1761 lines
55 KiB
C
1761 lines
55 KiB
C
|
/* ====================================================================
|
||
|
* Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. All advertising materials mentioning features or use of this
|
||
|
* software must display the following acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
|
*
|
||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
|
* endorse or promote products derived from this software without
|
||
|
* prior written permission. For written permission, please contact
|
||
|
* openssl-core@openssl.org.
|
||
|
*
|
||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
||
|
* nor may "OpenSSL" appear in their names without prior written
|
||
|
* permission of the OpenSSL Project.
|
||
|
*
|
||
|
* 6. Redistributions of any form whatsoever must retain the following
|
||
|
* acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
* ==================================================================== */
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <openssl/aead.h>
|
||
|
#include <openssl/aes.h>
|
||
|
#include <openssl/cipher.h>
|
||
|
#include <openssl/cpu.h>
|
||
|
#include <openssl/err.h>
|
||
|
#include <openssl/mem.h>
|
||
|
#include <openssl/modes.h>
|
||
|
#include <openssl/obj.h>
|
||
|
#include <openssl/rand.h>
|
||
|
#include <openssl/sha.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
#include "../internal.h"
|
||
|
#include "../modes/internal.h"
|
||
|
|
||
|
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
||
|
#include "../arm_arch.h"
|
||
|
#endif
|
||
|
|
||
|
|
||
|
typedef struct {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
block128_f block;
|
||
|
union {
|
||
|
cbc128_f cbc;
|
||
|
ctr128_f ctr;
|
||
|
} stream;
|
||
|
} EVP_AES_KEY;
|
||
|
|
||
|
typedef struct {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks; /* AES key schedule to use */
|
||
|
int key_set; /* Set if key initialised */
|
||
|
int iv_set; /* Set if an iv is set */
|
||
|
GCM128_CONTEXT gcm;
|
||
|
uint8_t *iv; /* Temporary IV store */
|
||
|
int ivlen; /* IV length */
|
||
|
int taglen;
|
||
|
int iv_gen; /* It is OK to generate IVs */
|
||
|
ctr128_f ctr;
|
||
|
} EVP_AES_GCM_CTX;
|
||
|
|
||
|
#if !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
||
|
#define VPAES
|
||
|
static char vpaes_capable(void) {
|
||
|
return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0;
|
||
|
}
|
||
|
|
||
|
#if defined(OPENSSL_X86_64)
|
||
|
#define BSAES
|
||
|
static char bsaes_capable(void) {
|
||
|
return vpaes_capable();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#elif !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
|
||
|
#include "../arm_arch.h"
|
||
|
|
||
|
#if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7
|
||
|
#define BSAES
|
||
|
static char bsaes_capable(void) {
|
||
|
return CRYPTO_is_NEON_capable();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define HWAES
|
||
|
static char hwaes_capable(void) {
|
||
|
return (OPENSSL_armcap_P & ARMV8_AES) != 0;
|
||
|
}
|
||
|
|
||
|
int aes_v8_set_encrypt_key(const uint8_t *user_key, const int bits,
|
||
|
AES_KEY *key);
|
||
|
int aes_v8_set_decrypt_key(const uint8_t *user_key, const int bits,
|
||
|
AES_KEY *key);
|
||
|
void aes_v8_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
void aes_v8_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
void aes_v8_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, const int enc);
|
||
|
void aes_v8_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const AES_KEY *key, const uint8_t ivec[16]);
|
||
|
|
||
|
#endif /* OPENSSL_ARM */
|
||
|
|
||
|
#if defined(BSAES)
|
||
|
/* On platforms where BSAES gets defined (just above), then these functions are
|
||
|
* provided by asm. */
|
||
|
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t ivec[16], int enc);
|
||
|
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const AES_KEY *key, const uint8_t ivec[16]);
|
||
|
#else
|
||
|
static char bsaes_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* On other platforms, bsaes_capable() will always return false and so the
|
||
|
* following will never be called. */
|
||
|
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t ivec[16], int enc) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const AES_KEY *key, const uint8_t ivec[16]) {
|
||
|
abort();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(VPAES)
|
||
|
/* On platforms where VPAES gets defined (just above), then these functions are
|
||
|
* provided by asm. */
|
||
|
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
|
||
|
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
|
||
|
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc);
|
||
|
#else
|
||
|
static char vpaes_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* On other platforms, vpaes_capable() will always return false and so the
|
||
|
* following will never be called. */
|
||
|
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc) {
|
||
|
abort();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if !defined(HWAES)
|
||
|
/* If HWAES isn't defined then we provide dummy functions for each of the hwaes
|
||
|
* functions. */
|
||
|
int hwaes_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int aes_v8_set_encrypt_key(const uint8_t *user_key, int bits,
|
||
|
AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
int aes_v8_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
void aes_v8_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
void aes_v8_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
void aes_v8_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
void aes_v8_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const AES_KEY *key, const uint8_t ivec[16]) {
|
||
|
abort();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
||
|
int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
|
||
|
void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
|
||
|
void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, int enc);
|
||
|
void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc);
|
||
|
|
||
|
void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
|
||
|
const void *key, const uint8_t *ivec);
|
||
|
|
||
|
#if defined(OPENSSL_X86_64)
|
||
|
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const void *key, uint8_t ivec[16], uint64_t *Xi);
|
||
|
#define AES_gcm_encrypt aesni_gcm_encrypt
|
||
|
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const void *key, uint8_t ivec[16], uint64_t *Xi);
|
||
|
#define AES_gcm_decrypt aesni_gcm_decrypt
|
||
|
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
|
||
|
size_t len);
|
||
|
#define AES_GCM_ASM(gctx) \
|
||
|
(gctx->ctr == aesni_ctr32_encrypt_blocks && gctx->gcm.ghash == gcm_ghash_avx)
|
||
|
#endif /* OPENSSL_X86_64 */
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* On other platforms, aesni_capable() will always return false and so the
|
||
|
* following will never be called. */
|
||
|
void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
|
||
|
const void *key, const uint8_t *ivec) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc)
|
||
|
OPENSSL_SUPPRESS_UNREACHABLE_CODE_WARNINGS {
|
||
|
int ret, mode;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
||
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
|
||
|
if (hwaes_capable()) {
|
||
|
ret = aes_v8_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)aes_v8_decrypt;
|
||
|
dat->stream.cbc = NULL;
|
||
|
if (mode == EVP_CIPH_CBC_MODE) {
|
||
|
dat->stream.cbc = (cbc128_f)aes_v8_cbc_encrypt;
|
||
|
}
|
||
|
} else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
|
||
|
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_decrypt;
|
||
|
dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
|
||
|
} else if (vpaes_capable()) {
|
||
|
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)vpaes_decrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
|
||
|
} else {
|
||
|
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_decrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
|
||
|
}
|
||
|
} else if (hwaes_capable()) {
|
||
|
ret = aes_v8_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)aes_v8_encrypt;
|
||
|
dat->stream.cbc = NULL;
|
||
|
if (mode == EVP_CIPH_CBC_MODE) {
|
||
|
dat->stream.cbc = (cbc128_f)aes_v8_cbc_encrypt;
|
||
|
} else if (mode == EVP_CIPH_CTR_MODE) {
|
||
|
dat->stream.ctr = (ctr128_f)aes_v8_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
} else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) {
|
||
|
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_encrypt;
|
||
|
dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
|
||
|
} else if (vpaes_capable()) {
|
||
|
ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)vpaes_encrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
|
||
|
} else {
|
||
|
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_encrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
|
||
|
}
|
||
|
|
||
|
if (ret < 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
if (dat->stream.cbc) {
|
||
|
(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
|
||
|
} else if (ctx->encrypt) {
|
||
|
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
|
||
|
} else {
|
||
|
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
size_t bl = ctx->cipher->block_size;
|
||
|
size_t i;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
if (len < bl) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
for (i = 0, len -= bl; i <= len; i += bl) {
|
||
|
(*dat->block)(in + i, out + i, &dat->ks);
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
unsigned int num = ctx->num;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
if (dat->stream.ctr) {
|
||
|
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num,
|
||
|
dat->stream.ctr);
|
||
|
} else {
|
||
|
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num,
|
||
|
dat->block);
|
||
|
}
|
||
|
ctx->num = (size_t)num;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static char aesni_capable(void);
|
||
|
|
||
|
static ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
|
||
|
block128_f *out_block, const uint8_t *key,
|
||
|
size_t key_len)
|
||
|
OPENSSL_SUPPRESS_UNREACHABLE_CODE_WARNINGS {
|
||
|
if (aesni_capable()) {
|
||
|
aesni_set_encrypt_key(key, key_len * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aesni_encrypt);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) aesni_encrypt;
|
||
|
}
|
||
|
return (ctr128_f)aesni_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
|
||
|
if (hwaes_capable()) {
|
||
|
aes_v8_set_encrypt_key(key, key_len * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_v8_encrypt);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) aes_v8_encrypt;
|
||
|
}
|
||
|
return (ctr128_f)aes_v8_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
|
||
|
if (bsaes_capable()) {
|
||
|
AES_set_encrypt_key(key, key_len * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) AES_encrypt;
|
||
|
}
|
||
|
return (ctr128_f)bsaes_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
|
||
|
if (vpaes_capable()) {
|
||
|
vpaes_set_encrypt_key(key, key_len * 8, aes_key);
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) vpaes_encrypt;
|
||
|
}
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
AES_set_encrypt_key(key, key_len * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) AES_encrypt;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
||
|
if (!iv && !key) {
|
||
|
return 1;
|
||
|
}
|
||
|
if (key) {
|
||
|
gctx->ctr =
|
||
|
aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len);
|
||
|
/* If we have an iv can set it directly, otherwise use saved IV. */
|
||
|
if (iv == NULL && gctx->iv_set) {
|
||
|
iv = gctx->iv;
|
||
|
}
|
||
|
if (iv) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
||
|
gctx->iv_set = 1;
|
||
|
}
|
||
|
gctx->key_set = 1;
|
||
|
} else {
|
||
|
/* If key set use IV, otherwise copy */
|
||
|
if (gctx->key_set) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
||
|
} else {
|
||
|
memcpy(gctx->iv, iv, gctx->ivlen);
|
||
|
}
|
||
|
gctx->iv_set = 1;
|
||
|
gctx->iv_gen = 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
|
||
|
EVP_AES_GCM_CTX *gctx = c->cipher_data;
|
||
|
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
|
||
|
if (gctx->iv != c->iv) {
|
||
|
OPENSSL_free(gctx->iv);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* increment counter (64-bit int) by 1 */
|
||
|
static void ctr64_inc(uint8_t *counter) {
|
||
|
int n = 8;
|
||
|
uint8_t c;
|
||
|
|
||
|
do {
|
||
|
--n;
|
||
|
c = counter[n];
|
||
|
++c;
|
||
|
counter[n] = c;
|
||
|
if (c) {
|
||
|
return;
|
||
|
}
|
||
|
} while (n);
|
||
|
}
|
||
|
|
||
|
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
|
||
|
EVP_AES_GCM_CTX *gctx = c->cipher_data;
|
||
|
switch (type) {
|
||
|
case EVP_CTRL_INIT:
|
||
|
gctx->key_set = 0;
|
||
|
gctx->iv_set = 0;
|
||
|
gctx->ivlen = c->cipher->iv_len;
|
||
|
gctx->iv = c->iv;
|
||
|
gctx->taglen = -1;
|
||
|
gctx->iv_gen = 0;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_IVLEN:
|
||
|
if (arg <= 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Allocate memory for IV if needed */
|
||
|
if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
|
||
|
if (gctx->iv != c->iv) {
|
||
|
OPENSSL_free(gctx->iv);
|
||
|
}
|
||
|
gctx->iv = OPENSSL_malloc(arg);
|
||
|
if (!gctx->iv) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
gctx->ivlen = arg;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_TAG:
|
||
|
if (arg <= 0 || arg > 16 || c->encrypt) {
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(c->buf, ptr, arg);
|
||
|
gctx->taglen = arg;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_GET_TAG:
|
||
|
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(ptr, c->buf, arg);
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_IV_FIXED:
|
||
|
/* Special case: -1 length restores whole IV */
|
||
|
if (arg == -1) {
|
||
|
memcpy(gctx->iv, ptr, gctx->ivlen);
|
||
|
gctx->iv_gen = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
/* Fixed field must be at least 4 bytes and invocation field
|
||
|
* at least 8. */
|
||
|
if (arg < 4 || (gctx->ivlen - arg) < 8) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (arg) {
|
||
|
memcpy(gctx->iv, ptr, arg);
|
||
|
}
|
||
|
if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) {
|
||
|
return 0;
|
||
|
}
|
||
|
gctx->iv_gen = 1;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_IV_GEN:
|
||
|
if (gctx->iv_gen == 0 || gctx->key_set == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
||
|
if (arg <= 0 || arg > gctx->ivlen) {
|
||
|
arg = gctx->ivlen;
|
||
|
}
|
||
|
memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
||
|
/* Invocation field will be at least 8 bytes in size and
|
||
|
* so no need to check wrap around or increment more than
|
||
|
* last 8 bytes. */
|
||
|
ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
||
|
gctx->iv_set = 1;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_IV_INV:
|
||
|
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
||
|
gctx->iv_set = 1;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_COPY: {
|
||
|
EVP_CIPHER_CTX *out = ptr;
|
||
|
EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
|
||
|
if (gctx->gcm.key) {
|
||
|
if (gctx->gcm.key != &gctx->ks) {
|
||
|
return 0;
|
||
|
}
|
||
|
gctx_out->gcm.key = &gctx_out->ks;
|
||
|
}
|
||
|
if (gctx->iv == c->iv) {
|
||
|
gctx_out->iv = out->iv;
|
||
|
} else {
|
||
|
gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
|
||
|
if (!gctx_out->iv) {
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
||
|
|
||
|
/* If not set up, return error */
|
||
|
if (!gctx->key_set) {
|
||
|
return -1;
|
||
|
}
|
||
|
if (!gctx->iv_set) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (in) {
|
||
|
if (out == NULL) {
|
||
|
if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else if (ctx->encrypt) {
|
||
|
if (gctx->ctr) {
|
||
|
size_t bulk = 0;
|
||
|
#if defined(AES_GCM_ASM)
|
||
|
if (len >= 32 && AES_GCM_ASM(gctx)) {
|
||
|
size_t res = (16 - gctx->gcm.mres) % 16;
|
||
|
|
||
|
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key,
|
||
|
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
||
|
gctx->gcm.len.u[1] += bulk;
|
||
|
bulk += res;
|
||
|
}
|
||
|
#endif
|
||
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk,
|
||
|
len - bulk, gctx->ctr)) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else {
|
||
|
size_t bulk = 0;
|
||
|
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk,
|
||
|
len - bulk)) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (gctx->ctr) {
|
||
|
size_t bulk = 0;
|
||
|
#if defined(AES_GCM_ASM)
|
||
|
if (len >= 16 && AES_GCM_ASM(gctx)) {
|
||
|
size_t res = (16 - gctx->gcm.mres) % 16;
|
||
|
|
||
|
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key,
|
||
|
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
||
|
gctx->gcm.len.u[1] += bulk;
|
||
|
bulk += res;
|
||
|
}
|
||
|
#endif
|
||
|
if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk,
|
||
|
len - bulk, gctx->ctr)) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else {
|
||
|
size_t bulk = 0;
|
||
|
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk,
|
||
|
len - bulk)) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return len;
|
||
|
} else {
|
||
|
if (!ctx->encrypt) {
|
||
|
if (gctx->taglen < 0 ||
|
||
|
!CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
gctx->iv_set = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
|
||
|
gctx->taglen = 16;
|
||
|
/* Don't reuse the IV */
|
||
|
gctx->iv_set = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const EVP_CIPHER aes_128_cbc = {
|
||
|
NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_cbc_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_128_ctr = {
|
||
|
NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ctr_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_128_ecb = {
|
||
|
NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */,
|
||
|
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ecb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_128_ofb = {
|
||
|
NID_aes_128_ofb128, 1 /* block_size */, 16 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ofb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_128_gcm = {
|
||
|
NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */,
|
||
|
sizeof(EVP_AES_GCM_CTX),
|
||
|
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
|
||
|
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER,
|
||
|
NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
|
||
|
aes_gcm_ctrl};
|
||
|
|
||
|
|
||
|
static const EVP_CIPHER aes_192_cbc = {
|
||
|
NID_aes_192_cbc, 16 /* block_size */, 24 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_cbc_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_192_ctr = {
|
||
|
NID_aes_192_ctr, 1 /* block_size */, 24 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ctr_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_192_ecb = {
|
||
|
NID_aes_192_ecb, 16 /* block_size */, 24 /* key_size */,
|
||
|
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ecb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_192_gcm = {
|
||
|
NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */,
|
||
|
sizeof(EVP_AES_GCM_CTX),
|
||
|
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
|
||
|
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER,
|
||
|
NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
|
||
|
aes_gcm_ctrl};
|
||
|
|
||
|
|
||
|
static const EVP_CIPHER aes_256_cbc = {
|
||
|
NID_aes_256_cbc, 16 /* block_size */, 32 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_cbc_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_256_ctr = {
|
||
|
NID_aes_256_ctr, 1 /* block_size */, 32 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ctr_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_256_ecb = {
|
||
|
NID_aes_256_ecb, 16 /* block_size */, 32 /* key_size */,
|
||
|
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ecb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_256_ofb = {
|
||
|
NID_aes_256_ofb128, 1 /* block_size */, 32 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE,
|
||
|
NULL /* app_data */, aes_init_key, aes_ofb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aes_256_gcm = {
|
||
|
NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */,
|
||
|
sizeof(EVP_AES_GCM_CTX),
|
||
|
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
|
||
|
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER,
|
||
|
NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
|
||
|
aes_gcm_ctrl};
|
||
|
|
||
|
#if !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
||
|
|
||
|
/* AES-NI section. */
|
||
|
|
||
|
static char aesni_capable(void) {
|
||
|
return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0;
|
||
|
}
|
||
|
|
||
|
static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
int ret, mode;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
||
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
|
||
|
ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
|
||
|
dat->block = (block128_f)aesni_decrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL;
|
||
|
} else {
|
||
|
ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
|
||
|
dat->block = (block128_f)aesni_encrypt;
|
||
|
if (mode == EVP_CIPH_CBC_MODE) {
|
||
|
dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
|
||
|
} else if (mode == EVP_CIPH_CTR_MODE) {
|
||
|
dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
|
||
|
} else {
|
||
|
dat->stream.cbc = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ret < 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
size_t bl = ctx->cipher->block_size;
|
||
|
|
||
|
if (len < bl) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
||
|
if (!iv && !key) {
|
||
|
return 1;
|
||
|
}
|
||
|
if (key) {
|
||
|
aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
||
|
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt);
|
||
|
gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
|
||
|
/* If we have an iv can set it directly, otherwise use
|
||
|
* saved IV. */
|
||
|
if (iv == NULL && gctx->iv_set) {
|
||
|
iv = gctx->iv;
|
||
|
}
|
||
|
if (iv) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
||
|
gctx->iv_set = 1;
|
||
|
}
|
||
|
gctx->key_set = 1;
|
||
|
} else {
|
||
|
/* If key set use IV, otherwise copy */
|
||
|
if (gctx->key_set) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
||
|
} else {
|
||
|
memcpy(gctx->iv, iv, gctx->ivlen);
|
||
|
}
|
||
|
gctx->iv_set = 1;
|
||
|
gctx->iv_gen = 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static const EVP_CIPHER aesni_128_cbc = {
|
||
|
NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aesni_cbc_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_128_ctr = {
|
||
|
NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aes_ctr_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_128_ecb = {
|
||
|
NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */,
|
||
|
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aesni_ecb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_128_ofb = {
|
||
|
NID_aes_128_ofb128, 1 /* block_size */, 16 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aes_ofb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_128_gcm = {
|
||
|
NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */,
|
||
|
sizeof(EVP_AES_GCM_CTX),
|
||
|
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
|
||
|
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER,
|
||
|
NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
|
||
|
aes_gcm_ctrl};
|
||
|
|
||
|
|
||
|
static const EVP_CIPHER aesni_192_cbc = {
|
||
|
NID_aes_192_cbc, 16 /* block_size */, 24 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aesni_cbc_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_192_ctr = {
|
||
|
NID_aes_192_ctr, 1 /* block_size */, 24 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aes_ctr_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_192_ecb = {
|
||
|
NID_aes_192_ecb, 16 /* block_size */, 24 /* key_size */,
|
||
|
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aesni_ecb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_192_gcm = {
|
||
|
NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */,
|
||
|
sizeof(EVP_AES_GCM_CTX),
|
||
|
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
|
||
|
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER,
|
||
|
NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
|
||
|
aes_gcm_ctrl};
|
||
|
|
||
|
|
||
|
static const EVP_CIPHER aesni_256_cbc = {
|
||
|
NID_aes_256_cbc, 16 /* block_size */, 32 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aesni_cbc_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_256_ctr = {
|
||
|
NID_aes_256_ctr, 1 /* block_size */, 32 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aes_ctr_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_256_ecb = {
|
||
|
NID_aes_256_ecb, 16 /* block_size */, 32 /* key_size */,
|
||
|
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aesni_ecb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_256_ofb = {
|
||
|
NID_aes_256_ofb128, 1 /* block_size */, 32 /* key_size */,
|
||
|
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE,
|
||
|
NULL /* app_data */, aesni_init_key, aes_ofb_cipher,
|
||
|
NULL /* cleanup */, NULL /* ctrl */};
|
||
|
|
||
|
static const EVP_CIPHER aesni_256_gcm = {
|
||
|
NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */,
|
||
|
sizeof(EVP_AES_GCM_CTX),
|
||
|
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
|
||
|
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER,
|
||
|
NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
|
||
|
aes_gcm_ctrl};
|
||
|
|
||
|
#define EVP_CIPHER_FUNCTION(keybits, mode) \
|
||
|
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
|
||
|
if (aesni_capable()) { \
|
||
|
return &aesni_##keybits##_##mode; \
|
||
|
} else { \
|
||
|
return &aes_##keybits##_##mode; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#else /* ^^^ OPENSSL_X86_64 || OPENSSL_X86 */
|
||
|
|
||
|
static char aesni_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define EVP_CIPHER_FUNCTION(keybits, mode) \
|
||
|
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
|
||
|
return &aes_##keybits##_##mode; \
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
EVP_CIPHER_FUNCTION(128, cbc)
|
||
|
EVP_CIPHER_FUNCTION(128, ctr)
|
||
|
EVP_CIPHER_FUNCTION(128, ecb)
|
||
|
EVP_CIPHER_FUNCTION(128, ofb)
|
||
|
EVP_CIPHER_FUNCTION(128, gcm)
|
||
|
|
||
|
EVP_CIPHER_FUNCTION(192, cbc)
|
||
|
EVP_CIPHER_FUNCTION(192, ctr)
|
||
|
EVP_CIPHER_FUNCTION(192, ecb)
|
||
|
EVP_CIPHER_FUNCTION(192, gcm)
|
||
|
|
||
|
EVP_CIPHER_FUNCTION(256, cbc)
|
||
|
EVP_CIPHER_FUNCTION(256, ctr)
|
||
|
EVP_CIPHER_FUNCTION(256, ecb)
|
||
|
EVP_CIPHER_FUNCTION(256, ofb)
|
||
|
EVP_CIPHER_FUNCTION(256, gcm)
|
||
|
|
||
|
|
||
|
#define EVP_AEAD_AES_GCM_TAG_LEN 16
|
||
|
|
||
|
struct aead_aes_gcm_ctx {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
GCM128_CONTEXT gcm;
|
||
|
ctr128_f ctr;
|
||
|
uint8_t tag_len;
|
||
|
};
|
||
|
|
||
|
static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len) {
|
||
|
struct aead_aes_gcm_ctx *gcm_ctx;
|
||
|
const size_t key_bits = key_len * 8;
|
||
|
|
||
|
if (key_bits != 128 && key_bits != 256) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
||
|
return 0; /* EVP_AEAD_CTX_init should catch this. */
|
||
|
}
|
||
|
|
||
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
||
|
tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
}
|
||
|
|
||
|
if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx));
|
||
|
if (gcm_ctx == NULL) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
gcm_ctx->ctr =
|
||
|
aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len);
|
||
|
gcm_ctx->tag_len = tag_len;
|
||
|
ctx->aead_state = gcm_ctx;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {
|
||
|
struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
||
|
OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx));
|
||
|
OPENSSL_free(gcm_ctx);
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
size_t *out_len, size_t max_out_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
size_t bulk = 0;
|
||
|
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
||
|
GCM128_CONTEXT gcm;
|
||
|
|
||
|
if (in_len + gcm_ctx->tag_len < in_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (max_out_len < in_len + gcm_ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
|
||
|
CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
|
||
|
|
||
|
if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (gcm_ctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk,
|
||
|
gcm_ctx->ctr)) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk, in_len - bulk)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
|
||
|
*out_len = in_len + gcm_ctx->tag_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
size_t *out_len, size_t max_out_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
size_t bulk = 0;
|
||
|
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
||
|
uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
|
||
|
size_t plaintext_len;
|
||
|
GCM128_CONTEXT gcm;
|
||
|
|
||
|
if (in_len < gcm_ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
plaintext_len = in_len - gcm_ctx->tag_len;
|
||
|
|
||
|
if (max_out_len < plaintext_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
|
||
|
CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
|
||
|
|
||
|
if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (gcm_ctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
|
||
|
in_len - bulk - gcm_ctx->tag_len,
|
||
|
gcm_ctx->ctr)) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
|
||
|
in_len - bulk - gcm_ctx->tag_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
|
||
|
if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
*out_len = plaintext_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static const EVP_AEAD aead_aes_128_gcm = {
|
||
|
16, /* key len */
|
||
|
12, /* nonce len */
|
||
|
EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */
|
||
|
EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */
|
||
|
aead_aes_gcm_init,
|
||
|
NULL, /* init_with_direction */
|
||
|
aead_aes_gcm_cleanup,
|
||
|
aead_aes_gcm_seal,
|
||
|
aead_aes_gcm_open,
|
||
|
NULL, /* get_rc4_state */
|
||
|
};
|
||
|
|
||
|
static const EVP_AEAD aead_aes_256_gcm = {
|
||
|
32, /* key len */
|
||
|
12, /* nonce len */
|
||
|
EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */
|
||
|
EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */
|
||
|
aead_aes_gcm_init,
|
||
|
NULL, /* init_with_direction */
|
||
|
aead_aes_gcm_cleanup,
|
||
|
aead_aes_gcm_seal,
|
||
|
aead_aes_gcm_open,
|
||
|
NULL, /* get_rc4_state */
|
||
|
};
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; }
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; }
|
||
|
|
||
|
|
||
|
/* AES Key Wrap is specified in
|
||
|
* http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
|
||
|
* or https://tools.ietf.org/html/rfc3394 */
|
||
|
|
||
|
struct aead_aes_key_wrap_ctx {
|
||
|
uint8_t key[32];
|
||
|
unsigned key_bits;
|
||
|
};
|
||
|
|
||
|
static int aead_aes_key_wrap_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len) {
|
||
|
struct aead_aes_key_wrap_ctx *kw_ctx;
|
||
|
const size_t key_bits = key_len * 8;
|
||
|
|
||
|
if (key_bits != 128 && key_bits != 256) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
||
|
return 0; /* EVP_AEAD_CTX_init should catch this. */
|
||
|
}
|
||
|
|
||
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
||
|
tag_len = 8;
|
||
|
}
|
||
|
|
||
|
if (tag_len != 8) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
kw_ctx = OPENSSL_malloc(sizeof(struct aead_aes_key_wrap_ctx));
|
||
|
if (kw_ctx == NULL) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
memcpy(kw_ctx->key, key, key_len);
|
||
|
kw_ctx->key_bits = key_bits;
|
||
|
|
||
|
ctx->aead_state = kw_ctx;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aead_aes_key_wrap_cleanup(EVP_AEAD_CTX *ctx) {
|
||
|
struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
|
||
|
OPENSSL_cleanse(kw_ctx, sizeof(struct aead_aes_key_wrap_ctx));
|
||
|
OPENSSL_free(kw_ctx);
|
||
|
}
|
||
|
|
||
|
/* kDefaultAESKeyWrapNonce is the default nonce value given in 2.2.3.1. */
|
||
|
static const uint8_t kDefaultAESKeyWrapNonce[8] = {0xa6, 0xa6, 0xa6, 0xa6,
|
||
|
0xa6, 0xa6, 0xa6, 0xa6};
|
||
|
|
||
|
|
||
|
static int aead_aes_key_wrap_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
size_t *out_len, size_t max_out_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
/* Variables in this function match up with the variables in the second half
|
||
|
* of section 2.2.1. */
|
||
|
unsigned i, j, n;
|
||
|
uint8_t A[AES_BLOCK_SIZE];
|
||
|
|
||
|
if (ad_len != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_AD_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len == 0) {
|
||
|
nonce = kDefaultAESKeyWrapNonce;
|
||
|
nonce_len = sizeof(kDefaultAESKeyWrapNonce);
|
||
|
}
|
||
|
|
||
|
if (nonce_len != 8) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (in_len % 8 != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_INPUT_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* The code below only handles a 32-bit |t| thus 6*|n| must be less than
|
||
|
* 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we
|
||
|
* conservatively cap it to 2^32-16 to stop 32-bit platforms complaining that
|
||
|
* a comparison is always true. */
|
||
|
if (in_len > 0xfffffff0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
n = in_len / 8;
|
||
|
|
||
|
if (n < 2) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_INPUT_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (in_len + 8 < in_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (max_out_len < in_len + 8) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (AES_set_encrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
memmove(out + 8, in, in_len);
|
||
|
memcpy(A, nonce, 8);
|
||
|
|
||
|
for (j = 0; j < 6; j++) {
|
||
|
for (i = 1; i <= n; i++) {
|
||
|
uint32_t t;
|
||
|
|
||
|
memcpy(A + 8, out + 8 * i, 8);
|
||
|
AES_encrypt(A, A, &ks.ks);
|
||
|
t = n * j + i;
|
||
|
A[7] ^= t & 0xff;
|
||
|
A[6] ^= (t >> 8) & 0xff;
|
||
|
A[5] ^= (t >> 16) & 0xff;
|
||
|
A[4] ^= (t >> 24) & 0xff;
|
||
|
memcpy(out + 8 * i, A + 8, 8);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
memcpy(out, A, 8);
|
||
|
*out_len = in_len + 8;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_key_wrap_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
size_t *out_len, size_t max_out_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
/* Variables in this function match up with the variables in the second half
|
||
|
* of section 2.2.1. */
|
||
|
unsigned i, j, n;
|
||
|
uint8_t A[AES_BLOCK_SIZE];
|
||
|
|
||
|
if (ad_len != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_AD_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len == 0) {
|
||
|
nonce = kDefaultAESKeyWrapNonce;
|
||
|
nonce_len = sizeof(kDefaultAESKeyWrapNonce);
|
||
|
}
|
||
|
|
||
|
if (nonce_len != 8) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (in_len % 8 != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_INPUT_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* The code below only handles a 32-bit |t| thus 6*|n| must be less than
|
||
|
* 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we
|
||
|
* conservatively cap it to 2^32-8 to stop 32-bit platforms complaining that
|
||
|
* a comparison is always true. */
|
||
|
if (in_len > 0xfffffff8) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (in_len < 24) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
n = (in_len / 8) - 1;
|
||
|
|
||
|
if (max_out_len < in_len - 8) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (AES_set_decrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
memcpy(A, in, 8);
|
||
|
memmove(out, in + 8, in_len - 8);
|
||
|
|
||
|
for (j = 5; j < 6; j--) {
|
||
|
for (i = n; i > 0; i--) {
|
||
|
uint32_t t;
|
||
|
|
||
|
t = n * j + i;
|
||
|
A[7] ^= t & 0xff;
|
||
|
A[6] ^= (t >> 8) & 0xff;
|
||
|
A[5] ^= (t >> 16) & 0xff;
|
||
|
A[4] ^= (t >> 24) & 0xff;
|
||
|
memcpy(A + 8, out + 8 * (i - 1), 8);
|
||
|
AES_decrypt(A, A, &ks.ks);
|
||
|
memcpy(out + 8 * (i - 1), A + 8, 8);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (CRYPTO_memcmp(A, nonce, 8) != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
*out_len = in_len - 8;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static const EVP_AEAD aead_aes_128_key_wrap = {
|
||
|
16, /* key len */
|
||
|
8, /* nonce len */
|
||
|
8, /* overhead */
|
||
|
8, /* max tag length */
|
||
|
aead_aes_key_wrap_init,
|
||
|
NULL, /* init_with_direction */
|
||
|
aead_aes_key_wrap_cleanup,
|
||
|
aead_aes_key_wrap_seal,
|
||
|
aead_aes_key_wrap_open,
|
||
|
NULL, /* get_rc4_state */
|
||
|
};
|
||
|
|
||
|
static const EVP_AEAD aead_aes_256_key_wrap = {
|
||
|
32, /* key len */
|
||
|
8, /* nonce len */
|
||
|
8, /* overhead */
|
||
|
8, /* max tag length */
|
||
|
aead_aes_key_wrap_init,
|
||
|
NULL, /* init_with_direction */
|
||
|
aead_aes_key_wrap_cleanup,
|
||
|
aead_aes_key_wrap_seal,
|
||
|
aead_aes_key_wrap_open,
|
||
|
NULL, /* get_rc4_state */
|
||
|
};
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_128_key_wrap(void) { return &aead_aes_128_key_wrap; }
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_256_key_wrap(void) { return &aead_aes_256_key_wrap; }
|
||
|
|
||
|
|
||
|
#define EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN SHA256_DIGEST_LENGTH
|
||
|
#define EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN 12
|
||
|
|
||
|
struct aead_aes_ctr_hmac_sha256_ctx {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
ctr128_f ctr;
|
||
|
block128_f block;
|
||
|
SHA256_CTX inner_init_state;
|
||
|
SHA256_CTX outer_init_state;
|
||
|
uint8_t tag_len;
|
||
|
};
|
||
|
|
||
|
static void hmac_init(SHA256_CTX *out_inner, SHA256_CTX *out_outer,
|
||
|
const uint8_t hmac_key[32]) {
|
||
|
static const size_t hmac_key_len = 32;
|
||
|
uint8_t block[SHA256_CBLOCK];
|
||
|
memcpy(block, hmac_key, hmac_key_len);
|
||
|
memset(block + hmac_key_len, 0x36, sizeof(block) - hmac_key_len);
|
||
|
|
||
|
unsigned i;
|
||
|
for (i = 0; i < hmac_key_len; i++) {
|
||
|
block[i] ^= 0x36;
|
||
|
}
|
||
|
|
||
|
SHA256_Init(out_inner);
|
||
|
SHA256_Update(out_inner, block, sizeof(block));
|
||
|
|
||
|
memset(block + hmac_key_len, 0x5c, sizeof(block) - hmac_key_len);
|
||
|
for (i = 0; i < hmac_key_len; i++) {
|
||
|
block[i] ^= (0x36 ^ 0x5c);
|
||
|
}
|
||
|
|
||
|
SHA256_Init(out_outer);
|
||
|
SHA256_Update(out_outer, block, sizeof(block));
|
||
|
}
|
||
|
|
||
|
static int aead_aes_ctr_hmac_sha256_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len) {
|
||
|
struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx;
|
||
|
static const size_t hmac_key_len = 32;
|
||
|
|
||
|
if (key_len < hmac_key_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
||
|
return 0; /* EVP_AEAD_CTX_init should catch this. */
|
||
|
}
|
||
|
|
||
|
const size_t aes_key_len = key_len - hmac_key_len;
|
||
|
if (aes_key_len != 16 && aes_key_len != 32) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
||
|
return 0; /* EVP_AEAD_CTX_init should catch this. */
|
||
|
}
|
||
|
|
||
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
||
|
tag_len = EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN;
|
||
|
}
|
||
|
|
||
|
if (tag_len > EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
aes_ctx = OPENSSL_malloc(sizeof(struct aead_aes_ctr_hmac_sha256_ctx));
|
||
|
if (aes_ctx == NULL) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
aes_ctx->ctr =
|
||
|
aes_ctr_set_key(&aes_ctx->ks.ks, NULL, &aes_ctx->block, key, aes_key_len);
|
||
|
aes_ctx->tag_len = tag_len;
|
||
|
hmac_init(&aes_ctx->inner_init_state, &aes_ctx->outer_init_state,
|
||
|
key + aes_key_len);
|
||
|
|
||
|
ctx->aead_state = aes_ctx;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aead_aes_ctr_hmac_sha256_cleanup(EVP_AEAD_CTX *ctx) {
|
||
|
struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state;
|
||
|
OPENSSL_cleanse(aes_ctx, sizeof(struct aead_aes_ctr_hmac_sha256_ctx));
|
||
|
OPENSSL_free(aes_ctx);
|
||
|
}
|
||
|
|
||
|
static void hmac_update_uint64(SHA256_CTX *sha256, uint64_t value) {
|
||
|
unsigned i;
|
||
|
uint8_t bytes[8];
|
||
|
|
||
|
for (i = 0; i < sizeof(bytes); i++) {
|
||
|
bytes[i] = value & 0xff;
|
||
|
value >>= 8;
|
||
|
}
|
||
|
SHA256_Update(sha256, bytes, sizeof(bytes));
|
||
|
}
|
||
|
|
||
|
static void hmac_calculate(uint8_t out[SHA256_DIGEST_LENGTH],
|
||
|
const SHA256_CTX *inner_init_state,
|
||
|
const SHA256_CTX *outer_init_state,
|
||
|
const uint8_t *ad, size_t ad_len,
|
||
|
const uint8_t *nonce, const uint8_t *ciphertext,
|
||
|
size_t ciphertext_len) {
|
||
|
SHA256_CTX sha256;
|
||
|
memcpy(&sha256, inner_init_state, sizeof(sha256));
|
||
|
hmac_update_uint64(&sha256, ad_len);
|
||
|
hmac_update_uint64(&sha256, ciphertext_len);
|
||
|
SHA256_Update(&sha256, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN);
|
||
|
SHA256_Update(&sha256, ad, ad_len);
|
||
|
|
||
|
/* Pad with zeros to the end of the SHA-256 block. */
|
||
|
const unsigned num_padding =
|
||
|
(SHA256_CBLOCK - ((sizeof(uint64_t)*2 +
|
||
|
EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN + ad_len) %
|
||
|
SHA256_CBLOCK)) %
|
||
|
SHA256_CBLOCK;
|
||
|
uint8_t padding[SHA256_CBLOCK];
|
||
|
memset(padding, 0, num_padding);
|
||
|
SHA256_Update(&sha256, padding, num_padding);
|
||
|
|
||
|
SHA256_Update(&sha256, ciphertext, ciphertext_len);
|
||
|
|
||
|
uint8_t inner_digest[SHA256_DIGEST_LENGTH];
|
||
|
SHA256_Final(inner_digest, &sha256);
|
||
|
|
||
|
memcpy(&sha256, outer_init_state, sizeof(sha256));
|
||
|
SHA256_Update(&sha256, inner_digest, sizeof(inner_digest));
|
||
|
SHA256_Final(out, &sha256);
|
||
|
}
|
||
|
|
||
|
static void aead_aes_ctr_hmac_sha256_crypt(
|
||
|
const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx, uint8_t *out,
|
||
|
const uint8_t *in, size_t len, const uint8_t *nonce) {
|
||
|
/* Since the AEAD operation is one-shot, keeping a buffer of unused keystream
|
||
|
* bytes is pointless. However, |CRYPTO_ctr128_encrypt| requires it. */
|
||
|
uint8_t partial_block_buffer[AES_BLOCK_SIZE];
|
||
|
unsigned partial_block_offset = 0;
|
||
|
memset(partial_block_buffer, 0, sizeof(partial_block_buffer));
|
||
|
|
||
|
uint8_t counter[AES_BLOCK_SIZE];
|
||
|
memcpy(counter, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN);
|
||
|
memset(counter + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN, 0, 4);
|
||
|
|
||
|
if (aes_ctx->ctr) {
|
||
|
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &aes_ctx->ks.ks, counter,
|
||
|
partial_block_buffer, &partial_block_offset,
|
||
|
aes_ctx->ctr);
|
||
|
} else {
|
||
|
CRYPTO_ctr128_encrypt(in, out, len, &aes_ctx->ks.ks, counter,
|
||
|
partial_block_buffer, &partial_block_offset,
|
||
|
aes_ctx->block);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int aead_aes_ctr_hmac_sha256_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
size_t *out_len, size_t max_out_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state;
|
||
|
const uint64_t in_len_64 = in_len;
|
||
|
|
||
|
if (in_len + aes_ctx->tag_len < in_len ||
|
||
|
/* This input is so large it would overflow the 32-bit block counter. */
|
||
|
in_len_64 >= (OPENSSL_U64(1) << 32) * AES_BLOCK_SIZE) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (max_out_len < in_len + aes_ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, in_len, nonce);
|
||
|
|
||
|
uint8_t hmac_result[SHA256_DIGEST_LENGTH];
|
||
|
hmac_calculate(hmac_result, &aes_ctx->inner_init_state,
|
||
|
&aes_ctx->outer_init_state, ad, ad_len, nonce, out, in_len);
|
||
|
memcpy(out + in_len, hmac_result, aes_ctx->tag_len);
|
||
|
*out_len = in_len + aes_ctx->tag_len;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_ctr_hmac_sha256_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
size_t *out_len, size_t max_out_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state;
|
||
|
size_t plaintext_len;
|
||
|
|
||
|
if (in_len < aes_ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
plaintext_len = in_len - aes_ctx->tag_len;
|
||
|
|
||
|
if (max_out_len < plaintext_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t hmac_result[SHA256_DIGEST_LENGTH];
|
||
|
hmac_calculate(hmac_result, &aes_ctx->inner_init_state,
|
||
|
&aes_ctx->outer_init_state, ad, ad_len, nonce, in,
|
||
|
plaintext_len);
|
||
|
if (CRYPTO_memcmp(hmac_result, in + plaintext_len, aes_ctx->tag_len) != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, plaintext_len, nonce);
|
||
|
|
||
|
*out_len = plaintext_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static const EVP_AEAD aead_aes_128_ctr_hmac_sha256 = {
|
||
|
16 /* AES key */ + 32 /* HMAC key */,
|
||
|
12, /* nonce length */
|
||
|
EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* overhead */
|
||
|
EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* max tag length */
|
||
|
|
||
|
aead_aes_ctr_hmac_sha256_init,
|
||
|
NULL /* init_with_direction */,
|
||
|
aead_aes_ctr_hmac_sha256_cleanup,
|
||
|
aead_aes_ctr_hmac_sha256_seal,
|
||
|
aead_aes_ctr_hmac_sha256_open,
|
||
|
NULL /* get_rc4_state */,
|
||
|
};
|
||
|
|
||
|
static const EVP_AEAD aead_aes_256_ctr_hmac_sha256 = {
|
||
|
32 /* AES key */ + 32 /* HMAC key */,
|
||
|
12, /* nonce length */
|
||
|
EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* overhead */
|
||
|
EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* max tag length */
|
||
|
|
||
|
aead_aes_ctr_hmac_sha256_init,
|
||
|
NULL /* init_with_direction */,
|
||
|
aead_aes_ctr_hmac_sha256_cleanup,
|
||
|
aead_aes_ctr_hmac_sha256_seal,
|
||
|
aead_aes_ctr_hmac_sha256_open,
|
||
|
NULL /* get_rc4_state */,
|
||
|
};
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void) {
|
||
|
return &aead_aes_128_ctr_hmac_sha256;
|
||
|
}
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void) {
|
||
|
return &aead_aes_256_ctr_hmac_sha256;
|
||
|
}
|
||
|
|
||
|
int EVP_has_aes_hardware(void) {
|
||
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
||
|
return aesni_capable() && crypto_gcm_clmul_enabled();
|
||
|
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
||
|
return hwaes_capable() && (OPENSSL_armcap_P & ARMV8_PMULL);
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|