tg/net.c
2013-10-23 18:26:17 +04:00

457 lines
11 KiB
C

/*
This file is part of telegram-client.
Telegram-client is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Telegram-client is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this telegram-client. If not, see <http://www.gnu.org/licenses/>.
Copyright Vitaly Valtman 2013
*/
#define _GNU_SOURCE
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <netdb.h>
#include <netinet/tcp.h>
#include <sys/fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <poll.h>
#include <openssl/rand.h>
#include <arpa/inet.h>
#include "net.h"
#include "include.h"
#include "mtproto-client.h"
#include "mtproto-common.h"
#include "tree.h"
#include "interface.h"
DEFINE_TREE(int,int,int_cmp,0)
int verbosity;
extern struct connection_methods auth_methods;
struct connection_buffer *new_connection_buffer (int size) {
struct connection_buffer *b = malloc (sizeof (*b));
memset (b, 0, sizeof (*b));
b->start = malloc (size);
b->end = b->start + size;
b->rptr = b->wptr = b->start;
return b;
}
void delete_connection_buffer (struct connection_buffer *b) {
free (b->start);
free (b);
}
int write_out (struct connection *c, const void *data, int len) {
if (!len) { return 0; }
assert (len > 0);
int x = 0;
if (!c->out_head) {
struct connection_buffer *b = new_connection_buffer (1 << 20);
c->out_head = c->out_tail = b;
}
while (len) {
if (c->out_tail->end - c->out_tail->wptr >= len) {
memcpy (c->out_tail->wptr, data, len);
c->out_tail->wptr += len;
c->out_bytes += len;
return x + len;
} else {
int y = c->out_tail->end - c->out_tail->wptr;
assert (y < len);
memcpy (c->out_tail->wptr, data, y);
x += y;
len -= y;
data += y;
struct connection_buffer *b = new_connection_buffer (1 << 20);
c->out_tail->next = b;
b->next = 0;
c->out_tail = b;
c->out_bytes += y;
}
}
return x;
}
int read_in (struct connection *c, void *data, int len) {
if (!len) { return 0; }
assert (len > 0);
if (len > c->in_bytes) {
len = c->in_bytes;
}
int x = 0;
while (len) {
int y = c->in_head->wptr - c->in_head->rptr;
if (y > len) {
memcpy (data, c->in_head->rptr, len);
c->in_head->rptr += len;
c->in_bytes -= len;
return x + len;
} else {
memcpy (data, c->in_head->rptr, y);
c->in_bytes -= y;
x += y;
data += y;
len -= y;
void *old = c->in_head;
c->in_head = c->in_head->next;
if (!c->in_head) {
c->in_tail = 0;
}
delete_connection_buffer (old);
}
}
return x;
}
int read_in_lookup (struct connection *c, void *data, int len) {
if (!len) { return 0; }
assert (len > 0);
if (len > c->in_bytes) {
len = c->in_bytes;
}
int x = 0;
struct connection_buffer *b = c->in_head;
while (len) {
int y = b->wptr - b->rptr;
if (y > len) {
memcpy (data, b->rptr, len);
return x + len;
} else {
memcpy (data, b->rptr, y);
x += y;
b = b->next;
}
}
return x;
}
void flush_out (struct connection *c UU) {
}
#define MAX_CONNECTIONS 100
struct connection *Connections[MAX_CONNECTIONS];
int max_connection_fd;
struct connection *create_connection (const char *host, int port, struct session *session, struct connection_methods *methods) {
struct connection *c = malloc (sizeof (*c));
memset (c, 0, sizeof (*c));
struct hostent *h;
if (!(h = gethostbyname (host)) || h->h_addrtype != AF_INET || h->h_length != 4 || !h->h_addr_list || !h->h_addr) {
assert (0);
}
int fd;
assert ((fd = socket (AF_INET, SOCK_STREAM, 0)) != -1);
assert (fd >= 0 && fd < MAX_CONNECTIONS);
if (fd > max_connection_fd) {
max_connection_fd = fd;
}
int flags = -1;
setsockopt (fd, SOL_SOCKET, SO_REUSEADDR, &flags, sizeof (flags));
setsockopt (fd, SOL_SOCKET, SO_KEEPALIVE, &flags, sizeof (flags));
setsockopt (fd, IPPROTO_TCP, TCP_NODELAY, &flags, sizeof (flags));
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
addr.sin_addr.s_addr = inet_addr (host);
fcntl (fd, F_SETFL, O_NONBLOCK);
if (connect (fd, (struct sockaddr *) &addr, sizeof (addr)) == -1) {
if (errno != EINPROGRESS) {
logprintf ( "Can not connect to %s:%d %m\n", host, port);
close (fd);
free (c);
return 0;
}
}
struct pollfd s;
s.fd = fd;
s.events = POLLOUT | POLLERR | POLLRDHUP | POLLHUP;
if (poll (&s, 1, 10000) <= 0 || !(s.revents & POLLOUT)) {
perror ("poll");
close (fd);
free (c);
return 0;
}
c->session = session;
c->fd = fd;
c->ip = htonl (*(int *)h->h_addr);
c->flags = 0;
c->state = conn_ready;
c->methods = methods;
assert (!Connections[fd]);
Connections[fd] = c;
if (verbosity) {
logprintf ( "connect to %s:%d successful\n", host, port);
}
if (c->methods->ready) {
c->methods->ready (c);
}
return c;
}
void fail_connection (struct connection *c) {
struct connection_buffer *b = c->out_head;
while (b) {
struct connection_buffer *d = b;
b = b->next;
delete_connection_buffer (d);
}
b = c->in_head;
while (b) {
struct connection_buffer *d = b;
b = b->next;
delete_connection_buffer (d);
}
c->out_head = c->out_tail = c->in_head = c->in_tail = 0;
c->state = conn_failed;
c->out_bytes = c->in_bytes = 0;
}
void try_write (struct connection *c) {
if (verbosity) {
logprintf ( "try write: fd = %d\n", c->fd);
}
int x = 0;
while (c->out_head) {
int r = write (c->fd, c->out_head->rptr, c->out_head->wptr - c->out_head->rptr);
if (r >= 0) {
x += r;
c->out_head->rptr += r;
if (c->out_head->rptr != c->out_head->wptr) {
break;
}
struct connection_buffer *b = c->out_head;
c->out_head = b->next;
if (!c->out_head) {
c->out_tail = 0;
}
delete_connection_buffer (b);
} else {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
fail_connection (c);
return;
} else {
break;
}
}
}
if (verbosity) {
logprintf ( "Sent %d bytes to %d\n", x, c->fd);
}
c->out_bytes -= x;
}
void hexdump_buf (struct connection_buffer *b) {
int pos = 0;
int rem = 8;
while (b) {
unsigned char *c = b->rptr;
while (c != b->wptr) {
if (rem == 8) {
if (pos) { printf ("\n"); }
printf ("%04d", pos);
}
printf (" %02x", (int)*c);
rem --;
pos ++;
if (!rem) {
rem = 8;
}
c ++;
}
b = b->next;
}
printf ("\n");
}
void try_rpc_read (struct connection *c) {
assert (c->in_head);
if (verbosity >= 4) {
hexdump_buf (c->in_head);
}
while (1) {
if (c->in_bytes < 1) { return; }
unsigned len = 0;
unsigned t = 0;
assert (read_in_lookup (c, &len, 1) == 1);
if (len >= 1 && len <= 0x7e) {
if (c->in_bytes < (int)(4 * len)) { return; }
} else {
if (c->in_bytes < 4) { return; }
assert (read_in_lookup (c, &len, 4) == 4);
len = (len >> 8);
if (c->in_bytes < (int)(4 * len)) { return; }
len = 0x7f;
}
if (len >= 1 && len <= 0x7e) {
assert (read_in (c, &t, 1) == 1);
assert (t == len);
assert (len >= 1);
} else {
assert (len == 0x7f);
assert (read_in (c, &len, 4) == 4);
len = (len >> 8);
assert (len >= 1);
}
len *= 4;
int op;
assert (read_in_lookup (c, &op, 4) == 4);
c->methods->execute (c, op, len);
}
}
void try_read (struct connection *c) {
if (verbosity) {
logprintf ( "try read: fd = %d\n", c->fd);
}
if (!c->in_tail) {
c->in_head = c->in_tail = new_connection_buffer (1 << 20);
}
int x = 0;
while (1) {
int r = read (c->fd, c->in_tail->wptr, c->in_tail->end - c->in_tail->wptr);
if (r >= 0) {
c->in_tail->wptr += r;
x += r;
if (c->in_tail->wptr != c->in_tail->end) {
break;
}
struct connection_buffer *b = new_connection_buffer (1 << 20);
c->in_tail->next = b;
c->in_tail = b;
} else {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
fail_connection (c);
return;
} else {
break;
}
}
}
if (verbosity) {
logprintf ( "Received %d bytes from %d\n", x, c->fd);
}
c->in_bytes += x;
if (x) {
try_rpc_read (c);
}
}
int connections_make_poll_array (struct pollfd *fds, int max) {
int _max = max;
int i;
for (i = 0; i <= max_connection_fd; i++) if (Connections[i] && Connections[i]->state != conn_failed) {
assert (max > 0);
struct connection *c = Connections[i];
fds[0].fd = c->fd;
fds[0].events = POLLERR | POLLHUP | POLLRDHUP | POLLIN;
if (c->out_bytes || c->state == conn_connecting) {
fds[0].events |= POLLOUT;
}
fds ++;
max --;
}
if (verbosity >= 10) {
logprintf ( "%d connections in poll\n", _max - max);
}
return _max - max;
}
void connections_poll_result (struct pollfd *fds, int max) {
if (verbosity >= 10) {
logprintf ( "connections_poll_result: max = %d\n", max);
}
int i;
for (i = 0; i < max; i++) {
struct connection *c = Connections[fds[i].fd];
if (fds[i].revents & POLLIN) {
try_read (c);
}
if (fds[i].revents & (POLLHUP | POLLERR | POLLRDHUP)) {
if (verbosity) {
logprintf ( "fail connection\n");
}
fail_connection (c);
} else if (fds[i].revents & POLLOUT) {
if (c->state == conn_connecting) {
c->state = conn_ready;
}
if (c->out_bytes) {
try_write (c);
}
}
}
}
int send_all_acks (struct session *S) {
clear_packet ();
out_int (CODE_msgs_ack);
out_int (tree_count_int (S->ack_tree));
while (S->ack_tree) {
int x = tree_get_min_int (S->ack_tree);
out_int (x);
S->ack_tree = tree_delete_int (S->ack_tree, x);
}
encrypt_send_message (S->c, packet_buffer, packet_ptr - packet_buffer, 0);
return 0;
}
void insert_seqno (struct session *S, int seqno) {
if (!S->ack_tree) {
S->ev.alarm = (void *)send_all_acks;
S->ev.self = (void *)S;
S->ev.timeout = get_double_time () + ACK_TIMEOUT;
insert_event_timer (&S->ev);
}
if (!tree_lookup_int (S->ack_tree, seqno)) {
S->ack_tree = tree_insert_int (S->ack_tree, seqno, lrand48 ());
}
}
extern struct dc *DC_list[];
struct dc *alloc_dc (int id, char *ip, int port) {
assert (!DC_list[id]);
struct dc *DC = malloc (sizeof (*DC));
memset (DC, 0, sizeof (*DC));
DC->id = id;
DC->ip = ip;
DC->port = port;
DC_list[id] = DC;
return DC;
}
void dc_create_session (struct dc *DC) {
struct session *S = malloc (sizeof (*S));
memset (S, 0, sizeof (*S));
assert (RAND_pseudo_bytes ((unsigned char *) &S->session_id, 8) >= 0);
S->dc = DC;
S->c = create_connection (DC->ip, DC->port, S, &auth_methods);
assert (!DC->sessions[0]);
DC->sessions[0] = S;
}