetrics.ascent;
|
||||
fm.descent = fontMetrics.descent;
|
||||
|
||||
fm.top = fontMetrics.top;
|
||||
fm.bottom = fontMetrics.bottom;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
}
|
||||
|
||||
public static class XImageSpan extends ImageSpan {
|
||||
public int uid;
|
||||
|
||||
public XImageSpan(Drawable d, int verticalAlignment) {
|
||||
super(d, verticalAlignment);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getSize(Paint paint, CharSequence text, int start, int end, Paint.FontMetricsInt fm) {
|
||||
if (fm == null) {
|
||||
fm = new Paint.FontMetricsInt();
|
||||
}
|
||||
|
||||
int sz = super.getSize(paint, text, start, end, fm);
|
||||
|
||||
int offset = Utilities.dp(6);
|
||||
int w = (fm.bottom - fm.top) / 2;
|
||||
fm.top = -w - offset;
|
||||
fm.bottom = w - offset;
|
||||
fm.ascent = -w - offset;
|
||||
fm.leading = 0;
|
||||
fm.descent = w - offset;
|
||||
|
||||
return sz;
|
||||
}
|
||||
}
|
||||
|
||||
// @Override
|
||||
// public int getSize(Paint paint, CharSequence text, int start, int end, Paint.FontMetricsInt fm) {
|
||||
// if (fm == null) {
|
||||
// fm = new Paint.FontMetricsInt();
|
||||
// }
|
||||
// paint.getFontMetricsInt(fm);
|
||||
//
|
||||
// int sz = super.getSize(paint, text, start, end, fm);
|
||||
// if(fm != null) {
|
||||
// fm.ascent = (int)paint.ascent();
|
||||
// fm.descent = (int)paint.descent();
|
||||
// }
|
||||
// return sz;
|
||||
// }
|
||||
}
|
||||
|
@ -218,7 +218,7 @@ public class FileLoadOperation {
|
||||
BitmapFactory.Options opts = new BitmapFactory.Options();
|
||||
|
||||
float w_filter = 0;
|
||||
float h_filter;
|
||||
float h_filter = 0;
|
||||
if (filter != null) {
|
||||
String args[] = filter.split("_");
|
||||
w_filter = Float.parseFloat(args[0]) * Utilities.density;
|
||||
@ -254,7 +254,7 @@ public class FileLoadOperation {
|
||||
float bitmapH = image.getHeight();
|
||||
if (bitmapW != w_filter && bitmapW > w_filter) {
|
||||
float scaleFactor = bitmapW / w_filter;
|
||||
Bitmap scaledBitmap = Bitmap.createScaledBitmap(image, (int)w_filter, (int)(bitmapH / scaleFactor), true);
|
||||
Bitmap scaledBitmap = Bitmap.createScaledBitmap(image, (int)w_filter, (int)(bitmapH / scaleFactor), false);
|
||||
if (image != scaledBitmap) {
|
||||
if (Build.VERSION.SDK_INT < 11) {
|
||||
image.recycle();
|
||||
@ -283,6 +283,12 @@ public class FileLoadOperation {
|
||||
if (!dontDelete && cacheFileFinal.length() == 0) {
|
||||
cacheFileFinal.delete();
|
||||
}
|
||||
Utilities.stageQueue.postRunnable(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
delegate.didFailedLoadingFile(FileLoadOperation.this);
|
||||
}
|
||||
});
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
}
|
||||
@ -461,7 +467,7 @@ public class FileLoadOperation {
|
||||
float bitmapH = image.getHeight();
|
||||
if (bitmapW != w_filter && bitmapW > w_filter) {
|
||||
float scaleFactor = bitmapW / w_filter;
|
||||
Bitmap scaledBitmap = Bitmap.createScaledBitmap(image, (int) w_filter, (int) (bitmapH / scaleFactor), true);
|
||||
Bitmap scaledBitmap = Bitmap.createScaledBitmap(image, (int) w_filter, (int) (bitmapH / scaleFactor), false);
|
||||
if (image != scaledBitmap) {
|
||||
if (Build.VERSION.SDK_INT < 11) {
|
||||
image.recycle();
|
||||
|
@ -62,7 +62,7 @@ public class FileUploadOperation {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
}
|
||||
currentFileId = MessagesController.random.nextLong();
|
||||
currentFileId = Utilities.random.nextLong();
|
||||
try {
|
||||
mdEnc = MessageDigest.getInstance("MD5");
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
@ -126,7 +126,7 @@ public class FileUploadOperation {
|
||||
toAdd += 16 - readed % 16;
|
||||
}
|
||||
ByteBufferDesc sendBuffer = BuffersStorage.getInstance().getFreeBuffer(readed + toAdd);
|
||||
if (readed != uploadChunkSize) {
|
||||
if (readed != uploadChunkSize || totalPartsCount == currentPartNum + 1) {
|
||||
isLastPart = true;
|
||||
}
|
||||
sendBuffer.writeRaw(readBuffer, 0, readed);
|
||||
|
@ -74,7 +74,7 @@ public class HandshakeAction extends Action implements TcpConnection.TcpConnecti
|
||||
|
||||
TLRPC.TL_req_pq reqPq = new TLRPC.TL_req_pq();
|
||||
byte[] nonceBytes = new byte[16];
|
||||
MessagesController.random.nextBytes(nonceBytes);
|
||||
Utilities.random.nextBytes(nonceBytes);
|
||||
authNonce = reqPq.nonce = nonceBytes;
|
||||
reqPQMsgData = sendMessageData(reqPq, generateMessageId());
|
||||
}
|
||||
@ -243,7 +243,7 @@ public class HandshakeAction extends Action implements TcpConnection.TcpConnecti
|
||||
innerData.q = reqDH.q;
|
||||
|
||||
byte[] nonceBytes = new byte[32];
|
||||
MessagesController.random.nextBytes(nonceBytes);
|
||||
Utilities.random.nextBytes(nonceBytes);
|
||||
innerData.new_nonce = authNewNonce = nonceBytes;
|
||||
innerData.serializeToStream(os);
|
||||
|
||||
@ -254,7 +254,7 @@ public class HandshakeAction extends Action implements TcpConnection.TcpConnecti
|
||||
dataWithHash.writeRaw(innerDataBytes);
|
||||
byte[] b = new byte[1];
|
||||
while (dataWithHash.length() < 255) {
|
||||
MessagesController.random.nextBytes(b);
|
||||
Utilities.random.nextBytes(b);
|
||||
dataWithHash.writeByte(b[0]);
|
||||
}
|
||||
|
||||
@ -372,7 +372,7 @@ public class HandshakeAction extends Action implements TcpConnection.TcpConnecti
|
||||
}
|
||||
|
||||
byte[] b = new byte[256];
|
||||
MessagesController.random.nextBytes(b);
|
||||
Utilities.random.nextBytes(b);
|
||||
|
||||
BigInteger p = new BigInteger(1, dhInnerData.dh_prime);
|
||||
BigInteger g_a = new BigInteger(1, dhInnerData.g_a);
|
||||
@ -436,7 +436,7 @@ public class HandshakeAction extends Action implements TcpConnection.TcpConnecti
|
||||
clientDataWithHash.writeRaw(clientInnerDataBytes);
|
||||
byte[] bb = new byte[1];
|
||||
while (clientDataWithHash.length() % 16 != 0) {
|
||||
MessagesController.random.nextBytes(bb);
|
||||
Utilities.random.nextBytes(bb);
|
||||
clientDataWithHash.writeByte(bb[0]);
|
||||
}
|
||||
|
||||
|
@ -9,6 +9,10 @@
|
||||
package org.telegram.messenger;
|
||||
|
||||
import android.app.Activity;
|
||||
import android.content.BroadcastReceiver;
|
||||
import android.content.Context;
|
||||
import android.content.Intent;
|
||||
import android.content.IntentFilter;
|
||||
import android.content.SharedPreferences;
|
||||
import android.content.res.Configuration;
|
||||
import android.text.format.DateFormat;
|
||||
@ -26,6 +30,7 @@ import java.util.Comparator;
|
||||
import java.util.Date;
|
||||
import java.util.HashMap;
|
||||
import java.util.Locale;
|
||||
import java.util.TimeZone;
|
||||
|
||||
public class LocaleController {
|
||||
|
||||
@ -47,6 +52,20 @@ public class LocaleController {
|
||||
private String languageOverride;
|
||||
private boolean changingConfiguration = false;
|
||||
|
||||
private class TimeZoneChangedReceiver extends BroadcastReceiver {
|
||||
@Override
|
||||
public void onReceive(Context context, Intent intent) {
|
||||
ApplicationLoader.applicationHandler.post(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
if (!formatterMonth.getTimeZone().equals(TimeZone.getDefault())) {
|
||||
LocaleController.recreateFormatters();
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
public static class LocaleInfo {
|
||||
public String name;
|
||||
public String nameEnglish;
|
||||
@ -187,6 +206,13 @@ public class LocaleController {
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
|
||||
try {
|
||||
IntentFilter timezoneFilter = new IntentFilter(Intent.ACTION_TIMEZONE_CHANGED);
|
||||
ApplicationLoader.applicationContext.registerReceiver(new TimeZoneChangedReceiver(), timezoneFilter);
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
}
|
||||
|
||||
public boolean applyLanguageFile(File file) {
|
||||
@ -477,7 +503,7 @@ public class LocaleController {
|
||||
if (dateDay == day && year == dateYear) {
|
||||
return formatterDay.format(new Date(date * 1000));
|
||||
} else if (dateDay + 1 == day && year == dateYear) {
|
||||
return ApplicationLoader.applicationContext.getResources().getString(R.string.Yesterday);
|
||||
return getString("Yesterday", R.string.Yesterday);
|
||||
} else if (year == dateYear) {
|
||||
return formatterMonth.format(new Date(date * 1000));
|
||||
} else {
|
||||
@ -568,4 +594,21 @@ public class LocaleController {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static String formatUserStatus(TLRPC.User user) {
|
||||
if (user == null || user.status == null || user.status.expires == 0 || user instanceof TLRPC.TL_userDeleted || user instanceof TLRPC.TL_userEmpty) {
|
||||
return getString("Offline", R.string.Offline);
|
||||
} else {
|
||||
int currentTime = ConnectionsManager.getInstance().getCurrentTime();
|
||||
if (user.status.expires > currentTime) {
|
||||
return getString("Online", R.string.Online);
|
||||
} else {
|
||||
if (user.status.expires == -1) {
|
||||
return getString("Invisible", R.string.Invisible);
|
||||
} else {
|
||||
return formatDateOnline(user.status.expires);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -108,6 +108,8 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
private long currentTotalPcmDuration;
|
||||
private long lastPlayPcm;
|
||||
private int ignoreFirstProgress = 0;
|
||||
private Timer progressTimer = null;
|
||||
private final Integer progressTimerSync = 1;
|
||||
|
||||
private AudioRecord audioRecorder = null;
|
||||
private Object audioGainObj = null;
|
||||
@ -307,8 +309,19 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
NotificationCenter.getInstance().addObserver(this, FileLoader.FileDidLoaded);
|
||||
NotificationCenter.getInstance().addObserver(this, FileLoader.FileLoadProgressChanged);
|
||||
NotificationCenter.getInstance().addObserver(this, FileLoader.FileUploadProgressChanged);
|
||||
}
|
||||
|
||||
Timer progressTimer = new Timer();
|
||||
private void startProgressTimer() {
|
||||
synchronized (progressTimerSync) {
|
||||
if (progressTimer != null) {
|
||||
try {
|
||||
progressTimer.cancel();
|
||||
progressTimer = null;
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
}
|
||||
progressTimer = new Timer();
|
||||
progressTimer.schedule(new TimerTask() {
|
||||
@Override
|
||||
public void run() {
|
||||
@ -331,8 +344,8 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
return;
|
||||
}
|
||||
} else if (audioTrackPlayer != null) {
|
||||
progress = (int)(lastPlayPcm / 48.0f);
|
||||
value = (float)lastPlayPcm / (float)currentTotalPcmDuration;
|
||||
progress = (int) (lastPlayPcm / 48.0f);
|
||||
value = (float) lastPlayPcm / (float) currentTotalPcmDuration;
|
||||
if (progress == lastProgress) {
|
||||
return;
|
||||
}
|
||||
@ -349,7 +362,21 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
});
|
||||
}
|
||||
}
|
||||
}, 100, 17);
|
||||
}, 0, 17);
|
||||
}
|
||||
}
|
||||
|
||||
private void stopProgressTimer() {
|
||||
synchronized (progressTimerSync) {
|
||||
if (progressTimer != null) {
|
||||
try {
|
||||
progressTimer.cancel();
|
||||
progressTimer = null;
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void cleanup() {
|
||||
@ -782,6 +809,7 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
}
|
||||
}
|
||||
}
|
||||
stopProgressTimer();
|
||||
lastProgress = 0;
|
||||
isPaused = false;
|
||||
MessageObject lastFile = playingMessageObject;
|
||||
@ -891,6 +919,7 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
}
|
||||
});
|
||||
audioTrackPlayer.play();
|
||||
startProgressTimer();
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
if (audioTrackPlayer != null) {
|
||||
@ -915,6 +944,7 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
});
|
||||
audioPlayer.prepare();
|
||||
audioPlayer.start();
|
||||
startProgressTimer();
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
if (audioPlayer != null) {
|
||||
@ -947,7 +977,6 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
if (playingMessageObject.audioProgress == 1) {
|
||||
playingMessageObject.audioProgress = 0;
|
||||
}
|
||||
//audioTrackPlayer.setNotificationMarkerPosition((int)(currentTotalPcmDuration * (1 - playingMessageObject.audioProgress)));
|
||||
fileDecodingQueue.postRunnable(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
@ -995,6 +1024,7 @@ public class MediaController implements NotificationCenter.NotificationCenterDel
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
stopProgressTimer();
|
||||
playingMessageObject = null;
|
||||
isPaused = false;
|
||||
}
|
||||
|
@ -41,9 +41,7 @@ import org.telegram.ui.LaunchActivity;
|
||||
import org.telegram.ui.ApplicationLoader;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.math.BigInteger;
|
||||
import java.security.SecureRandom;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
@ -94,7 +92,6 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
private String uploadingAvatar = null;
|
||||
private SoundPool soundPool;
|
||||
private int sound;
|
||||
public static SecureRandom random = new SecureRandom();
|
||||
public boolean enableJoined = true;
|
||||
public int fontSize = Utilities.dp(16);
|
||||
public long scheduleContactsReload = 0;
|
||||
@ -105,19 +102,6 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
|
||||
}
|
||||
|
||||
static {
|
||||
try {
|
||||
File URANDOM_FILE = new File("/dev/urandom");
|
||||
FileInputStream sUrandomIn = new FileInputStream(URANDOM_FILE);
|
||||
byte[] buffer = new byte[1024];
|
||||
sUrandomIn.read(buffer);
|
||||
sUrandomIn.close();
|
||||
random.setSeed(buffer);
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
}
|
||||
|
||||
public static final int MESSAGE_SEND_STATE_SENDING = 1;
|
||||
public static final int MESSAGE_SEND_STATE_SENT = 0;
|
||||
public static final int MESSAGE_SEND_STATE_SEND_ERROR = 2;
|
||||
@ -1562,7 +1546,7 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
private long getNextRandomId() {
|
||||
long val = 0;
|
||||
while (val == 0) {
|
||||
val = random.nextLong();
|
||||
val = Utilities.random.nextLong();
|
||||
}
|
||||
return val;
|
||||
}
|
||||
@ -1618,8 +1602,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
TLRPC.TL_decryptedMessageService reqSend = new TLRPC.TL_decryptedMessageService();
|
||||
reqSend.random_id = getNextRandomId();
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(random.nextDouble() * 16))];
|
||||
random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(Utilities.random.nextDouble() * 16))];
|
||||
Utilities.random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.action = new TLRPC.TL_decryptedMessageActionDeleteMessages();
|
||||
reqSend.action.random_ids = random_ids;
|
||||
performSendEncryptedRequest(reqSend, null, encryptedChat, null);
|
||||
@ -1632,8 +1616,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
TLRPC.TL_decryptedMessageService reqSend = new TLRPC.TL_decryptedMessageService();
|
||||
reqSend.random_id = getNextRandomId();
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(random.nextDouble() * 16))];
|
||||
random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(Utilities.random.nextDouble() * 16))];
|
||||
Utilities.random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.action = new TLRPC.TL_decryptedMessageActionFlushHistory();
|
||||
performSendEncryptedRequest(reqSend, null, encryptedChat, null);
|
||||
}
|
||||
@ -1675,8 +1659,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
|
||||
TLRPC.TL_decryptedMessageService reqSend = new TLRPC.TL_decryptedMessageService();
|
||||
reqSend.random_id = newMsg.random_id;
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(random.nextDouble() * 16))];
|
||||
random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(Utilities.random.nextDouble() * 16))];
|
||||
Utilities.random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.action = new TLRPC.TL_decryptedMessageActionSetMessageTTL();
|
||||
reqSend.action.ttl_seconds = encryptedChat.ttl;
|
||||
performSendEncryptedRequest(reqSend, newMsgObj, encryptedChat, null);
|
||||
@ -1724,8 +1708,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
|
||||
TLRPC.TL_decryptedMessageService reqSend = new TLRPC.TL_decryptedMessageService();
|
||||
reqSend.random_id = newMsg.random_id;
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(random.nextDouble() * 16))];
|
||||
random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(Utilities.random.nextDouble() * 16))];
|
||||
Utilities.random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.action = action;
|
||||
performSendEncryptedRequest(reqSend, newMsgObj, encryptedChat, null);
|
||||
}
|
||||
@ -1884,8 +1868,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
} else {
|
||||
TLRPC.TL_decryptedMessage reqSend = new TLRPC.TL_decryptedMessage();
|
||||
reqSend.random_id = newMsg.random_id;
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(random.nextDouble() * 16))];
|
||||
random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(Utilities.random.nextDouble() * 16))];
|
||||
Utilities.random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.message = message;
|
||||
reqSend.media = new TLRPC.TL_decryptedMessageMediaEmpty();
|
||||
performSendEncryptedRequest(reqSend, newMsgObj, encryptedChat, null);
|
||||
@ -1962,8 +1946,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
} else {
|
||||
TLRPC.TL_decryptedMessage reqSend = new TLRPC.TL_decryptedMessage();
|
||||
reqSend.random_id = newMsg.random_id;
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(random.nextDouble() * 16))];
|
||||
random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.random_bytes = new byte[Math.max(1, (int)Math.ceil(Utilities.random.nextDouble() * 16))];
|
||||
Utilities.random.nextBytes(reqSend.random_bytes);
|
||||
reqSend.message = "";
|
||||
if (type == 1) {
|
||||
reqSend.media = new TLRPC.TL_decryptedMessageMediaGeoPoint();
|
||||
@ -1974,8 +1958,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
reqSend.media = new TLRPC.TL_decryptedMessageMediaPhoto();
|
||||
reqSend.media.iv = new byte[32];
|
||||
reqSend.media.key = new byte[32];
|
||||
random.nextBytes(reqSend.media.iv);
|
||||
random.nextBytes(reqSend.media.key);
|
||||
Utilities.random.nextBytes(reqSend.media.iv);
|
||||
Utilities.random.nextBytes(reqSend.media.key);
|
||||
TLRPC.PhotoSize small = photo.sizes.get(0);
|
||||
TLRPC.PhotoSize big = photo.sizes.get(photo.sizes.size() - 1);
|
||||
reqSend.media.thumb = small.bytes;
|
||||
@ -1996,8 +1980,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
reqSend.media = new TLRPC.TL_decryptedMessageMediaVideo();
|
||||
reqSend.media.iv = new byte[32];
|
||||
reqSend.media.key = new byte[32];
|
||||
random.nextBytes(reqSend.media.iv);
|
||||
random.nextBytes(reqSend.media.key);
|
||||
Utilities.random.nextBytes(reqSend.media.iv);
|
||||
Utilities.random.nextBytes(reqSend.media.key);
|
||||
reqSend.media.duration = video.duration;
|
||||
reqSend.media.size = video.size;
|
||||
reqSend.media.w = video.w;
|
||||
@ -2026,8 +2010,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
reqSend.media = new TLRPC.TL_decryptedMessageMediaDocument();
|
||||
reqSend.media.iv = new byte[32];
|
||||
reqSend.media.key = new byte[32];
|
||||
random.nextBytes(reqSend.media.iv);
|
||||
random.nextBytes(reqSend.media.key);
|
||||
Utilities.random.nextBytes(reqSend.media.iv);
|
||||
Utilities.random.nextBytes(reqSend.media.key);
|
||||
reqSend.media.size = document.size;
|
||||
if (!(document.thumb instanceof TLRPC.TL_photoSizeEmpty)) {
|
||||
reqSend.media.thumb = document.thumb.bytes;
|
||||
@ -2052,8 +2036,8 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
reqSend.media = new TLRPC.TL_decryptedMessageMediaAudio();
|
||||
reqSend.media.iv = new byte[32];
|
||||
reqSend.media.key = new byte[32];
|
||||
random.nextBytes(reqSend.media.iv);
|
||||
random.nextBytes(reqSend.media.key);
|
||||
Utilities.random.nextBytes(reqSend.media.iv);
|
||||
Utilities.random.nextBytes(reqSend.media.key);
|
||||
reqSend.media.duration = audio.duration;
|
||||
reqSend.media.size = audio.size;
|
||||
|
||||
@ -2284,7 +2268,7 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
dataForEncryption.writeRaw(innerData);
|
||||
byte[] b = new byte[1];
|
||||
while (dataForEncryption.length() % 16 != 0) {
|
||||
MessagesController.random.nextBytes(b);
|
||||
Utilities.random.nextBytes(b);
|
||||
dataForEncryption.writeByte(b[0]);
|
||||
}
|
||||
|
||||
@ -4317,74 +4301,17 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
SharedPreferences preferences = ApplicationLoader.applicationContext.getSharedPreferences("Notifications", Context.MODE_PRIVATE);
|
||||
boolean globalEnabled = preferences.getBoolean("EnableAll", true);
|
||||
if (!globalEnabled) {
|
||||
return;
|
||||
}
|
||||
boolean groupEnabled = preferences.getBoolean("EnableGroup", true);
|
||||
|
||||
if (ApplicationLoader.lastPauseTime == 0 && ApplicationLoader.isScreenOn) {
|
||||
boolean inAppSounds = preferences.getBoolean("EnableInAppSounds", true);
|
||||
boolean inAppVibrate = preferences.getBoolean("EnableInAppVibrate", true);
|
||||
boolean inAppPreview = preferences.getBoolean("EnableInAppPreview", true);
|
||||
|
||||
if (inAppSounds || inAppVibrate || inAppPreview) {
|
||||
long dialog_id = messageObject.messageOwner.dialog_id;
|
||||
int user_id = messageObject.messageOwner.from_id;
|
||||
int chat_id = 0;
|
||||
if (dialog_id == 0) {
|
||||
if (messageObject.messageOwner.to_id.chat_id != 0) {
|
||||
dialog_id = -messageObject.messageOwner.to_id.chat_id;
|
||||
chat_id = messageObject.messageOwner.to_id.chat_id;
|
||||
} else if (messageObject.messageOwner.to_id.user_id != 0) {
|
||||
if (messageObject.messageOwner.to_id.user_id == UserConfig.clientUserId) {
|
||||
dialog_id = messageObject.messageOwner.from_id;
|
||||
} else {
|
||||
dialog_id = messageObject.messageOwner.to_id.user_id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
TLRPC.EncryptedChat chat = encryptedChats.get((int)(dialog_id >> 32));
|
||||
if (chat == null) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (dialog_id == 0) {
|
||||
return;
|
||||
}
|
||||
TLRPC.User user = users.get(user_id);
|
||||
if (user == null) {
|
||||
return;
|
||||
}
|
||||
TLRPC.Chat chat;
|
||||
if (chat_id != 0) {
|
||||
chat = chats.get(chat_id);
|
||||
if (chat == null) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
String key = "notify_" + dialog_id;
|
||||
boolean value = preferences.getBoolean(key, true);
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (inAppPreview) {
|
||||
NotificationCenter.getInstance().postNotificationName(701, messageObject);
|
||||
}
|
||||
if (inAppVibrate) {
|
||||
Vibrator v = (Vibrator)ApplicationLoader.applicationContext.getSystemService(Context.VIBRATOR_SERVICE);
|
||||
v.vibrate(100);
|
||||
}
|
||||
if (inAppSounds) {
|
||||
playNotificationSound();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
long dialog_id = messageObject.messageOwner.dialog_id;
|
||||
int chat_id = messageObject.messageOwner.to_id.chat_id;
|
||||
int user_id = messageObject.messageOwner.to_id.user_id;
|
||||
if (user_id != 0 && user_id == UserConfig.clientUserId) {
|
||||
if (user_id == 0) {
|
||||
user_id = messageObject.messageOwner.from_id;
|
||||
} else if (user_id == UserConfig.clientUserId) {
|
||||
user_id = messageObject.messageOwner.from_id;
|
||||
}
|
||||
|
||||
if (dialog_id == 0) {
|
||||
if (chat_id != 0) {
|
||||
dialog_id = -chat_id;
|
||||
@ -4393,35 +4320,52 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
}
|
||||
|
||||
if (dialog_id != 0) {
|
||||
String key = "notify_" + dialog_id;
|
||||
boolean value = preferences.getBoolean(key, true);
|
||||
if (!value) {
|
||||
int notify_override = preferences.getInt("notify2_" + dialog_id, 0);
|
||||
if (notify_override == 2 || (!globalEnabled || chat_id != 0 && !groupEnabled) && notify_override == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
TLRPC.User user = users.get(user_id);
|
||||
if (user == null) {
|
||||
return;
|
||||
}
|
||||
TLRPC.Chat chat = null;
|
||||
if (chat_id != 0) {
|
||||
chat = chats.get(chat_id);
|
||||
if (chat == null) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
boolean groupEnabled = preferences.getBoolean("EnableGroup", true);
|
||||
if (chat_id != 0 && !globalEnabled) {
|
||||
int vibrate_override = preferences.getInt("vibrate_" + dialog_id, 0);
|
||||
|
||||
if (ApplicationLoader.lastPauseTime == 0 && ApplicationLoader.isScreenOn) {
|
||||
boolean inAppSounds = preferences.getBoolean("EnableInAppSounds", true);
|
||||
boolean inAppVibrate = preferences.getBoolean("EnableInAppVibrate", true);
|
||||
boolean inAppPreview = preferences.getBoolean("EnableInAppPreview", true);
|
||||
|
||||
if (inAppSounds || inAppVibrate || inAppPreview) {
|
||||
if ((int)dialog_id == 0) {
|
||||
TLRPC.EncryptedChat encChat = encryptedChats.get((int)(dialog_id >> 32));
|
||||
if (encChat == null) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (inAppPreview) {
|
||||
NotificationCenter.getInstance().postNotificationName(701, messageObject);
|
||||
}
|
||||
if (inAppVibrate && vibrate_override == 0 || vibrate_override == 1) {
|
||||
Vibrator v = (Vibrator)ApplicationLoader.applicationContext.getSystemService(Context.VIBRATOR_SERVICE);
|
||||
v.vibrate(100);
|
||||
}
|
||||
if (inAppSounds) {
|
||||
playNotificationSound();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
TLRPC.FileLocation photoPath = null;
|
||||
|
||||
boolean globalVibrate = preferences.getBoolean("EnableVibrateAll", true);
|
||||
boolean groupVibrate = preferences.getBoolean("EnableVibrateGroup", true);
|
||||
boolean groupPreview = preferences.getBoolean("EnablePreviewGroup", true);
|
||||
boolean userPreview = preferences.getBoolean("EnablePreviewAll", true);
|
||||
|
||||
String defaultPath = null;
|
||||
Uri defaultUri = Settings.System.DEFAULT_NOTIFICATION_URI;
|
||||
if (defaultUri != null) {
|
||||
defaultPath = defaultUri.getPath();
|
||||
}
|
||||
|
||||
String globalSound = preferences.getString("GlobalSoundPath", defaultPath);
|
||||
String chatSound = preferences.getString("GroupSoundPath", defaultPath);
|
||||
String userSoundPath = null;
|
||||
String chatSoundPath = null;
|
||||
String defaultPath = Settings.System.DEFAULT_NOTIFICATION_URI.getPath();
|
||||
|
||||
NotificationManager mNotificationManager = (NotificationManager)ApplicationLoader.applicationContext.getSystemService(Context.NOTIFICATION_SERVICE);
|
||||
Intent intent = new Intent(ApplicationLoader.applicationContext, LaunchActivity.class);
|
||||
@ -4430,28 +4374,21 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
if ((int)dialog_id != 0) {
|
||||
if (chat_id != 0) {
|
||||
intent.putExtra("chatId", chat_id);
|
||||
}
|
||||
if (user_id != 0) {
|
||||
} else if (user_id != 0) {
|
||||
intent.putExtra("userId", user_id);
|
||||
}
|
||||
|
||||
if (user.photo != null && user.photo.photo_small != null && user.photo.photo_small.volume_id != 0 && user.photo.photo_small.local_id != 0) {
|
||||
photoPath = user.photo.photo_small;
|
||||
}
|
||||
|
||||
if (chat_id == 0 && user_id != 0) {
|
||||
|
||||
TLRPC.User u = users.get(user_id);
|
||||
if (u == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (u.photo != null && u.photo.photo_small != null && u.photo.photo_small.volume_id != 0 && u.photo.photo_small.local_id != 0) {
|
||||
photoPath = u.photo.photo_small;
|
||||
}
|
||||
|
||||
if (userPreview) {
|
||||
if (preferences.getBoolean("EnablePreviewAll", true)) {
|
||||
if (messageObject.messageOwner instanceof TLRPC.TL_messageService) {
|
||||
if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionUserJoined) {
|
||||
msg = LocaleController.formatString("NotificationContactJoined", R.string.NotificationContactJoined, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationContactJoined", R.string.NotificationContactJoined, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionUserUpdatedPhoto) {
|
||||
msg = LocaleController.formatString("NotificationContactNewPhoto", R.string.NotificationContactNewPhoto, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationContactNewPhoto", R.string.NotificationContactNewPhoto, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionLoginUnknownLocation) {
|
||||
String date = String.format("%s %s %s", LocaleController.formatterYear.format(((long)messageObject.messageOwner.date) * 1000), LocaleController.getString("OtherAt", R.string.OtherAt), LocaleController.formatterDay.format(((long)messageObject.messageOwner.date) * 1000));
|
||||
msg = LocaleController.formatString("NotificationUnrecognizedDevice", R.string.NotificationUnrecognizedDevice, UserConfig.currentUser.first_name, date, messageObject.messageOwner.action.title, messageObject.messageOwner.action.address);
|
||||
@ -4459,93 +4396,80 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
} else {
|
||||
if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaEmpty) {
|
||||
if (messageObject.messageOwner.message != null && messageObject.messageOwner.message.length() != 0) {
|
||||
msg = LocaleController.formatString("NotificationMessageText", R.string.NotificationMessageText, Utilities.formatName(u.first_name, u.last_name), messageObject.messageOwner.message);
|
||||
msg = LocaleController.formatString("NotificationMessageText", R.string.NotificationMessageText, Utilities.formatName(user.first_name, user.last_name), messageObject.messageOwner.message);
|
||||
} else {
|
||||
msg = LocaleController.formatString("NotificationMessageNoText", R.string.NotificationMessageNoText, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageNoText", R.string.NotificationMessageNoText, Utilities.formatName(user.first_name, user.last_name));
|
||||
}
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaPhoto) {
|
||||
msg = LocaleController.formatString("NotificationMessagePhoto", R.string.NotificationMessagePhoto, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessagePhoto", R.string.NotificationMessagePhoto, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaVideo) {
|
||||
msg = LocaleController.formatString("NotificationMessageVideo", R.string.NotificationMessageVideo, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageVideo", R.string.NotificationMessageVideo, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaContact) {
|
||||
msg = LocaleController.formatString("NotificationMessageContact", R.string.NotificationMessageContact, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageContact", R.string.NotificationMessageContact, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaGeo) {
|
||||
msg = LocaleController.formatString("NotificationMessageMap", R.string.NotificationMessageMap, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageMap", R.string.NotificationMessageMap, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaDocument) {
|
||||
msg = LocaleController.formatString("NotificationMessageDocument", R.string.NotificationMessageDocument, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageDocument", R.string.NotificationMessageDocument, Utilities.formatName(user.first_name, user.last_name));
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaAudio) {
|
||||
msg = LocaleController.formatString("NotificationMessageAudio", R.string.NotificationMessageAudio, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageAudio", R.string.NotificationMessageAudio, Utilities.formatName(user.first_name, user.last_name));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
msg = LocaleController.formatString("NotificationMessageNoText", R.string.NotificationMessageNoText, Utilities.formatName(u.first_name, u.last_name));
|
||||
msg = LocaleController.formatString("NotificationMessageNoText", R.string.NotificationMessageNoText, Utilities.formatName(user.first_name, user.last_name));
|
||||
}
|
||||
} else if (chat_id != 0 && user_id == 0) {
|
||||
TLRPC.Chat chat = chats.get(chat_id);
|
||||
if (chat == null) {
|
||||
return;
|
||||
}
|
||||
TLRPC.User u = users.get(messageObject.messageOwner.from_id);
|
||||
if (u == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (u.photo != null && u.photo.photo_small != null && u.photo.photo_small.volume_id != 0 && u.photo.photo_small.local_id != 0) {
|
||||
photoPath = u.photo.photo_small;
|
||||
}
|
||||
|
||||
if (groupPreview) {
|
||||
} else if (chat_id != 0) {
|
||||
if (preferences.getBoolean("EnablePreviewGroup", true)) {
|
||||
if (messageObject.messageOwner instanceof TLRPC.TL_messageService) {
|
||||
if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionChatAddUser) {
|
||||
if (messageObject.messageOwner.action.user_id == UserConfig.clientUserId) {
|
||||
msg = LocaleController.formatString("NotificationInvitedToGroup", R.string.NotificationInvitedToGroup, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationInvitedToGroup", R.string.NotificationInvitedToGroup, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else {
|
||||
TLRPC.User u2 = users.get(messageObject.messageOwner.action.user_id);
|
||||
if (u2 == null) {
|
||||
return;
|
||||
}
|
||||
msg = LocaleController.formatString("NotificationGroupAddMember", R.string.NotificationGroupAddMember, Utilities.formatName(u.first_name, u.last_name), chat.title, Utilities.formatName(u2.first_name, u2.last_name));
|
||||
msg = LocaleController.formatString("NotificationGroupAddMember", R.string.NotificationGroupAddMember, Utilities.formatName(user.first_name, user.last_name), chat.title, Utilities.formatName(u2.first_name, u2.last_name));
|
||||
}
|
||||
} else if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionChatEditTitle) {
|
||||
msg = LocaleController.formatString("NotificationEditedGroupName", R.string.NotificationEditedGroupName, Utilities.formatName(u.first_name, u.last_name), messageObject.messageOwner.action.title);
|
||||
msg = LocaleController.formatString("NotificationEditedGroupName", R.string.NotificationEditedGroupName, Utilities.formatName(user.first_name, user.last_name), messageObject.messageOwner.action.title);
|
||||
} else if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionChatEditPhoto || messageObject.messageOwner.action instanceof TLRPC.TL_messageActionChatDeletePhoto) {
|
||||
msg = LocaleController.formatString("NotificationEditedGroupPhoto", R.string.NotificationEditedGroupPhoto, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationEditedGroupPhoto", R.string.NotificationEditedGroupPhoto, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.action instanceof TLRPC.TL_messageActionChatDeleteUser) {
|
||||
if (messageObject.messageOwner.action.user_id == UserConfig.clientUserId) {
|
||||
msg = LocaleController.formatString("NotificationGroupKickYou", R.string.NotificationGroupKickYou, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.action.user_id == u.id) {
|
||||
msg = LocaleController.formatString("NotificationGroupLeftMember", R.string.NotificationGroupLeftMember, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationGroupKickYou", R.string.NotificationGroupKickYou, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.action.user_id == user.id) {
|
||||
msg = LocaleController.formatString("NotificationGroupLeftMember", R.string.NotificationGroupLeftMember, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else {
|
||||
TLRPC.User u2 = users.get(messageObject.messageOwner.action.user_id);
|
||||
if (u2 == null) {
|
||||
return;
|
||||
}
|
||||
msg = LocaleController.formatString("NotificationGroupKickMember", R.string.NotificationGroupKickMember, Utilities.formatName(u.first_name, u.last_name), chat.title, Utilities.formatName(u2.first_name, u2.last_name));
|
||||
msg = LocaleController.formatString("NotificationGroupKickMember", R.string.NotificationGroupKickMember, Utilities.formatName(user.first_name, user.last_name), chat.title, Utilities.formatName(u2.first_name, u2.last_name));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaEmpty) {
|
||||
if (messageObject.messageOwner.message != null && messageObject.messageOwner.message.length() != 0) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupText", R.string.NotificationMessageGroupText, Utilities.formatName(u.first_name, u.last_name), chat.title, messageObject.messageOwner.message);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupText", R.string.NotificationMessageGroupText, Utilities.formatName(user.first_name, user.last_name), chat.title, messageObject.messageOwner.message);
|
||||
} else {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupNoText", R.string.NotificationMessageGroupNoText, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupNoText", R.string.NotificationMessageGroupNoText, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
}
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaPhoto) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupPhoto", R.string.NotificationMessageGroupPhoto, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupPhoto", R.string.NotificationMessageGroupPhoto, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaVideo) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupVideo", R.string.NotificationMessageGroupVideo, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupVideo", R.string.NotificationMessageGroupVideo, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaContact) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupContact", R.string.NotificationMessageGroupContact, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupContact", R.string.NotificationMessageGroupContact, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaGeo) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupMap", R.string.NotificationMessageGroupMap, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupMap", R.string.NotificationMessageGroupMap, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaDocument) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupDocument", R.string.NotificationMessageGroupDocument, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupDocument", R.string.NotificationMessageGroupDocument, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
} else if (messageObject.messageOwner.media instanceof TLRPC.TL_messageMediaAudio) {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupAudio", R.string.NotificationMessageGroupAudio, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupAudio", R.string.NotificationMessageGroupAudio, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
msg = LocaleController.formatString("NotificationMessageGroupNoText", R.string.NotificationMessageGroupNoText, Utilities.formatName(u.first_name, u.last_name), chat.title);
|
||||
msg = LocaleController.formatString("NotificationMessageGroupNoText", R.string.NotificationMessageGroupNoText, Utilities.formatName(user.first_name, user.last_name), chat.title);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -4558,32 +4482,30 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
|
||||
boolean needVibrate = false;
|
||||
|
||||
if (user_id != 0) {
|
||||
userSoundPath = preferences.getString("sound_path_" + user_id, null);
|
||||
needVibrate = globalVibrate;
|
||||
}
|
||||
if (chat_id != 0) {
|
||||
chatSoundPath = preferences.getString("sound_chat_path_" + chat_id, null);
|
||||
needVibrate = groupVibrate;
|
||||
}
|
||||
|
||||
String choosenSoundPath = null;
|
||||
|
||||
if (user_id != 0) {
|
||||
if (userSoundPath != null) {
|
||||
choosenSoundPath = userSoundPath;
|
||||
} else if (globalSound != null) {
|
||||
choosenSoundPath = globalSound;
|
||||
if (chat_id != 0) {
|
||||
choosenSoundPath = preferences.getString("sound_chat_path_" + chat_id, null);
|
||||
if (choosenSoundPath != null && choosenSoundPath.equals(defaultPath)) {
|
||||
choosenSoundPath = null;
|
||||
} else if (choosenSoundPath == null) {
|
||||
choosenSoundPath = preferences.getString("GroupSoundPath", defaultPath);
|
||||
}
|
||||
} else if (chat_id != 0) {
|
||||
if (chatSoundPath != null) {
|
||||
choosenSoundPath = chatSoundPath;
|
||||
} else if (chatSound != null) {
|
||||
choosenSoundPath = chatSound;
|
||||
needVibrate = preferences.getBoolean("EnableVibrateGroup", true);
|
||||
} else if (user_id != 0) {
|
||||
choosenSoundPath = preferences.getString("sound_path_" + user_id, null);
|
||||
if (choosenSoundPath != null && choosenSoundPath.equals(defaultPath)) {
|
||||
choosenSoundPath = null;
|
||||
} else if (choosenSoundPath == null) {
|
||||
choosenSoundPath = preferences.getString("GlobalSoundPath", defaultPath);
|
||||
}
|
||||
} else {
|
||||
choosenSoundPath = globalSound;
|
||||
needVibrate = preferences.getBoolean("EnableVibrateAll", true);
|
||||
}
|
||||
|
||||
if (!needVibrate && vibrate_override == 1) {
|
||||
needVibrate = true;
|
||||
} else if (needVibrate && vibrate_override == 2) {
|
||||
needVibrate = false;
|
||||
}
|
||||
|
||||
intent.setAction("com.tmessages.openchat" + Math.random() + Integer.MAX_VALUE);
|
||||
@ -4593,8 +4515,7 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(ApplicationLoader.applicationContext)
|
||||
.setContentTitle(LocaleController.getString("AppName", R.string.AppName))
|
||||
.setSmallIcon(R.drawable.notification)
|
||||
.setStyle(new NotificationCompat.BigTextStyle()
|
||||
.bigText(msg))
|
||||
.setStyle(new NotificationCompat.BigTextStyle().bigText(msg))
|
||||
.setContentText(msg)
|
||||
.setAutoCancel(true)
|
||||
.setTicker(msg);
|
||||
@ -4606,12 +4527,9 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
}
|
||||
|
||||
if (needVibrate) {
|
||||
mBuilder.setVibrate(new long[]{0, 100, 0, 100});
|
||||
}
|
||||
if (choosenSoundPath != null && !choosenSoundPath.equals("NoSound")) {
|
||||
if (choosenSoundPath.equals(defaultPath)) {
|
||||
mBuilder.setSound(defaultUri);
|
||||
mBuilder.setSound(Settings.System.DEFAULT_NOTIFICATION_URI);
|
||||
} else {
|
||||
mBuilder.setSound(Uri.parse(choosenSoundPath));
|
||||
}
|
||||
@ -4624,8 +4542,13 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
notification.ledARGB = 0xff00ff00;
|
||||
notification.ledOnMS = 1000;
|
||||
notification.ledOffMS = 1000;
|
||||
if (needVibrate) {
|
||||
notification.defaults = Notification.DEFAULT_VIBRATE;
|
||||
notification.vibrate = new long[]{0, 100, 0, 100};
|
||||
} else {
|
||||
notification.vibrate = new long[]{0, 0};
|
||||
}
|
||||
notification.flags |= Notification.FLAG_SHOW_LIGHTS;
|
||||
notification.defaults = 0;
|
||||
try {
|
||||
mNotificationManager.notify(1, notification);
|
||||
if (preferences.getBoolean("EnablePebbleNotifications", false)) {
|
||||
@ -5059,7 +4982,7 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
byte[] salt = new byte[256];
|
||||
for (int a = 0; a < 256; a++) {
|
||||
salt[a] = (byte) ((byte) (random.nextDouble() * 256) ^ res.random[a]);
|
||||
salt[a] = (byte) ((byte) (Utilities.random.nextDouble() * 256) ^ res.random[a]);
|
||||
}
|
||||
encryptedChat.a_or_b = salt;
|
||||
BigInteger p = new BigInteger(1, MessagesStorage.secretPBytes);
|
||||
@ -5172,7 +5095,7 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
}
|
||||
final byte[] salt = new byte[256];
|
||||
for (int a = 0; a < 256; a++) {
|
||||
salt[a] = (byte) ((byte) (random.nextDouble() * 256) ^ res.random[a]);
|
||||
salt[a] = (byte) ((byte) (Utilities.random.nextDouble() * 256) ^ res.random[a]);
|
||||
}
|
||||
|
||||
BigInteger i_g_a = BigInteger.valueOf(MessagesStorage.secretG);
|
||||
@ -5187,7 +5110,7 @@ public class MessagesController implements NotificationCenter.NotificationCenter
|
||||
TLRPC.TL_messages_requestEncryption req2 = new TLRPC.TL_messages_requestEncryption();
|
||||
req2.g_a = g_a;
|
||||
req2.user_id = getInputUser(user);
|
||||
req2.random_id = random.nextInt();
|
||||
req2.random_id = Utilities.random.nextInt();
|
||||
ConnectionsManager.getInstance().performRpc(req2, new RPCRequest.RPCRequestDelegate() {
|
||||
@Override
|
||||
public void run(final TLObject response, TLRPC.TL_error error) {
|
||||
|
@ -22,9 +22,9 @@ import java.util.zip.ZipFile;
|
||||
public class NativeLoader {
|
||||
|
||||
private static final long sizes[] = new long[] {
|
||||
795280, //armeabi
|
||||
778916, //armeabi-v7a
|
||||
1377300, //x86
|
||||
922256, //armeabi
|
||||
991908, //armeabi-v7a
|
||||
1713204, //x86
|
||||
0, //mips
|
||||
};
|
||||
|
||||
@ -87,9 +87,10 @@ public class NativeLoader {
|
||||
libSize2 = sizes[1];
|
||||
}
|
||||
|
||||
|
||||
File destFile = getNativeLibraryDir(context);
|
||||
if (destFile != null && destFile.exists() && (destFile.length() == libSize || libSize2 != 0 && destFile.length() == libSize2)) {
|
||||
if (destFile != null) {
|
||||
destFile = new File(destFile, "libtmessages.so");
|
||||
if (destFile.exists() && (destFile.length() == libSize || libSize2 != 0 && destFile.length() == libSize2)) {
|
||||
FileLog.d("tmessages", "Load normal lib");
|
||||
try {
|
||||
System.loadLibrary("tmessages");
|
||||
@ -99,6 +100,7 @@ public class NativeLoader {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
File destLocalFile = new File(context.getFilesDir().getAbsolutePath() + "/libtmessages.so");
|
||||
if (destLocalFile.exists()) {
|
||||
|
@ -8906,7 +8906,7 @@ public class TLRPC {
|
||||
}
|
||||
}
|
||||
|
||||
public static class TL_audioEncrypted extends Audio {
|
||||
public static class TL_audioEncrypted extends TL_audio {
|
||||
public static int constructor = 0x555555F6;
|
||||
|
||||
|
||||
|
@ -18,9 +18,8 @@ import java.util.TimerTask;
|
||||
|
||||
import jawnae.pyronet.PyroClient;
|
||||
import jawnae.pyronet.PyroSelector;
|
||||
import jawnae.pyronet.PyroClientAdapter;
|
||||
|
||||
public class TcpConnection extends PyroClientAdapter {
|
||||
public class TcpConnection extends ConnectionContext {
|
||||
public enum TcpConnectionState {
|
||||
TcpConnectionStageIdle,
|
||||
TcpConnectionStageConnecting,
|
||||
|
@ -15,6 +15,7 @@ import android.content.Context;
|
||||
import android.content.Intent;
|
||||
import android.content.SharedPreferences;
|
||||
import android.database.Cursor;
|
||||
import android.graphics.Bitmap;
|
||||
import android.graphics.Point;
|
||||
import android.graphics.Typeface;
|
||||
import android.net.Uri;
|
||||
@ -30,6 +31,9 @@ import android.view.View;
|
||||
import android.view.WindowManager;
|
||||
import android.view.inputmethod.InputMethodManager;
|
||||
|
||||
import net.hockeyapp.android.CrashManager;
|
||||
import net.hockeyapp.android.UpdateManager;
|
||||
|
||||
import org.telegram.ui.ApplicationLoader;
|
||||
|
||||
import java.io.ByteArrayInputStream;
|
||||
@ -38,13 +42,18 @@ import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
import java.io.OutputStream;
|
||||
import java.math.BigInteger;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.nio.ByteOrder;
|
||||
import java.nio.channels.Channels;
|
||||
import java.nio.channels.FileChannel;
|
||||
import java.nio.channels.ReadableByteChannel;
|
||||
import java.security.KeyFactory;
|
||||
import java.security.MessageDigest;
|
||||
import java.security.PublicKey;
|
||||
import java.security.SecureRandom;
|
||||
import java.security.spec.RSAPublicKeySpec;
|
||||
import java.text.SimpleDateFormat;
|
||||
import java.util.ArrayList;
|
||||
@ -63,6 +72,7 @@ public class Utilities {
|
||||
public static float density = 1;
|
||||
public static Point displaySize = new Point();
|
||||
public static Pattern pattern = Pattern.compile("[0-9]+");
|
||||
public static SecureRandom random = new SecureRandom();
|
||||
private final static Integer lock = 1;
|
||||
|
||||
private static boolean waitingForSms = false;
|
||||
@ -103,6 +113,17 @@ public class Utilities {
|
||||
public static ProgressDialog progressDialog;
|
||||
|
||||
static {
|
||||
try {
|
||||
File URANDOM_FILE = new File("/dev/urandom");
|
||||
FileInputStream sUrandomIn = new FileInputStream(URANDOM_FILE);
|
||||
byte[] buffer = new byte[1024];
|
||||
sUrandomIn.read(buffer);
|
||||
sUrandomIn.close();
|
||||
random.setSeed(buffer);
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
|
||||
density = ApplicationLoader.applicationContext.getResources().getDisplayMetrics().density;
|
||||
SharedPreferences preferences = ApplicationLoader.applicationContext.getSharedPreferences("primes", Context.MODE_PRIVATE);
|
||||
String primes = preferences.getString("primes", null);
|
||||
@ -131,6 +152,7 @@ public class Utilities {
|
||||
public native static long doPQNative(long _what);
|
||||
public native static byte[] aesIgeEncryption(byte[] _what, byte[] _key, byte[] _iv, boolean encrypt, boolean changeIv, int len);
|
||||
public native static void aesIgeEncryption2(ByteBuffer _what, byte[] _key, byte[] _iv, boolean encrypt, boolean changeIv, int len);
|
||||
public native static void loadBitmap(String path, Bitmap bitmap, int scale);
|
||||
|
||||
public static boolean isWaitingForSms() {
|
||||
boolean value = false;
|
||||
@ -201,13 +223,6 @@ public class Utilities {
|
||||
return false;
|
||||
}
|
||||
|
||||
String hex = bytesToHex(prime);
|
||||
for (String cached : goodPrimes) {
|
||||
if (cached.equals(hex)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
BigInteger dhBI = new BigInteger(1, prime);
|
||||
|
||||
if (g == 2) { // p mod 8 = 7 for g = 2;
|
||||
@ -240,6 +255,13 @@ public class Utilities {
|
||||
}
|
||||
}
|
||||
|
||||
String hex = bytesToHex(prime);
|
||||
for (String cached : goodPrimes) {
|
||||
if (cached.equals(hex)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
BigInteger dhBI2 = dhBI.subtract(BigInteger.valueOf(1)).divide(BigInteger.valueOf(2));
|
||||
if (!dhBI.isProbablePrime(30) || !dhBI2.isProbablePrime(30)) {
|
||||
return false;
|
||||
@ -552,20 +574,31 @@ public class Utilities {
|
||||
});
|
||||
}
|
||||
|
||||
public static boolean copyFile(InputStream sourceFile, File destFile) throws IOException {
|
||||
OutputStream out = new FileOutputStream(destFile);
|
||||
byte[] buf = new byte[4096];
|
||||
int len;
|
||||
while ((len = sourceFile.read(buf)) > 0) {
|
||||
Thread.yield();
|
||||
out.write(buf, 0, len);
|
||||
}
|
||||
out.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
public static boolean copyFile(File sourceFile, File destFile) throws IOException {
|
||||
if(!destFile.exists()) {
|
||||
destFile.createNewFile();
|
||||
}
|
||||
FileChannel source = null;
|
||||
FileChannel destination = null;
|
||||
boolean result = true;
|
||||
try {
|
||||
source = new FileInputStream(sourceFile).getChannel();
|
||||
destination = new FileOutputStream(destFile).getChannel();
|
||||
destination.transferFrom(source, 0, source.size());
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
result = false;
|
||||
return false;
|
||||
} finally {
|
||||
if(source != null) {
|
||||
source.close();
|
||||
@ -574,7 +607,7 @@ public class Utilities {
|
||||
destination.close();
|
||||
}
|
||||
}
|
||||
return result;
|
||||
return true;
|
||||
}
|
||||
|
||||
public static void RunOnUIThread(Runnable runnable) {
|
||||
@ -667,7 +700,7 @@ public class Utilities {
|
||||
private static File getAlbumDir() {
|
||||
File storageDir = null;
|
||||
if (Environment.MEDIA_MOUNTED.equals(Environment.getExternalStorageState())) {
|
||||
storageDir = new File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES), ApplicationLoader.applicationContext.getResources().getString(R.string.AppName));
|
||||
storageDir = new File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES), LocaleController.getString("AppName", R.string.AppName));
|
||||
if (storageDir != null) {
|
||||
if (! storageDir.mkdirs()) {
|
||||
if (! storageDir.exists()){
|
||||
@ -872,4 +905,14 @@ public class Utilities {
|
||||
}
|
||||
return buffer.toByteArray();
|
||||
}
|
||||
|
||||
public static void checkForCrashes(Activity context) {
|
||||
CrashManager.register(context, BuildVars.HOCKEY_APP_HASH);
|
||||
}
|
||||
|
||||
public static void checkForUpdates(Activity context) {
|
||||
if (BuildVars.DEBUG_VERSION) {
|
||||
UpdateManager.register(context, BuildVars.HOCKEY_APP_HASH);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -68,6 +68,8 @@ public class MessageObject {
|
||||
textPaint.linkColor = 0xff316f9f;
|
||||
}
|
||||
|
||||
textPaint.setTextSize(Utilities.dp(MessagesController.getInstance().fontSize));
|
||||
|
||||
messageOwner = message;
|
||||
|
||||
if (message instanceof TLRPC.TL_messageService) {
|
||||
@ -269,7 +271,7 @@ public class MessageObject {
|
||||
} else {
|
||||
messageText = message.message;
|
||||
}
|
||||
messageText = Emoji.replaceEmoji(messageText);
|
||||
messageText = Emoji.replaceEmoji(messageText, textPaint.getFontMetricsInt(), Utilities.dp(20));
|
||||
|
||||
if (message instanceof TLRPC.TL_message || (message instanceof TLRPC.TL_messageForwarded && (message.media == null || !(message.media instanceof TLRPC.TL_messageMediaEmpty)))) {
|
||||
if (message.media == null || message.media instanceof TLRPC.TL_messageMediaEmpty) {
|
||||
@ -402,8 +404,6 @@ public class MessageObject {
|
||||
}
|
||||
}
|
||||
|
||||
textPaint.setTextSize(Utilities.dp(MessagesController.getInstance().fontSize));
|
||||
|
||||
int maxWidth;
|
||||
if (messageOwner.to_id.chat_id != 0) {
|
||||
maxWidth = Math.min(Utilities.displaySize.x, Utilities.displaySize.y) - Utilities.dp(122);
|
||||
|
@ -258,7 +258,7 @@ public class ApplicationLoader extends Application {
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}.execute(null, null, null);
|
||||
}.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, null, null, null);
|
||||
}
|
||||
|
||||
private void sendRegistrationIdToBackend(final boolean isNew) {
|
||||
|
@ -281,6 +281,8 @@ public class ChatBaseCell extends BaseCell {
|
||||
if (currentUser != null) {
|
||||
if (currentUser.photo != null) {
|
||||
currentPhoto = currentUser.photo.photo_small;
|
||||
} else {
|
||||
currentPhoto = null;
|
||||
}
|
||||
avatarImage.setImage(currentPhoto, "50_50", getResources().getDrawable(Utilities.getUserAvatarForId(currentUser.id)));
|
||||
} else {
|
||||
|
@ -119,6 +119,7 @@ public class ChatMediaCell extends ChatBaseCell implements MediaController.FileD
|
||||
photoImage.clearImage();
|
||||
currentPhotoObject = null;
|
||||
}
|
||||
currentUrl = null;
|
||||
if (gifDrawable != null) {
|
||||
MediaController.getInstance().clearGifDrawable(this);
|
||||
gifDrawable = null;
|
||||
@ -248,7 +249,7 @@ public class ChatMediaCell extends ChatBaseCell implements MediaController.FileD
|
||||
FileLoader.getInstance().cancelLoadingForImageView(photoImage);
|
||||
} else if (currentMessageObject.type == 8) {
|
||||
FileLoader.getInstance().cancelLoadFile(null, null, currentMessageObject.messageOwner.media.document, null);
|
||||
if (lastDownloadedGifMessage.messageOwner.id == currentMessageObject.messageOwner.id) {
|
||||
if (lastDownloadedGifMessage != null && lastDownloadedGifMessage.messageOwner.id == currentMessageObject.messageOwner.id) {
|
||||
lastDownloadedGifMessage = null;
|
||||
}
|
||||
} else if (currentMessageObject.type == 3) {
|
||||
|
@ -346,22 +346,10 @@ public class ChatOrUserCell extends BaseCell {
|
||||
if (subLabel != null) {
|
||||
onlineString = subLabel;
|
||||
} else {
|
||||
if (user != null) {
|
||||
if (user.status == null) {
|
||||
onlineString = getResources().getString(R.string.Offline);
|
||||
} else {
|
||||
int currentTime = ConnectionsManager.getInstance().getCurrentTime();
|
||||
if (user.id == UserConfig.clientUserId || user.status.expires > currentTime) {
|
||||
onlineString = LocaleController.formatUserStatus(user);
|
||||
if (user != null && (user.id == UserConfig.clientUserId || user.status != null && user.status.expires > ConnectionsManager.getInstance().getCurrentTime())) {
|
||||
currentOnlinePaint = onlinePaint;
|
||||
onlineString = getResources().getString(R.string.Online);
|
||||
} else {
|
||||
if (user.status.expires <= 10000) {
|
||||
onlineString = getResources().getString(R.string.Invisible);
|
||||
} else {
|
||||
onlineString = LocaleController.formatDateOnline(user.status.expires);
|
||||
}
|
||||
}
|
||||
}
|
||||
onlineString = LocaleController.getString("Online", R.string.Online);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -476,13 +476,13 @@ public class DialogCell extends BaseCell {
|
||||
}
|
||||
}
|
||||
}
|
||||
if (message.messageOwner.media != null && !(message.messageOwner.media instanceof TLRPC.TL_messageMediaEmpty)) {
|
||||
messageString = message.messageText;
|
||||
currentMessagePaint = messagePrintingPaint;
|
||||
} else {
|
||||
checkMessage = false;
|
||||
if (message.messageOwner.media != null && !(message.messageOwner.media instanceof TLRPC.TL_messageMediaEmpty)) {
|
||||
currentMessagePaint = messagePrintingPaint;
|
||||
messageString = Emoji.replaceEmoji(Html.fromHtml(String.format("<font color=#316f9f>%s:</font> <font color=#316f9f>%s</font>", name, message.messageText)), messagePaint.getFontMetricsInt(), Utilities.dp(20));
|
||||
} else {
|
||||
if (message.messageOwner.message != null) {
|
||||
messageString = Emoji.replaceEmoji(Html.fromHtml(String.format("<font color=#316f9f>%s:</font> <font color=#808080>%s</font>", name, message.messageOwner.message.replace("\n", " "))));
|
||||
messageString = Emoji.replaceEmoji(Html.fromHtml(String.format("<font color=#316f9f>%s:</font> <font color=#808080>%s</font>", name, message.messageOwner.message.replace("\n", " "))), messagePaint.getFontMetricsInt(), Utilities.dp(20));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -662,7 +662,7 @@ public class DialogCell extends BaseCell {
|
||||
if (mess.length() > 150) {
|
||||
mess = mess.substring(0, 150);
|
||||
}
|
||||
messageString = Emoji.replaceEmoji(mess);
|
||||
messageString = Emoji.replaceEmoji(mess, messagePaint.getFontMetricsInt(), Utilities.dp(20));
|
||||
}
|
||||
|
||||
CharSequence messageStringFinal = TextUtils.ellipsize(messageString, currentMessagePaint, messageWidth - Utilities.dp(12), TextUtils.TruncateAt.END);
|
||||
|
@ -693,7 +693,11 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
TextView textView = (TextView)fragmentView.findViewById(R.id.slideToCancelTextView);
|
||||
textView.setText(LocaleController.getString("SlideToCancel", R.string.SlideToCancel));
|
||||
textView = (TextView)fragmentView.findViewById(R.id.bottom_overlay_chat_text);
|
||||
if (currentUser == null) {
|
||||
textView.setText(LocaleController.getString("DeleteThisGroup", R.string.DeleteThisGroup));
|
||||
} else {
|
||||
textView.setText(LocaleController.getString("DeleteThisChat", R.string.DeleteThisChat));
|
||||
}
|
||||
textView = (TextView)fragmentView.findViewById(R.id.secret_title);
|
||||
textView.setText(LocaleController.getString("EncryptedDescriptionTitle", R.string.EncryptedDescriptionTitle));
|
||||
textView = (TextView)fragmentView.findViewById(R.id.secret_description1);
|
||||
@ -847,9 +851,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
|
||||
@Override
|
||||
public void onTextChanged(CharSequence charSequence, int i, int i2, int i3) {
|
||||
String message = charSequence.toString().trim();
|
||||
message = message.replaceAll("\n\n+", "\n\n");
|
||||
message = message.replaceAll(" +", " ");
|
||||
String message = getTrimmedString(charSequence.toString());
|
||||
sendButton.setEnabled(message.length() != 0);
|
||||
checkSendButton();
|
||||
|
||||
@ -873,7 +875,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
int j = arrayOfImageSpan.length;
|
||||
while (true) {
|
||||
if (i >= j) {
|
||||
Emoji.replaceEmoji(editable);
|
||||
Emoji.replaceEmoji(editable, messsageEditText.getPaint().getFontMetricsInt(), Utilities.dp(20));
|
||||
return;
|
||||
}
|
||||
editable.removeSpan(arrayOfImageSpan[i]);
|
||||
@ -885,10 +887,19 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
bottomOverlayChat.setOnClickListener(new View.OnClickListener() {
|
||||
@Override
|
||||
public void onClick(View view) {
|
||||
if (currentChat != null) {
|
||||
MessagesController.getInstance().deleteDialog(-currentChat.id, 0, false);
|
||||
AlertDialog.Builder builder = new AlertDialog.Builder(parentActivity);
|
||||
builder.setMessage(LocaleController.getString("AreYouSure", R.string.AreYouSure));
|
||||
builder.setTitle(LocaleController.getString("AppName", R.string.AppName));
|
||||
builder.setPositiveButton(LocaleController.getString("OK", R.string.OK), new DialogInterface.OnClickListener() {
|
||||
@Override
|
||||
public void onClick(DialogInterface dialogInterface, int i) {
|
||||
MessagesController.getInstance().deleteDialog(dialog_id, 0, false);
|
||||
finishFragment();
|
||||
}
|
||||
});
|
||||
builder.setNegativeButton(LocaleController.getString("Cancel", R.string.Cancel), null);
|
||||
visibleDialog = builder.show();
|
||||
visibleDialog.setCanceledOnTouchOutside(true);
|
||||
}
|
||||
});
|
||||
|
||||
@ -922,7 +933,8 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
ChatActivity.this.onSwipeLeft();
|
||||
}
|
||||
});
|
||||
if (currentChat != null && (currentChat instanceof TLRPC.TL_chatForbidden || currentChat.left)) {
|
||||
if (currentChat != null && (currentChat instanceof TLRPC.TL_chatForbidden || currentChat.left) ||
|
||||
currentUser != null && (currentUser instanceof TLRPC.TL_userDeleted || currentUser instanceof TLRPC.TL_userEmpty)) {
|
||||
bottomOverlayChat.setVisibility(View.VISIBLE);
|
||||
} else {
|
||||
bottomOverlayChat.setVisibility(View.GONE);
|
||||
@ -936,6 +948,17 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
return fragmentView;
|
||||
}
|
||||
|
||||
private String getTrimmedString(String src) {
|
||||
String result = src.trim();
|
||||
while (src.startsWith("\n")) {
|
||||
src = src.substring(1);
|
||||
}
|
||||
while (src.endsWith("\n")) {
|
||||
src = src.substring(0, src.length() - 1);
|
||||
}
|
||||
return src;
|
||||
}
|
||||
|
||||
private boolean onSwipeLeft() {
|
||||
if (swipeOpening) {
|
||||
return false;
|
||||
@ -969,9 +992,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
|
||||
private void checkSendButton() {
|
||||
String message = messsageEditText.getText().toString().trim();
|
||||
message = message.replaceAll("\n\n+", "\n\n");
|
||||
message = message.replaceAll(" +", " ");
|
||||
String message = getTrimmedString(messsageEditText.getText().toString());
|
||||
if (message.length() > 0) {
|
||||
sendButton.setVisibility(View.VISIBLE);
|
||||
audioSendButton.setVisibility(View.INVISIBLE);
|
||||
@ -1084,8 +1105,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
|
||||
private void sendMessage() {
|
||||
String message = messsageEditText.getText().toString().trim();
|
||||
if (processSendingText(message)) {
|
||||
if (processSendingText(messsageEditText.getText().toString())) {
|
||||
messsageEditText.setText("");
|
||||
lastTypingTimeSend = 0;
|
||||
chatListView.post(new Runnable() {
|
||||
@ -1376,7 +1396,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
if (selectedMessagesIds.isEmpty()) {
|
||||
mActionMode.finish();
|
||||
} else {
|
||||
mActionMode.setTitle(String.format("%s %d", LocaleController.getString("Selected", R.string.Selected), selectedMessagesIds.size()));
|
||||
mActionMode.setTitle(LocaleController.formatString("Selected", R.string.Selected, selectedMessagesIds.size()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -1442,20 +1462,11 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
}
|
||||
} else if (currentUser != null) {
|
||||
if (currentUser.status == null) {
|
||||
actionBar.setSubtitle(LocaleController.getString("Offline", R.string.Offline));
|
||||
} else {
|
||||
int currentTime = ConnectionsManager.getInstance().getCurrentTime();
|
||||
if (currentUser.status.expires > currentTime) {
|
||||
actionBar.setSubtitle(LocaleController.getString("Online", R.string.Online));
|
||||
} else {
|
||||
if (currentUser.status.expires <= 10000) {
|
||||
actionBar.setSubtitle(LocaleController.getString("Invisible", R.string.Invisible));
|
||||
} else {
|
||||
actionBar.setSubtitle(LocaleController.formatDateOnline(currentUser.status.expires));
|
||||
}
|
||||
}
|
||||
TLRPC.User user = MessagesController.getInstance().users.get(currentUser.id);
|
||||
if (user != null) {
|
||||
currentUser = user;
|
||||
}
|
||||
actionBar.setSubtitle(LocaleController.formatUserStatus(currentUser));
|
||||
}
|
||||
} else {
|
||||
lastPrintString = printString;
|
||||
@ -1504,7 +1515,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
int rotation = manager.getDefaultDisplay().getRotation();
|
||||
|
||||
if (height > Emoji.scale(50)) {
|
||||
if (height > Utilities.dp(50)) {
|
||||
if (rotation == Surface.ROTATION_270 || rotation == Surface.ROTATION_90) {
|
||||
keyboardHeightLand = height;
|
||||
parentActivity.getSharedPreferences("emoji", 0).edit().putInt("kbd_height_land3", keyboardHeightLand).commit();
|
||||
@ -1623,8 +1634,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
|
||||
public boolean processSendingText(String text) {
|
||||
text = text.replaceAll("\n\n+", "\n\n");
|
||||
text = text.replaceAll(" +", " ");
|
||||
text = getTrimmedString(text);
|
||||
if (text.length() != 0) {
|
||||
int count = (int)Math.ceil(text.length() / 2048.0f);
|
||||
for (int a = 0; a < count; a++) {
|
||||
@ -2444,8 +2454,13 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
if (currentUser == null) {
|
||||
topPanel.setVisibility(View.GONE);
|
||||
} else {
|
||||
TLRPC.User user = MessagesController.getInstance().users.get(currentUser.id);
|
||||
if (user != null) {
|
||||
currentUser = user;
|
||||
}
|
||||
if (currentEncryptedChat != null && !(currentEncryptedChat instanceof TLRPC.TL_encryptedChat)
|
||||
|| currentUser.id / 1000 == 333
|
||||
|| currentUser instanceof TLRPC.TL_userEmpty || currentUser instanceof TLRPC.TL_userDeleted
|
||||
|| (currentUser.phone != null && currentUser.phone.length() != 0 &&
|
||||
ContactsController.getInstance().contactsDict.get(currentUser.id) != null &&
|
||||
(ContactsController.getInstance().contactsDict.size() != 0 || !ContactsController.getInstance().loadingContacts))) {
|
||||
@ -2522,7 +2537,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
|
||||
public void onEmojiSelected(String paramAnonymousString) {
|
||||
int i = messsageEditText.getSelectionEnd();
|
||||
CharSequence localCharSequence = Emoji.replaceEmoji(paramAnonymousString);
|
||||
CharSequence localCharSequence = Emoji.replaceEmoji(paramAnonymousString, messsageEditText.getPaint().getFontMetricsInt(), Utilities.dp(20));
|
||||
messsageEditText.setText(messsageEditText.getText().insert(i, localCharSequence));
|
||||
int j = i + localCharSequence.length();
|
||||
messsageEditText.setSelection(j, j);
|
||||
@ -2535,7 +2550,7 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
if (parentActivity == null) {
|
||||
return;
|
||||
}
|
||||
InputMethodManager localInputMethodManager = (InputMethodManager)parentActivity.getSystemService("input_method");
|
||||
InputMethodManager localInputMethodManager = (InputMethodManager)parentActivity.getSystemService(Context.INPUT_METHOD_SERVICE);
|
||||
if (show) {
|
||||
if (emojiPopup == null) {
|
||||
createEmojiPopup();
|
||||
@ -2544,10 +2559,10 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
WindowManager manager = (WindowManager) ApplicationLoader.applicationContext.getSystemService(Activity.WINDOW_SERVICE);
|
||||
int rotation = manager.getDefaultDisplay().getRotation();
|
||||
if (keyboardHeight <= 0) {
|
||||
keyboardHeight = parentActivity.getSharedPreferences("emoji", 0).getInt("kbd_height", Emoji.scale(200.0f));
|
||||
keyboardHeight = parentActivity.getSharedPreferences("emoji", 0).getInt("kbd_height", Utilities.dp(200));
|
||||
}
|
||||
if (keyboardHeightLand <= 0) {
|
||||
keyboardHeightLand = parentActivity.getSharedPreferences("emoji", 0).getInt("kbd_height_land3", Emoji.scale(200.0f));
|
||||
keyboardHeightLand = parentActivity.getSharedPreferences("emoji", 0).getInt("kbd_height_land3", Utilities.dp(200));
|
||||
}
|
||||
if (rotation == Surface.ROTATION_270 || rotation == Surface.ROTATION_90) {
|
||||
currentHeight = keyboardHeightLand;
|
||||
@ -2843,7 +2858,10 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
avatarItem.setShowAsAction(SupportMenuItem.SHOW_AS_ACTION_ALWAYS);
|
||||
avatarItem.setActionView(R.layout.chat_header_layout);
|
||||
|
||||
if (currentEncryptedChat != null && !(currentEncryptedChat instanceof TLRPC.TL_encryptedChat) || currentChat != null && (currentChat instanceof TLRPC.TL_chatForbidden || currentChat.left)) {
|
||||
if (currentEncryptedChat != null && !(currentEncryptedChat instanceof TLRPC.TL_encryptedChat) ||
|
||||
currentChat != null && (currentChat instanceof TLRPC.TL_chatForbidden || currentChat.left) ||
|
||||
currentUser != null && (currentUser instanceof TLRPC.TL_userDeleted || currentUser instanceof TLRPC.TL_userEmpty)) {
|
||||
|
||||
if (menuItem != null) {
|
||||
menuItem.setVisible(false);
|
||||
}
|
||||
@ -2895,7 +2913,8 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
});
|
||||
builder.setNegativeButton(LocaleController.getString("Cancel", R.string.Cancel), null);
|
||||
builder.show().setCanceledOnTouchOutside(true);
|
||||
visibleDialog = builder.show();
|
||||
visibleDialog.setCanceledOnTouchOutside(true);
|
||||
}
|
||||
});
|
||||
timerButton.setTime(currentEncryptedChat.ttl);
|
||||
@ -3128,6 +3147,9 @@ public class ChatActivity extends BaseFragment implements SizeNotifierRelativeLa
|
||||
}
|
||||
}
|
||||
if (locFile != null) {
|
||||
if (parentActivity == null) {
|
||||
return;
|
||||
}
|
||||
if (LocaleController.getInstance().applyLanguageFile(locFile)) {
|
||||
((LaunchActivity)parentActivity).presentFragment(new LanguageSelectActivity(), "settings_lang", false);
|
||||
} else if (parentActivity != null) {
|
||||
|
@ -22,7 +22,6 @@ import android.os.Bundle;
|
||||
import android.provider.Settings;
|
||||
import android.support.v4.internal.view.SupportMenuItem;
|
||||
import android.support.v7.app.ActionBar;
|
||||
import android.support.v7.widget.SearchView;
|
||||
import android.text.Html;
|
||||
import android.view.LayoutInflater;
|
||||
import android.view.Menu;
|
||||
@ -33,7 +32,6 @@ import android.view.ViewGroup;
|
||||
import android.widget.AdapterView;
|
||||
import android.widget.BaseAdapter;
|
||||
import android.widget.ImageButton;
|
||||
import android.widget.ImageView;
|
||||
import android.widget.ListView;
|
||||
import android.widget.TextView;
|
||||
|
||||
@ -69,6 +67,18 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
private int onlineCount = -1;
|
||||
private ArrayList<Integer> sortedUsers = new ArrayList<Integer>();
|
||||
|
||||
private int avatarRow;
|
||||
private int settingsSectionRow;
|
||||
private int settingsNotificationsRow;
|
||||
private int settingsVibrateRow;
|
||||
private int settingsSoundRow;
|
||||
private int sharedMediaSectionRow;
|
||||
private int sharedMediaRow;
|
||||
private int membersSectionRow;
|
||||
private int addMemberRow;
|
||||
private int leaveGroupRow;
|
||||
private int rowCount = 0;
|
||||
|
||||
@Override
|
||||
public boolean onFragmentCreate() {
|
||||
super.onFragmentCreate();
|
||||
@ -90,9 +100,36 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
}
|
||||
};
|
||||
avatarUpdater.parentFragment = this;
|
||||
|
||||
updateRowsIds();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
private void updateRowsIds() {
|
||||
rowCount = 0;
|
||||
avatarRow = rowCount++;
|
||||
settingsSectionRow = rowCount++;
|
||||
settingsNotificationsRow = rowCount++;
|
||||
settingsVibrateRow = rowCount++;
|
||||
settingsSoundRow = rowCount++;
|
||||
sharedMediaSectionRow = rowCount++;
|
||||
sharedMediaRow = rowCount++;
|
||||
if (info != null && !(info instanceof TLRPC.TL_chatParticipantsForbidden)) {
|
||||
membersSectionRow = rowCount++;
|
||||
rowCount += info.participants.size();
|
||||
if (info.participants.size() < 200) {
|
||||
addMemberRow = rowCount++;
|
||||
} else {
|
||||
addMemberRow = -1;
|
||||
}
|
||||
} else {
|
||||
addMemberRow = -1;
|
||||
membersSectionRow = -1;
|
||||
}
|
||||
leaveGroupRow = rowCount++;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onFragmentDestroy() {
|
||||
super.onFragmentDestroy();
|
||||
@ -119,12 +156,8 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
listView.setOnItemLongClickListener(new AdapterView.OnItemLongClickListener() {
|
||||
@Override
|
||||
public boolean onItemLongClick(AdapterView<?> adapterView, View view, int i, long l) {
|
||||
int size = 0;
|
||||
if (info != null) {
|
||||
size += info.participants.size();
|
||||
}
|
||||
if (i > 6 && i < size + 7) {
|
||||
TLRPC.TL_chatParticipant user = info.participants.get(sortedUsers.get(i - 7));
|
||||
if (i > membersSectionRow && i < addMemberRow) {
|
||||
TLRPC.TL_chatParticipant user = info.participants.get(sortedUsers.get(i - membersSectionRow - 1));
|
||||
if (user.user_id == UserConfig.clientUserId) {
|
||||
return false;
|
||||
}
|
||||
@ -154,19 +187,11 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
|
||||
listView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
|
||||
@Override
|
||||
public void onItemClick(AdapterView<?> adapterView, View view, int i, long l) {
|
||||
if (i == 2) {
|
||||
SharedPreferences preferences = parentActivity.getSharedPreferences("Notifications", Activity.MODE_PRIVATE);
|
||||
String key = "notify_" + (-chat_id);
|
||||
boolean value = preferences.getBoolean(key, true);
|
||||
SharedPreferences.Editor editor = preferences.edit();
|
||||
editor.putBoolean(key, !value);
|
||||
editor.commit();
|
||||
listView.invalidateViews();
|
||||
} else if (i == 3) {
|
||||
public void onItemClick(AdapterView<?> adapterView, View view, final int i, long l) {
|
||||
if (parentActivity == null) {
|
||||
return;
|
||||
}
|
||||
if (i == settingsSoundRow) {
|
||||
try {
|
||||
Intent tmpIntent = new Intent(RingtoneManager.ACTION_RINGTONE_PICKER);
|
||||
tmpIntent.putExtra(RingtoneManager.EXTRA_RINGTONE_TYPE, RingtoneManager.TYPE_NOTIFICATION);
|
||||
@ -195,19 +220,16 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
} catch (Exception e) {
|
||||
FileLog.e("tmessages", e);
|
||||
}
|
||||
} else if (i == 5) {
|
||||
} else if (i == sharedMediaRow) {
|
||||
MediaActivity fragment = new MediaActivity();
|
||||
Bundle bundle = new Bundle();
|
||||
bundle.putLong("dialog_id", -chat_id);
|
||||
fragment.setArguments(bundle);
|
||||
((LaunchActivity)parentActivity).presentFragment(fragment, "media_chat_" + chat_id, false);
|
||||
} else {
|
||||
int size = 0;
|
||||
if (info != null) {
|
||||
size += info.participants.size();
|
||||
}
|
||||
if (i > 6 && i < size + 7) {
|
||||
int user_id = info.participants.get(sortedUsers.get(i - 7)).user_id;
|
||||
} else if (i == addMemberRow) {
|
||||
openAddMenu();
|
||||
} else if (i > membersSectionRow && i < addMemberRow) {
|
||||
int user_id = info.participants.get(sortedUsers.get(i - membersSectionRow - 1)).user_id;
|
||||
if (user_id == UserConfig.clientUserId) {
|
||||
return;
|
||||
}
|
||||
@ -216,17 +238,31 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
args.putInt("user_id", user_id);
|
||||
fragment.setArguments(args);
|
||||
((LaunchActivity)parentActivity).presentFragment(fragment, "user_" + user_id, false);
|
||||
} else {
|
||||
if (size + 7 == i) {
|
||||
if (info.participants.size() < 200) {
|
||||
openAddMenu();
|
||||
} else {
|
||||
kickUser(null);
|
||||
} else if (i == settingsVibrateRow || i == settingsNotificationsRow) {
|
||||
AlertDialog.Builder builder = new AlertDialog.Builder(parentActivity);
|
||||
builder.setTitle(LocaleController.getString("AppName", R.string.AppName));
|
||||
builder.setItems(new CharSequence[] {
|
||||
LocaleController.getString("Default", R.string.Default),
|
||||
LocaleController.getString("Enabled", R.string.Enabled),
|
||||
LocaleController.getString("Disabled", R.string.Disabled)
|
||||
}, new DialogInterface.OnClickListener() {
|
||||
@Override
|
||||
public void onClick(DialogInterface dialog, int which) {
|
||||
SharedPreferences preferences = ApplicationLoader.applicationContext.getSharedPreferences("Notifications", Activity.MODE_PRIVATE);
|
||||
SharedPreferences.Editor editor = preferences.edit();
|
||||
if (i == settingsVibrateRow) {
|
||||
editor.putInt("vibrate_" + (-chat_id), which);
|
||||
} else if (i == settingsNotificationsRow) {
|
||||
editor.putInt("notify2_" + (-chat_id), which);
|
||||
}
|
||||
} else if (size + 7 == i + 1) {
|
||||
kickUser(null);
|
||||
editor.commit();
|
||||
if (listView != null) {
|
||||
listView.invalidateViews();
|
||||
}
|
||||
}
|
||||
});
|
||||
builder.setNegativeButton(LocaleController.getString("Cancel", R.string.Cancel), null);
|
||||
builder.show().setCanceledOnTouchOutside(true);
|
||||
}
|
||||
}
|
||||
});
|
||||
@ -299,6 +335,7 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
if (chatId == chat_id) {
|
||||
info = (TLRPC.ChatParticipants)args[1];
|
||||
updateOnlineCount();
|
||||
updateRowsIds();
|
||||
if (listViewAdapter != null) {
|
||||
listViewAdapter.notifyDataSetChanged();
|
||||
}
|
||||
@ -515,19 +552,12 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
|
||||
@Override
|
||||
public boolean isEnabled(int i) {
|
||||
return (i == 2 || i == 3 || i == 5 || i > 6) && i != getCount() - 1;
|
||||
return i == settingsNotificationsRow || i == settingsSoundRow || i == sharedMediaRow || i > membersSectionRow && i <= addMemberRow || i == settingsVibrateRow;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getCount() {
|
||||
int count = 6;
|
||||
if (info != null && !(info instanceof TLRPC.TL_chatParticipantsForbidden)) {
|
||||
count += info.participants.size() + 2;
|
||||
if (info.participants.size() < 200) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
return rowCount;
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -641,35 +671,15 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
view = li.inflate(R.layout.settings_section_layout, viewGroup, false);
|
||||
}
|
||||
TextView textView = (TextView)view.findViewById(R.id.settings_section_text);
|
||||
if (i == 1) {
|
||||
if (i == settingsSectionRow) {
|
||||
textView.setText(LocaleController.getString("SETTINGS", R.string.SETTINGS));
|
||||
} else if (i == 4) {
|
||||
} else if (i == sharedMediaSectionRow) {
|
||||
textView.setText(LocaleController.getString("SHAREDMEDIA", R.string.SHAREDMEDIA));
|
||||
} else if (i == 6) {
|
||||
} else if (i == membersSectionRow) {
|
||||
TLRPC.Chat chat = MessagesController.getInstance().chats.get(chat_id);
|
||||
textView.setText(String.format("%d %s", chat.participants_count, LocaleController.getString("MEMBERS", R.string.MEMBERS)));
|
||||
}
|
||||
} else if (type == 2) {
|
||||
if (view == null) {
|
||||
LayoutInflater li = (LayoutInflater)mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
|
||||
view = li.inflate(R.layout.settings_row_check_layout, viewGroup, false);
|
||||
}
|
||||
TextView textView = (TextView)view.findViewById(R.id.settings_row_text);
|
||||
View divider = view.findViewById(R.id.settings_row_divider);
|
||||
if (i == 2) {
|
||||
SharedPreferences preferences = mContext.getSharedPreferences("Notifications", Activity.MODE_PRIVATE);
|
||||
String key = "notify_" + (-chat_id);
|
||||
boolean value = preferences.getBoolean(key, true);
|
||||
ImageView checkButton = (ImageView)view.findViewById(R.id.settings_row_check_button);
|
||||
if (value) {
|
||||
checkButton.setImageResource(R.drawable.btn_check_on);
|
||||
} else {
|
||||
checkButton.setImageResource(R.drawable.btn_check_off);
|
||||
}
|
||||
textView.setText(LocaleController.getString("Notifications", R.string.Notifications));
|
||||
divider.setVisibility(View.VISIBLE);
|
||||
}
|
||||
} else if (type == 3) {
|
||||
if (view == null) {
|
||||
LayoutInflater li = (LayoutInflater)mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
|
||||
view = li.inflate(R.layout.user_profile_leftright_row_layout, viewGroup, false);
|
||||
@ -677,7 +687,7 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
TextView textView = (TextView)view.findViewById(R.id.settings_row_text);
|
||||
TextView detailTextView = (TextView)view.findViewById(R.id.settings_row_text_detail);
|
||||
View divider = view.findViewById(R.id.settings_row_divider);
|
||||
if (i == 5) {
|
||||
if (i == sharedMediaRow) {
|
||||
textView.setText(LocaleController.getString("SharedMedia", R.string.SharedMedia));
|
||||
if (totalMediaCount == -1) {
|
||||
detailTextView.setText(LocaleController.getString("Loading", R.string.Loading));
|
||||
@ -685,9 +695,33 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
detailTextView.setText(String.format("%d", totalMediaCount));
|
||||
}
|
||||
divider.setVisibility(View.INVISIBLE);
|
||||
} else if (i == settingsVibrateRow) {
|
||||
textView.setText(LocaleController.getString("Vibrate", R.string.Vibrate));
|
||||
divider.setVisibility(View.VISIBLE);
|
||||
SharedPreferences preferences = mContext.getSharedPreferences("Notifications", Activity.MODE_PRIVATE);
|
||||
int value = preferences.getInt("vibrate_" + (-chat_id), 0);
|
||||
if (value == 0) {
|
||||
detailTextView.setText(LocaleController.getString("Default", R.string.Default));
|
||||
} else if (value == 1) {
|
||||
detailTextView.setText(LocaleController.getString("Enabled", R.string.Enabled));
|
||||
} else if (value == 2) {
|
||||
detailTextView.setText(LocaleController.getString("Disabled", R.string.Disabled));
|
||||
}
|
||||
} else if (type == 4) {
|
||||
TLRPC.TL_chatParticipant part = info.participants.get(sortedUsers.get(i - 7));
|
||||
} else if (i == settingsNotificationsRow) {
|
||||
textView.setText(LocaleController.getString("Notifications", R.string.Notifications));
|
||||
divider.setVisibility(View.VISIBLE);
|
||||
SharedPreferences preferences = mContext.getSharedPreferences("Notifications", Activity.MODE_PRIVATE);
|
||||
int value = preferences.getInt("notify2_" + (-chat_id), 0);
|
||||
if (value == 0) {
|
||||
detailTextView.setText(LocaleController.getString("Default", R.string.Default));
|
||||
} else if (value == 1) {
|
||||
detailTextView.setText(LocaleController.getString("Enabled", R.string.Enabled));
|
||||
} else if (value == 2) {
|
||||
detailTextView.setText(LocaleController.getString("Disabled", R.string.Disabled));
|
||||
}
|
||||
}
|
||||
} else if (type == 3) {
|
||||
TLRPC.TL_chatParticipant part = info.participants.get(sortedUsers.get(i - membersSectionRow - 1));
|
||||
TLRPC.User user = MessagesController.getInstance().users.get(part.user_id);
|
||||
|
||||
if (view == null) {
|
||||
@ -703,15 +737,14 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
// } else {
|
||||
//
|
||||
// }
|
||||
} else if (type == 5) {
|
||||
} else if (type == 4) {
|
||||
if (view == null) {
|
||||
LayoutInflater li = (LayoutInflater)mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
|
||||
view = li.inflate(R.layout.chat_profile_add_row, viewGroup, false);
|
||||
TextView textView = (TextView)view.findViewById(R.id.messages_list_row_name);
|
||||
textView.setText(LocaleController.getString("AddMember", R.string.AddMember));
|
||||
}
|
||||
} else if (type == 6) {
|
||||
if (view == null) {
|
||||
} else if (type == 5) {
|
||||
if (view == null) {
|
||||
LayoutInflater li = (LayoutInflater)mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
|
||||
view = li.inflate(R.layout.settings_logout_button, viewGroup, false);
|
||||
@ -734,8 +767,7 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
} else if (type == 7) {
|
||||
} else if (type == 6) {
|
||||
if (view == null) {
|
||||
LayoutInflater li = (LayoutInflater)mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
|
||||
view = li.inflate(R.layout.settings_row_detail_layout, viewGroup, false);
|
||||
@ -743,7 +775,7 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
TextView textView = (TextView)view.findViewById(R.id.settings_row_text);
|
||||
TextView detailTextView = (TextView)view.findViewById(R.id.settings_row_text_detail);
|
||||
View divider = view.findViewById(R.id.settings_row_divider);
|
||||
if (i == 3) {
|
||||
if (i == settingsSoundRow) {
|
||||
SharedPreferences preferences = mContext.getSharedPreferences("Notifications", Activity.MODE_PRIVATE);
|
||||
String name = preferences.getString("sound_chat_" + chat_id, LocaleController.getString("Default", R.string.Default));
|
||||
if (name.equals("NoSound")) {
|
||||
@ -760,41 +792,27 @@ public class ChatProfileActivity extends BaseFragment implements NotificationCen
|
||||
|
||||
@Override
|
||||
public int getItemViewType(int i) {
|
||||
if (i == 0) {
|
||||
if (i == avatarRow) {
|
||||
return 0;
|
||||
} else if (i == 1 || i == 4 || i == 6) {
|
||||
} else if (i == settingsSectionRow || i == sharedMediaSectionRow || i == membersSectionRow) {
|
||||
return 1;
|
||||
} else if (i == 2) {
|
||||
} else if (i == sharedMediaRow || i == settingsVibrateRow || i == settingsNotificationsRow) {
|
||||
return 2;
|
||||
} else if (i == 5) {
|
||||
return 3;
|
||||
} else if (i == 3) {
|
||||
return 7;
|
||||
} else if (i > 6) {
|
||||
int size = 0;
|
||||
if (info != null) {
|
||||
size += info.participants.size();
|
||||
}
|
||||
if (i > 6 && i < size + 7) {
|
||||
} else if (i == settingsSoundRow) {
|
||||
return 6;
|
||||
} else if (i == addMemberRow) {
|
||||
return 4;
|
||||
} else {
|
||||
if (size + 7 == i) {
|
||||
if (info != null && info.participants.size() < 200) {
|
||||
} else if (i == leaveGroupRow) {
|
||||
return 5;
|
||||
} else {
|
||||
return 6;
|
||||
}
|
||||
} else if (size + 8 == i) {
|
||||
return 6;
|
||||
}
|
||||
}
|
||||
} else if (i > membersSectionRow && i < addMemberRow) {
|
||||
return 3;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getViewTypeCount() {
|
||||
return 8;
|
||||
return 7;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -131,20 +131,7 @@ public class ContactAddActivity extends BaseFragment implements NotificationCent
|
||||
return;
|
||||
}
|
||||
phoneText.setText(PhoneFormat.getInstance().format("+" + user.phone));
|
||||
if (user.status == null) {
|
||||
onlineText.setText(LocaleController.getString("Offline", R.string.Offline));
|
||||
} else {
|
||||
int currentTime = ConnectionsManager.getInstance().getCurrentTime();
|
||||
if (user.status.expires > currentTime) {
|
||||
onlineText.setText(LocaleController.getString("Online", R.string.Online));
|
||||
} else {
|
||||
if (user.status.expires <= 10000) {
|
||||
onlineText.setText(LocaleController.getString("Invisible", R.string.Invisible));
|
||||
} else {
|
||||
onlineText.setText(LocaleController.formatDateOnline(user.status.expires));
|
||||
}
|
||||
}
|
||||
}
|
||||
onlineText.setText(LocaleController.formatUserStatus(user));
|
||||
|
||||
TLRPC.FileLocation photo = null;
|
||||
if (user.photo != null) {
|
||||
|
@ -10,7 +10,6 @@ package org.telegram.ui;
|
||||
|
||||
import android.content.Context;
|
||||
import android.content.Intent;
|
||||
import android.graphics.PixelFormat;
|
||||
import android.os.Bundle;
|
||||
import android.support.v4.internal.view.SupportMenuItem;
|
||||
import android.support.v4.view.MenuItemCompat;
|
||||
@ -150,7 +149,6 @@ public class CountrySelectActivity extends ActionBarActivity {
|
||||
});
|
||||
|
||||
getWindow().setBackgroundDrawableResource(R.drawable.transparent);
|
||||
getWindow().setFormat(PixelFormat.RGB_565);
|
||||
}
|
||||
|
||||
public void applySelfActionBar() {
|
||||
|
@ -12,7 +12,9 @@ import android.app.Activity;
|
||||
import android.content.Context;
|
||||
import android.graphics.Bitmap;
|
||||
import android.graphics.Canvas;
|
||||
import android.graphics.Paint;
|
||||
import android.graphics.drawable.BitmapDrawable;
|
||||
import android.graphics.drawable.Drawable;
|
||||
import android.os.Build;
|
||||
import android.os.Bundle;
|
||||
import android.support.v4.internal.view.SupportMenuItem;
|
||||
@ -39,7 +41,6 @@ import org.telegram.messenger.LocaleController;
|
||||
import org.telegram.messenger.TLRPC;
|
||||
import org.telegram.messenger.ConnectionsManager;
|
||||
import org.telegram.messenger.ContactsController;
|
||||
import org.telegram.messenger.Emoji;
|
||||
import org.telegram.messenger.FileLog;
|
||||
import org.telegram.messenger.MessagesController;
|
||||
import org.telegram.messenger.NotificationCenter;
|
||||
@ -57,14 +58,42 @@ import java.util.Timer;
|
||||
import java.util.TimerTask;
|
||||
|
||||
public class GroupCreateActivity extends BaseFragment implements NotificationCenter.NotificationCenterDelegate {
|
||||
|
||||
public static class XImageSpan extends ImageSpan {
|
||||
public int uid;
|
||||
|
||||
public XImageSpan(Drawable d, int verticalAlignment) {
|
||||
super(d, verticalAlignment);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getSize(Paint paint, CharSequence text, int start, int end, Paint.FontMetricsInt fm) {
|
||||
if (fm == null) {
|
||||
fm = new Paint.FontMetricsInt();
|
||||
}
|
||||
|
||||
int sz = super.getSize(paint, text, start, end, fm);
|
||||
|
||||
int offset = Utilities.dp(6);
|
||||
int w = (fm.bottom - fm.top) / 2;
|
||||
fm.top = -w - offset;
|
||||
fm.bottom = w - offset;
|
||||
fm.ascent = -w - offset;
|
||||
fm.leading = 0;
|
||||
fm.descent = w - offset;
|
||||
|
||||
return sz;
|
||||
}
|
||||
}
|
||||
|
||||
private SectionedBaseAdapter listViewAdapter;
|
||||
private PinnedHeaderListView listView;
|
||||
private TextView emptyTextView;
|
||||
private EditText userSelectEditText;
|
||||
private boolean ignoreChange = false;
|
||||
|
||||
private HashMap<Integer, Emoji.XImageSpan> selectedContacts = new HashMap<Integer, Emoji.XImageSpan>();
|
||||
private ArrayList<Emoji.XImageSpan> allSpans = new ArrayList<Emoji.XImageSpan>();
|
||||
private HashMap<Integer, XImageSpan> selectedContacts = new HashMap<Integer, XImageSpan>();
|
||||
private ArrayList<XImageSpan> allSpans = new ArrayList<XImageSpan>();
|
||||
|
||||
private boolean searchWas;
|
||||
private boolean searching;
|
||||
@ -150,7 +179,7 @@ public class GroupCreateActivity extends BaseFragment implements NotificationCen
|
||||
}
|
||||
Spannable span = userSelectEditText.getText();
|
||||
for (int a = 0; a < allSpans.size(); a++) {
|
||||
Emoji.XImageSpan sp = allSpans.get(a);
|
||||
XImageSpan sp = allSpans.get(a);
|
||||
if (span.getSpanStart(sp) == -1) {
|
||||
allSpans.remove(sp);
|
||||
selectedContacts.remove(sp.uid);
|
||||
@ -207,7 +236,7 @@ public class GroupCreateActivity extends BaseFragment implements NotificationCen
|
||||
listView.invalidateViews();
|
||||
}
|
||||
if (selectedContacts.containsKey(user.id)) {
|
||||
Emoji.XImageSpan span = selectedContacts.get(user.id);
|
||||
XImageSpan span = selectedContacts.get(user.id);
|
||||
selectedContacts.remove(user.id);
|
||||
SpannableStringBuilder text = new SpannableStringBuilder(userSelectEditText.getText());
|
||||
text.delete(text.getSpanStart(span), text.getSpanEnd(span));
|
||||
@ -221,7 +250,7 @@ public class GroupCreateActivity extends BaseFragment implements NotificationCen
|
||||
return;
|
||||
}
|
||||
ignoreChange = true;
|
||||
Emoji.XImageSpan span = createAndPutChipForUser(user);
|
||||
XImageSpan span = createAndPutChipForUser(user);
|
||||
span.uid = user.id;
|
||||
ignoreChange = false;
|
||||
}
|
||||
@ -295,7 +324,7 @@ public class GroupCreateActivity extends BaseFragment implements NotificationCen
|
||||
((LaunchActivity)parentActivity).updateActionBar();
|
||||
}
|
||||
|
||||
public Emoji.XImageSpan createAndPutChipForUser(TLRPC.User user) {
|
||||
public XImageSpan createAndPutChipForUser(TLRPC.User user) {
|
||||
LayoutInflater lf = (LayoutInflater)parentActivity.getSystemService(Activity.LAYOUT_INFLATER_SERVICE);
|
||||
View textView = lf.inflate(R.layout.group_create_bubble, null);
|
||||
TextView text = (TextView)textView.findViewById(R.id.bubble_text_view);
|
||||
@ -321,7 +350,7 @@ public class GroupCreateActivity extends BaseFragment implements NotificationCen
|
||||
bmpDrawable.setBounds(0, 0, b.getWidth(), b.getHeight());
|
||||
|
||||
SpannableStringBuilder ssb = new SpannableStringBuilder("");
|
||||
Emoji.XImageSpan span = new Emoji.XImageSpan(bmpDrawable, ImageSpan.ALIGN_BASELINE);
|
||||
XImageSpan span = new XImageSpan(bmpDrawable, ImageSpan.ALIGN_BASELINE);
|
||||
allSpans.add(span);
|
||||
selectedContacts.put(user.id, span);
|
||||
for (ImageSpan sp : allSpans) {
|
||||
@ -559,23 +588,12 @@ public class GroupCreateActivity extends BaseFragment implements NotificationCen
|
||||
int placeHolderId = Utilities.getUserAvatarForId(user.id);
|
||||
holder.avatarImage.setImage(photo, "50_50", placeHolderId);
|
||||
|
||||
if (user.status == null) {
|
||||
holder.messageTextView.setText(LocaleController.getString("Offline", R.string.Offline));
|
||||
holder.messageTextView.setTextColor(0xff808080);
|
||||
} else {
|
||||
int currentTime = ConnectionsManager.getInstance().getCurrentTime();
|
||||
if (user.status.expires > currentTime) {
|
||||
holder.messageTextView.setText(LocaleController.formatUserStatus(user));
|
||||
if (user.status != null && user.status.expires > ConnectionsManager.getInstance().getCurrentTime()) {
|
||||
holder.messageTextView.setTextColor(0xff357aa8);
|
||||
holder.messageTextView.setText(LocaleController.getString("Online", R.string.Online));
|
||||
} else {
|
||||
if (user.status.expires <= 10000) {
|
||||
holder.messageTextView.setText(LocaleController.getString("Invisible", R.string.Invisible));
|
||||
} else {
|
||||
holder.messageTextView.setText(LocaleController.formatDateOnline(user.status.expires));
|
||||
}
|
||||
holder.messageTextView.setTextColor(0xff808080);
|
||||
}
|
||||
}
|
||||
|
||||
return convertView;
|
||||
}
|
||||
|