755 lines
28 KiB
C++
755 lines
28 KiB
C++
|
// Copyright (c) 2010 Google Inc.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// The ExceptionHandler object installs signal handlers for a number of
|
||
|
// signals. We rely on the signal handler running on the thread which crashed
|
||
|
// in order to identify it. This is true of the synchronous signals (SEGV etc),
|
||
|
// but not true of ABRT. Thus, if you send ABRT to yourself in a program which
|
||
|
// uses ExceptionHandler, you need to use tgkill to direct it to the current
|
||
|
// thread.
|
||
|
//
|
||
|
// The signal flow looks like this:
|
||
|
//
|
||
|
// SignalHandler (uses a global stack of ExceptionHandler objects to find
|
||
|
// | one to handle the signal. If the first rejects it, try
|
||
|
// | the second etc...)
|
||
|
// V
|
||
|
// HandleSignal ----------------------------| (clones a new process which
|
||
|
// | | shares an address space with
|
||
|
// (wait for cloned | the crashed process. This
|
||
|
// process) | allows us to ptrace the crashed
|
||
|
// | | process)
|
||
|
// V V
|
||
|
// (set signal handler to ThreadEntry (static function to bounce
|
||
|
// SIG_DFL and rethrow, | back into the object)
|
||
|
// killing the crashed |
|
||
|
// process) V
|
||
|
// DoDump (writes minidump)
|
||
|
// |
|
||
|
// V
|
||
|
// sys_exit
|
||
|
//
|
||
|
|
||
|
// This code is a little fragmented. Different functions of the ExceptionHandler
|
||
|
// class run in a number of different contexts. Some of them run in a normal
|
||
|
// context and are easy to code, others run in a compromised context and the
|
||
|
// restrictions at the top of minidump_writer.cc apply: no libc and use the
|
||
|
// alternative malloc. Each function should have comment above it detailing the
|
||
|
// context which it runs in.
|
||
|
|
||
|
#include "client/linux/handler/exception_handler.h"
|
||
|
|
||
|
#include <errno.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <linux/limits.h>
|
||
|
#include <pthread.h>
|
||
|
#include <sched.h>
|
||
|
#include <signal.h>
|
||
|
#include <stdio.h>
|
||
|
#include <sys/mman.h>
|
||
|
#include <sys/prctl.h>
|
||
|
#include <sys/syscall.h>
|
||
|
#include <sys/wait.h>
|
||
|
#include <unistd.h>
|
||
|
|
||
|
#include <sys/signal.h>
|
||
|
#include <sys/ucontext.h>
|
||
|
#include <sys/user.h>
|
||
|
#include <ucontext.h>
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "common/basictypes.h"
|
||
|
#include "common/linux/linux_libc_support.h"
|
||
|
#include "common/memory.h"
|
||
|
#include "client/linux/log/log.h"
|
||
|
#include "client/linux/microdump_writer/microdump_writer.h"
|
||
|
#include "client/linux/minidump_writer/linux_dumper.h"
|
||
|
#include "client/linux/minidump_writer/minidump_writer.h"
|
||
|
#include "common/linux/eintr_wrapper.h"
|
||
|
#include "third_party/lss/linux_syscall_support.h"
|
||
|
|
||
|
#if defined(__ANDROID__)
|
||
|
#include "linux/sched.h"
|
||
|
#endif
|
||
|
|
||
|
#ifndef PR_SET_PTRACER
|
||
|
#define PR_SET_PTRACER 0x59616d61
|
||
|
#endif
|
||
|
|
||
|
// A wrapper for the tgkill syscall: send a signal to a specific thread.
|
||
|
static int tgkill(pid_t tgid, pid_t tid, int sig) {
|
||
|
return syscall(__NR_tgkill, tgid, tid, sig);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
namespace google_breakpad {
|
||
|
|
||
|
namespace {
|
||
|
// The list of signals which we consider to be crashes. The default action for
|
||
|
// all these signals must be Core (see man 7 signal) because we rethrow the
|
||
|
// signal after handling it and expect that it'll be fatal.
|
||
|
const int kExceptionSignals[] = {
|
||
|
SIGSEGV, SIGABRT, SIGFPE, SIGILL, SIGBUS
|
||
|
};
|
||
|
const int kNumHandledSignals =
|
||
|
sizeof(kExceptionSignals) / sizeof(kExceptionSignals[0]);
|
||
|
struct sigaction old_handlers[kNumHandledSignals];
|
||
|
bool handlers_installed = false;
|
||
|
|
||
|
// InstallAlternateStackLocked will store the newly installed stack in new_stack
|
||
|
// and (if it exists) the previously installed stack in old_stack.
|
||
|
stack_t old_stack;
|
||
|
stack_t new_stack;
|
||
|
bool stack_installed = false;
|
||
|
|
||
|
// Create an alternative stack to run the signal handlers on. This is done since
|
||
|
// the signal might have been caused by a stack overflow.
|
||
|
// Runs before crashing: normal context.
|
||
|
void InstallAlternateStackLocked() {
|
||
|
if (stack_installed)
|
||
|
return;
|
||
|
|
||
|
memset(&old_stack, 0, sizeof(old_stack));
|
||
|
memset(&new_stack, 0, sizeof(new_stack));
|
||
|
|
||
|
// SIGSTKSZ may be too small to prevent the signal handlers from overrunning
|
||
|
// the alternative stack. Ensure that the size of the alternative stack is
|
||
|
// large enough.
|
||
|
static const unsigned kSigStackSize = std::max(16384, SIGSTKSZ);
|
||
|
|
||
|
// Only set an alternative stack if there isn't already one, or if the current
|
||
|
// one is too small.
|
||
|
if (sys_sigaltstack(NULL, &old_stack) == -1 || !old_stack.ss_sp ||
|
||
|
old_stack.ss_size < kSigStackSize) {
|
||
|
new_stack.ss_sp = calloc(1, kSigStackSize);
|
||
|
new_stack.ss_size = kSigStackSize;
|
||
|
|
||
|
if (sys_sigaltstack(&new_stack, NULL) == -1) {
|
||
|
free(new_stack.ss_sp);
|
||
|
return;
|
||
|
}
|
||
|
stack_installed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Runs before crashing: normal context.
|
||
|
void RestoreAlternateStackLocked() {
|
||
|
if (!stack_installed)
|
||
|
return;
|
||
|
|
||
|
stack_t current_stack;
|
||
|
if (sys_sigaltstack(NULL, ¤t_stack) == -1)
|
||
|
return;
|
||
|
|
||
|
// Only restore the old_stack if the current alternative stack is the one
|
||
|
// installed by the call to InstallAlternateStackLocked.
|
||
|
if (current_stack.ss_sp == new_stack.ss_sp) {
|
||
|
if (old_stack.ss_sp) {
|
||
|
if (sys_sigaltstack(&old_stack, NULL) == -1)
|
||
|
return;
|
||
|
} else {
|
||
|
stack_t disable_stack;
|
||
|
disable_stack.ss_flags = SS_DISABLE;
|
||
|
if (sys_sigaltstack(&disable_stack, NULL) == -1)
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(new_stack.ss_sp);
|
||
|
stack_installed = false;
|
||
|
}
|
||
|
|
||
|
void InstallDefaultHandler(int sig) {
|
||
|
#if defined(__ANDROID__)
|
||
|
// Android L+ expose signal and sigaction symbols that override the system
|
||
|
// ones. There is a bug in these functions where a request to set the handler
|
||
|
// to SIG_DFL is ignored. In that case, an infinite loop is entered as the
|
||
|
// signal is repeatedly sent to breakpad's signal handler.
|
||
|
// To work around this, directly call the system's sigaction.
|
||
|
struct kernel_sigaction sa;
|
||
|
memset(&sa, 0, sizeof(sa));
|
||
|
sys_sigemptyset(&sa.sa_mask);
|
||
|
sa.sa_handler_ = SIG_DFL;
|
||
|
sa.sa_flags = SA_RESTART;
|
||
|
sys_rt_sigaction(sig, &sa, NULL, sizeof(kernel_sigset_t));
|
||
|
#else
|
||
|
signal(sig, SIG_DFL);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// The global exception handler stack. This is needed because there may exist
|
||
|
// multiple ExceptionHandler instances in a process. Each will have itself
|
||
|
// registered in this stack.
|
||
|
std::vector<ExceptionHandler*>* g_handler_stack_ = NULL;
|
||
|
pthread_mutex_t g_handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER;
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
// Runs before crashing: normal context.
|
||
|
ExceptionHandler::ExceptionHandler(const MinidumpDescriptor& descriptor,
|
||
|
FilterCallback filter,
|
||
|
MinidumpCallback callback,
|
||
|
void* callback_context,
|
||
|
bool install_handler,
|
||
|
const int server_fd)
|
||
|
: filter_(filter),
|
||
|
callback_(callback),
|
||
|
callback_context_(callback_context),
|
||
|
minidump_descriptor_(descriptor),
|
||
|
crash_handler_(NULL) {
|
||
|
if (server_fd >= 0)
|
||
|
crash_generation_client_.reset(CrashGenerationClient::TryCreate(server_fd));
|
||
|
|
||
|
if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
|
||
|
!minidump_descriptor_.IsMicrodumpOnConsole())
|
||
|
minidump_descriptor_.UpdatePath();
|
||
|
|
||
|
#if defined(__ANDROID__)
|
||
|
if (minidump_descriptor_.IsMicrodumpOnConsole())
|
||
|
logger::initializeCrashLogWriter();
|
||
|
#endif
|
||
|
|
||
|
pthread_mutex_lock(&g_handler_stack_mutex_);
|
||
|
if (!g_handler_stack_)
|
||
|
g_handler_stack_ = new std::vector<ExceptionHandler*>;
|
||
|
if (install_handler) {
|
||
|
InstallAlternateStackLocked();
|
||
|
InstallHandlersLocked();
|
||
|
}
|
||
|
g_handler_stack_->push_back(this);
|
||
|
pthread_mutex_unlock(&g_handler_stack_mutex_);
|
||
|
}
|
||
|
|
||
|
// Runs before crashing: normal context.
|
||
|
ExceptionHandler::~ExceptionHandler() {
|
||
|
pthread_mutex_lock(&g_handler_stack_mutex_);
|
||
|
std::vector<ExceptionHandler*>::iterator handler =
|
||
|
std::find(g_handler_stack_->begin(), g_handler_stack_->end(), this);
|
||
|
g_handler_stack_->erase(handler);
|
||
|
if (g_handler_stack_->empty()) {
|
||
|
delete g_handler_stack_;
|
||
|
g_handler_stack_ = NULL;
|
||
|
RestoreAlternateStackLocked();
|
||
|
RestoreHandlersLocked();
|
||
|
}
|
||
|
pthread_mutex_unlock(&g_handler_stack_mutex_);
|
||
|
}
|
||
|
|
||
|
// Runs before crashing: normal context.
|
||
|
// static
|
||
|
bool ExceptionHandler::InstallHandlersLocked() {
|
||
|
if (handlers_installed)
|
||
|
return false;
|
||
|
|
||
|
// Fail if unable to store all the old handlers.
|
||
|
for (int i = 0; i < kNumHandledSignals; ++i) {
|
||
|
if (sigaction(kExceptionSignals[i], NULL, &old_handlers[i]) == -1)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
struct sigaction sa;
|
||
|
memset(&sa, 0, sizeof(sa));
|
||
|
sigemptyset(&sa.sa_mask);
|
||
|
|
||
|
// Mask all exception signals when we're handling one of them.
|
||
|
for (int i = 0; i < kNumHandledSignals; ++i)
|
||
|
sigaddset(&sa.sa_mask, kExceptionSignals[i]);
|
||
|
|
||
|
sa.sa_sigaction = SignalHandler;
|
||
|
sa.sa_flags = SA_ONSTACK | SA_SIGINFO;
|
||
|
|
||
|
for (int i = 0; i < kNumHandledSignals; ++i) {
|
||
|
if (sigaction(kExceptionSignals[i], &sa, NULL) == -1) {
|
||
|
// At this point it is impractical to back out changes, and so failure to
|
||
|
// install a signal is intentionally ignored.
|
||
|
}
|
||
|
}
|
||
|
handlers_installed = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// This function runs in a compromised context: see the top of the file.
|
||
|
// Runs on the crashing thread.
|
||
|
// static
|
||
|
void ExceptionHandler::RestoreHandlersLocked() {
|
||
|
if (!handlers_installed)
|
||
|
return;
|
||
|
|
||
|
for (int i = 0; i < kNumHandledSignals; ++i) {
|
||
|
if (sigaction(kExceptionSignals[i], &old_handlers[i], NULL) == -1) {
|
||
|
InstallDefaultHandler(kExceptionSignals[i]);
|
||
|
}
|
||
|
}
|
||
|
handlers_installed = false;
|
||
|
}
|
||
|
|
||
|
// void ExceptionHandler::set_crash_handler(HandlerCallback callback) {
|
||
|
// crash_handler_ = callback;
|
||
|
// }
|
||
|
|
||
|
// This function runs in a compromised context: see the top of the file.
|
||
|
// Runs on the crashing thread.
|
||
|
// static
|
||
|
void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void* uc) {
|
||
|
// All the exception signals are blocked at this point.
|
||
|
pthread_mutex_lock(&g_handler_stack_mutex_);
|
||
|
|
||
|
// Sometimes, Breakpad runs inside a process where some other buggy code
|
||
|
// saves and restores signal handlers temporarily with 'signal'
|
||
|
// instead of 'sigaction'. This loses the SA_SIGINFO flag associated
|
||
|
// with this function. As a consequence, the values of 'info' and 'uc'
|
||
|
// become totally bogus, generally inducing a crash.
|
||
|
//
|
||
|
// The following code tries to detect this case. When it does, it
|
||
|
// resets the signal handlers with sigaction + SA_SIGINFO and returns.
|
||
|
// This forces the signal to be thrown again, but this time the kernel
|
||
|
// will call the function with the right arguments.
|
||
|
struct sigaction cur_handler;
|
||
|
if (sigaction(sig, NULL, &cur_handler) == 0 &&
|
||
|
(cur_handler.sa_flags & SA_SIGINFO) == 0) {
|
||
|
// Reset signal handler with the right flags.
|
||
|
sigemptyset(&cur_handler.sa_mask);
|
||
|
sigaddset(&cur_handler.sa_mask, sig);
|
||
|
|
||
|
cur_handler.sa_sigaction = SignalHandler;
|
||
|
cur_handler.sa_flags = SA_ONSTACK | SA_SIGINFO;
|
||
|
|
||
|
if (sigaction(sig, &cur_handler, NULL) == -1) {
|
||
|
// When resetting the handler fails, try to reset the
|
||
|
// default one to avoid an infinite loop here.
|
||
|
InstallDefaultHandler(sig);
|
||
|
}
|
||
|
pthread_mutex_unlock(&g_handler_stack_mutex_);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool handled = false;
|
||
|
for (int i = g_handler_stack_->size() - 1; !handled && i >= 0; --i) {
|
||
|
handled = (*g_handler_stack_)[i]->HandleSignal(sig, info, uc);
|
||
|
}
|
||
|
|
||
|
// Upon returning from this signal handler, sig will become unmasked and then
|
||
|
// it will be retriggered. If one of the ExceptionHandlers handled it
|
||
|
// successfully, restore the default handler. Otherwise, restore the
|
||
|
// previously installed handler. Then, when the signal is retriggered, it will
|
||
|
// be delivered to the appropriate handler.
|
||
|
if (handled) {
|
||
|
InstallDefaultHandler(sig);
|
||
|
} else {
|
||
|
RestoreHandlersLocked();
|
||
|
}
|
||
|
|
||
|
pthread_mutex_unlock(&g_handler_stack_mutex_);
|
||
|
|
||
|
// info->si_code <= 0 iff SI_FROMUSER (SI_FROMKERNEL otherwise).
|
||
|
if (info->si_code <= 0 || sig == SIGABRT) {
|
||
|
// This signal was triggered by somebody sending us the signal with kill().
|
||
|
// In order to retrigger it, we have to queue a new signal by calling
|
||
|
// kill() ourselves. The special case (si_pid == 0 && sig == SIGABRT) is
|
||
|
// due to the kernel sending a SIGABRT from a user request via SysRQ.
|
||
|
if (tgkill(getpid(), syscall(__NR_gettid), sig) < 0) {
|
||
|
// If we failed to kill ourselves (e.g. because a sandbox disallows us
|
||
|
// to do so), we instead resort to terminating our process. This will
|
||
|
// result in an incorrect exit code.
|
||
|
_exit(1);
|
||
|
}
|
||
|
} else {
|
||
|
// This was a synchronous signal triggered by a hard fault (e.g. SIGSEGV).
|
||
|
// No need to reissue the signal. It will automatically trigger again,
|
||
|
// when we return from the signal handler.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct ThreadArgument {
|
||
|
pid_t pid; // the crashing process
|
||
|
const MinidumpDescriptor* minidump_descriptor;
|
||
|
ExceptionHandler* handler;
|
||
|
const void* context; // a CrashContext structure
|
||
|
size_t context_size;
|
||
|
};
|
||
|
|
||
|
// This is the entry function for the cloned process. We are in a compromised
|
||
|
// context here: see the top of the file.
|
||
|
// static
|
||
|
int ExceptionHandler::ThreadEntry(void *arg) {
|
||
|
const ThreadArgument *thread_arg = reinterpret_cast<ThreadArgument*>(arg);
|
||
|
|
||
|
// Block here until the crashing process unblocks us when
|
||
|
// we're allowed to use ptrace
|
||
|
thread_arg->handler->WaitForContinueSignal();
|
||
|
|
||
|
return thread_arg->handler->DoDump(thread_arg->pid, thread_arg->context,
|
||
|
thread_arg->context_size) == false;
|
||
|
}
|
||
|
|
||
|
// This function runs in a compromised context: see the top of the file.
|
||
|
// Runs on the crashing thread.
|
||
|
bool ExceptionHandler::HandleSignal(int sig, siginfo_t* info, void* uc) {
|
||
|
if (filter_ && !filter_(callback_context_))
|
||
|
return false;
|
||
|
|
||
|
// Allow ourselves to be dumped if the signal is trusted.
|
||
|
bool signal_trusted = info->si_code > 0;
|
||
|
bool signal_pid_trusted = info->si_code == SI_USER ||
|
||
|
info->si_code == SI_TKILL;
|
||
|
if (signal_trusted || (signal_pid_trusted && info->si_pid == getpid())) {
|
||
|
sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
|
||
|
}
|
||
|
CrashContext context;
|
||
|
// Fill in all the holes in the struct to make Valgrind happy.
|
||
|
memset(&context, 0, sizeof(context));
|
||
|
memcpy(&context.siginfo, info, sizeof(siginfo_t));
|
||
|
memcpy(&context.context, uc, sizeof(struct ucontext));
|
||
|
#if defined(__aarch64__)
|
||
|
struct ucontext *uc_ptr = (struct ucontext*)uc;
|
||
|
struct fpsimd_context *fp_ptr =
|
||
|
(struct fpsimd_context*)&uc_ptr->uc_mcontext.__reserved;
|
||
|
if (fp_ptr->head.magic == FPSIMD_MAGIC) {
|
||
|
memcpy(&context.float_state, fp_ptr, sizeof(context.float_state));
|
||
|
}
|
||
|
#elif !defined(__ARM_EABI__) && !defined(__mips__)
|
||
|
// FP state is not part of user ABI on ARM Linux.
|
||
|
// In case of MIPS Linux FP state is already part of struct ucontext
|
||
|
// and 'float_state' is not a member of CrashContext.
|
||
|
struct ucontext *uc_ptr = (struct ucontext*)uc;
|
||
|
if (uc_ptr->uc_mcontext.fpregs) {
|
||
|
memcpy(&context.float_state,
|
||
|
uc_ptr->uc_mcontext.fpregs,
|
||
|
sizeof(context.float_state));
|
||
|
}
|
||
|
#endif
|
||
|
context.tid = syscall(__NR_gettid);
|
||
|
if (crash_handler_ != NULL) {
|
||
|
if (crash_handler_(&context, sizeof(context), callback_context_)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return GenerateDump(&context);
|
||
|
}
|
||
|
|
||
|
// This is a public interface to HandleSignal that allows the client to
|
||
|
// generate a crash dump. This function may run in a compromised context.
|
||
|
bool ExceptionHandler::SimulateSignalDelivery(int sig) {
|
||
|
siginfo_t siginfo = {};
|
||
|
// Mimic a trusted signal to allow tracing the process (see
|
||
|
// ExceptionHandler::HandleSignal().
|
||
|
siginfo.si_code = SI_USER;
|
||
|
siginfo.si_pid = getpid();
|
||
|
struct ucontext context;
|
||
|
getcontext(&context);
|
||
|
return HandleSignal(sig, &siginfo, &context);
|
||
|
}
|
||
|
|
||
|
// This function may run in a compromised context: see the top of the file.
|
||
|
bool ExceptionHandler::GenerateDump(CrashContext *context) {
|
||
|
if (IsOutOfProcess())
|
||
|
return crash_generation_client_->RequestDump(context, sizeof(*context));
|
||
|
|
||
|
// Allocating too much stack isn't a problem, and better to err on the side
|
||
|
// of caution than smash it into random locations.
|
||
|
static const unsigned kChildStackSize = 16000;
|
||
|
PageAllocator allocator;
|
||
|
uint8_t* stack = reinterpret_cast<uint8_t*>(allocator.Alloc(kChildStackSize));
|
||
|
if (!stack)
|
||
|
return false;
|
||
|
// clone() needs the top-most address. (scrub just to be safe)
|
||
|
stack += kChildStackSize;
|
||
|
my_memset(stack - 16, 0, 16);
|
||
|
|
||
|
ThreadArgument thread_arg;
|
||
|
thread_arg.handler = this;
|
||
|
thread_arg.minidump_descriptor = &minidump_descriptor_;
|
||
|
thread_arg.pid = getpid();
|
||
|
thread_arg.context = context;
|
||
|
thread_arg.context_size = sizeof(*context);
|
||
|
|
||
|
// We need to explicitly enable ptrace of parent processes on some
|
||
|
// kernels, but we need to know the PID of the cloned process before we
|
||
|
// can do this. Create a pipe here which we can use to block the
|
||
|
// cloned process after creating it, until we have explicitly enabled ptrace
|
||
|
if (sys_pipe(fdes) == -1) {
|
||
|
// Creating the pipe failed. We'll log an error but carry on anyway,
|
||
|
// as we'll probably still get a useful crash report. All that will happen
|
||
|
// is the write() and read() calls will fail with EBADF
|
||
|
static const char no_pipe_msg[] = "ExceptionHandler::GenerateDump "
|
||
|
"sys_pipe failed:";
|
||
|
logger::write(no_pipe_msg, sizeof(no_pipe_msg) - 1);
|
||
|
logger::write(strerror(errno), strlen(strerror(errno)));
|
||
|
logger::write("\n", 1);
|
||
|
|
||
|
// Ensure fdes[0] and fdes[1] are invalid file descriptors.
|
||
|
fdes[0] = fdes[1] = -1;
|
||
|
}
|
||
|
|
||
|
const pid_t child = sys_clone(
|
||
|
ThreadEntry, stack, CLONE_FILES | CLONE_FS | CLONE_UNTRACED,
|
||
|
&thread_arg, NULL, NULL, NULL);
|
||
|
if (child == -1) {
|
||
|
sys_close(fdes[0]);
|
||
|
sys_close(fdes[1]);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Allow the child to ptrace us
|
||
|
sys_prctl(PR_SET_PTRACER, child, 0, 0, 0);
|
||
|
SendContinueSignalToChild();
|
||
|
int status;
|
||
|
const int r = HANDLE_EINTR(sys_waitpid(child, &status, __WALL));
|
||
|
|
||
|
sys_close(fdes[0]);
|
||
|
sys_close(fdes[1]);
|
||
|
|
||
|
if (r == -1) {
|
||
|
static const char msg[] = "ExceptionHandler::GenerateDump waitpid failed:";
|
||
|
logger::write(msg, sizeof(msg) - 1);
|
||
|
logger::write(strerror(errno), strlen(strerror(errno)));
|
||
|
logger::write("\n", 1);
|
||
|
}
|
||
|
|
||
|
bool success = r != -1 && WIFEXITED(status) && WEXITSTATUS(status) == 0;
|
||
|
if (callback_)
|
||
|
success = callback_(minidump_descriptor_, callback_context_, success);
|
||
|
return success;
|
||
|
}
|
||
|
|
||
|
// This function runs in a compromised context: see the top of the file.
|
||
|
void ExceptionHandler::SendContinueSignalToChild() {
|
||
|
static const char okToContinueMessage = 'a';
|
||
|
int r;
|
||
|
r = HANDLE_EINTR(sys_write(fdes[1], &okToContinueMessage, sizeof(char)));
|
||
|
if (r == -1) {
|
||
|
static const char msg[] = "ExceptionHandler::SendContinueSignalToChild "
|
||
|
"sys_write failed:";
|
||
|
logger::write(msg, sizeof(msg) - 1);
|
||
|
logger::write(strerror(errno), strlen(strerror(errno)));
|
||
|
logger::write("\n", 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This function runs in a compromised context: see the top of the file.
|
||
|
// Runs on the cloned process.
|
||
|
void ExceptionHandler::WaitForContinueSignal() {
|
||
|
int r;
|
||
|
char receivedMessage;
|
||
|
r = HANDLE_EINTR(sys_read(fdes[0], &receivedMessage, sizeof(char)));
|
||
|
if (r == -1) {
|
||
|
static const char msg[] = "ExceptionHandler::WaitForContinueSignal "
|
||
|
"sys_read failed:";
|
||
|
logger::write(msg, sizeof(msg) - 1);
|
||
|
logger::write(strerror(errno), strlen(strerror(errno)));
|
||
|
logger::write("\n", 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This function runs in a compromised context: see the top of the file.
|
||
|
// Runs on the cloned process.
|
||
|
bool ExceptionHandler::DoDump(pid_t crashing_process, const void* context,
|
||
|
size_t context_size) {
|
||
|
if (minidump_descriptor_.IsMicrodumpOnConsole()) {
|
||
|
return google_breakpad::WriteMicrodump(
|
||
|
crashing_process,
|
||
|
context,
|
||
|
context_size,
|
||
|
mapping_list_,
|
||
|
minidump_descriptor_.microdump_build_fingerprint(),
|
||
|
minidump_descriptor_.microdump_product_info());
|
||
|
}
|
||
|
if (minidump_descriptor_.IsFD()) {
|
||
|
return google_breakpad::WriteMinidump(minidump_descriptor_.fd(),
|
||
|
minidump_descriptor_.size_limit(),
|
||
|
crashing_process,
|
||
|
context,
|
||
|
context_size,
|
||
|
mapping_list_,
|
||
|
app_memory_list_);
|
||
|
}
|
||
|
return google_breakpad::WriteMinidump(minidump_descriptor_.path(),
|
||
|
minidump_descriptor_.size_limit(),
|
||
|
crashing_process,
|
||
|
context,
|
||
|
context_size,
|
||
|
mapping_list_,
|
||
|
app_memory_list_);
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
bool ExceptionHandler::WriteMinidump(const string& dump_path,
|
||
|
MinidumpCallback callback,
|
||
|
void* callback_context) {
|
||
|
MinidumpDescriptor descriptor(dump_path);
|
||
|
ExceptionHandler eh(descriptor, NULL, callback, callback_context, false, -1);
|
||
|
return eh.WriteMinidump();
|
||
|
}
|
||
|
|
||
|
// In order to making using EBP to calculate the desired value for ESP
|
||
|
// a valid operation, ensure that this function is compiled with a
|
||
|
// frame pointer using the following attribute. This attribute
|
||
|
// is supported on GCC but not on clang.
|
||
|
#if defined(__i386__) && defined(__GNUC__) && !defined(__clang__)
|
||
|
__attribute__((optimize("no-omit-frame-pointer")))
|
||
|
#endif
|
||
|
bool ExceptionHandler::WriteMinidump() {
|
||
|
if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
|
||
|
!minidump_descriptor_.IsMicrodumpOnConsole()) {
|
||
|
// Update the path of the minidump so that this can be called multiple times
|
||
|
// and new files are created for each minidump. This is done before the
|
||
|
// generation happens, as clients may want to access the MinidumpDescriptor
|
||
|
// after this call to find the exact path to the minidump file.
|
||
|
minidump_descriptor_.UpdatePath();
|
||
|
} else if (minidump_descriptor_.IsFD()) {
|
||
|
// Reposition the FD to its beginning and resize it to get rid of the
|
||
|
// previous minidump info.
|
||
|
lseek(minidump_descriptor_.fd(), 0, SEEK_SET);
|
||
|
ignore_result(ftruncate(minidump_descriptor_.fd(), 0));
|
||
|
}
|
||
|
|
||
|
// Allow this process to be dumped.
|
||
|
sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
|
||
|
|
||
|
CrashContext context;
|
||
|
int getcontext_result = getcontext(&context.context);
|
||
|
if (getcontext_result)
|
||
|
return false;
|
||
|
|
||
|
#if defined(__i386__)
|
||
|
// In CPUFillFromUContext in minidumpwriter.cc the stack pointer is retrieved
|
||
|
// from REG_UESP instead of from REG_ESP. REG_UESP is the user stack pointer
|
||
|
// and it only makes sense when running in kernel mode with a different stack
|
||
|
// pointer. When WriteMiniDump is called during normal processing REG_UESP is
|
||
|
// zero which leads to bad minidump files.
|
||
|
if (!context.context.uc_mcontext.gregs[REG_UESP]) {
|
||
|
// If REG_UESP is set to REG_ESP then that includes the stack space for the
|
||
|
// CrashContext object in this function, which is about 128 KB. Since the
|
||
|
// Linux dumper only records 32 KB of stack this would mean that nothing
|
||
|
// useful would be recorded. A better option is to set REG_UESP to REG_EBP,
|
||
|
// perhaps with a small negative offset in case there is any code that
|
||
|
// objects to them being equal.
|
||
|
context.context.uc_mcontext.gregs[REG_UESP] =
|
||
|
context.context.uc_mcontext.gregs[REG_EBP] - 16;
|
||
|
// The stack saving is based off of REG_ESP so it must be set to match the
|
||
|
// new REG_UESP.
|
||
|
context.context.uc_mcontext.gregs[REG_ESP] =
|
||
|
context.context.uc_mcontext.gregs[REG_UESP];
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if !defined(__ARM_EABI__) && !defined(__aarch64__) && !defined(__mips__)
|
||
|
// FPU state is not part of ARM EABI ucontext_t.
|
||
|
memcpy(&context.float_state, context.context.uc_mcontext.fpregs,
|
||
|
sizeof(context.float_state));
|
||
|
#endif
|
||
|
context.tid = sys_gettid();
|
||
|
|
||
|
// Add an exception stream to the minidump for better reporting.
|
||
|
memset(&context.siginfo, 0, sizeof(context.siginfo));
|
||
|
context.siginfo.si_signo = MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED;
|
||
|
#if defined(__i386__)
|
||
|
context.siginfo.si_addr =
|
||
|
reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_EIP]);
|
||
|
#elif defined(__x86_64__)
|
||
|
context.siginfo.si_addr =
|
||
|
reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_RIP]);
|
||
|
#elif defined(__arm__)
|
||
|
context.siginfo.si_addr =
|
||
|
reinterpret_cast<void*>(context.context.uc_mcontext.arm_pc);
|
||
|
#elif defined(__aarch64__)
|
||
|
context.siginfo.si_addr =
|
||
|
reinterpret_cast<void*>(context.context.uc_mcontext.pc);
|
||
|
#elif defined(__mips__)
|
||
|
context.siginfo.si_addr =
|
||
|
reinterpret_cast<void*>(context.context.uc_mcontext.pc);
|
||
|
#else
|
||
|
#error "This code has not been ported to your platform yet."
|
||
|
#endif
|
||
|
|
||
|
return GenerateDump(&context);
|
||
|
}
|
||
|
|
||
|
void ExceptionHandler::AddMappingInfo(const string& name,
|
||
|
const uint8_t identifier[sizeof(MDGUID)],
|
||
|
uintptr_t start_address,
|
||
|
size_t mapping_size,
|
||
|
size_t file_offset) {
|
||
|
MappingInfo info;
|
||
|
info.start_addr = start_address;
|
||
|
info.size = mapping_size;
|
||
|
info.offset = file_offset;
|
||
|
strncpy(info.name, name.c_str(), sizeof(info.name) - 1);
|
||
|
info.name[sizeof(info.name) - 1] = '\0';
|
||
|
|
||
|
MappingEntry mapping;
|
||
|
mapping.first = info;
|
||
|
memcpy(mapping.second, identifier, sizeof(MDGUID));
|
||
|
mapping_list_.push_back(mapping);
|
||
|
}
|
||
|
|
||
|
void ExceptionHandler::RegisterAppMemory(void* ptr, size_t length) {
|
||
|
AppMemoryList::iterator iter =
|
||
|
std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
|
||
|
if (iter != app_memory_list_.end()) {
|
||
|
// Don't allow registering the same pointer twice.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
AppMemory app_memory;
|
||
|
app_memory.ptr = ptr;
|
||
|
app_memory.length = length;
|
||
|
app_memory_list_.push_back(app_memory);
|
||
|
}
|
||
|
|
||
|
void ExceptionHandler::UnregisterAppMemory(void* ptr) {
|
||
|
AppMemoryList::iterator iter =
|
||
|
std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
|
||
|
if (iter != app_memory_list_.end()) {
|
||
|
app_memory_list_.erase(iter);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
bool ExceptionHandler::WriteMinidumpForChild(pid_t child,
|
||
|
pid_t child_blamed_thread,
|
||
|
const string& dump_path,
|
||
|
MinidumpCallback callback,
|
||
|
void* callback_context) {
|
||
|
// This function is not run in a compromised context.
|
||
|
MinidumpDescriptor descriptor(dump_path);
|
||
|
descriptor.UpdatePath();
|
||
|
if (!google_breakpad::WriteMinidump(descriptor.path(),
|
||
|
child,
|
||
|
child_blamed_thread))
|
||
|
return false;
|
||
|
|
||
|
return callback ? callback(descriptor, callback_context, true) : true;
|
||
|
}
|
||
|
|
||
|
} // namespace google_breakpad
|