/*
This file is part of VK/KittenPHP-DB-Engine.
VK/KittenPHP-DB-Engine is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
VK/KittenPHP-DB-Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with VK/KittenPHP-DB-Engine. If not, see .
This program is released under the GPL with the additional exemption
that compiling, linking, and/or using OpenSSL is allowed.
You are free to remove this exemption from derived works.
Copyright 2012-2013 Vkontakte Ltd
2012-2013 Vitaliy Valtman
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "tree.h"
#include "tl-parser.h"
#include "crc32.h"
#include "tl-tl.h"
#include "tools.h"
#include "config.h"
extern int verbosity;
extern int schema_version;
extern int output_expressions;
int total_types_num;
int total_constructors_num;
int total_functions_num;
/*char *tstrdup (const char *s) {
assert (s);
char *r = talloc (strlen (s) + 1);
memcpy (r, s, strlen (s) + 1);
return r;
}*/
char curch;
struct parse parse;
struct tree *tree;
struct tree *tree_alloc (void) {
struct tree *T = talloc (sizeof (*T));
assert (T);
memset (T, 0, sizeof (*T));
return T;
}
void tree_add_child (struct tree *P, struct tree *C) {
if (P->nc == P->size) {
void **t = talloc (sizeof (void *) * (++P->size));
memcpy (t, P->c, sizeof (void *) * (P->size - 1));
if (P->c) {
tfree (P->c, sizeof (void *) * (P->size - 1));
}
P->c = (void *)t;
assert (P->c);
}
P->c[P->nc ++] = C;
}
void tree_delete (struct tree *T) {
assert (T);
int i;
for (i = 0; i < T->nc; i++) {
assert (T->c[i]);
tree_delete (T->c[i]);
}
if (T->c) {
tfree (T->c, sizeof (void *) * T->nc);
}
tfree (T, sizeof (*T));
}
void tree_del_child (struct tree *P) {
assert (P->nc);
tree_delete (P->c[--P->nc]);
}
char nextch (void) {
if (parse.pos < parse.len - 1) {
curch = parse.text[++parse.pos];
} else {
curch = 0;
}
if (curch == 10) {
parse.line ++;
parse.line_pos = 0;
} else {
if (curch) {
parse.line_pos ++;
}
}
return curch;
}
struct parse save_parse (void) {
return parse;
}
void load_parse (struct parse _parse) {
parse = _parse;
curch = parse.pos > parse.len ? 0: parse.text[parse.pos] ;
}
int is_whitespace (char c) {
return (c <= 32);
}
int is_uletter (char c) {
return (c >= 'A' && c <= 'Z');
}
int is_lletter (char c) {
return (c >= 'a' && c <= 'z');
}
int is_letter (char c) {
return is_uletter (c) || is_lletter (c);
}
int is_digit (char c) {
return (c >= '0' && c <= '9');
}
int is_hexdigit (char c) {
return is_digit (c) || (c >= 'a' && c <= 'f');
}
int is_ident_char (char c) {
return is_digit (c) || is_letter (c) || c == '_';
}
int last_error_pos;
int last_error_line;
int last_error_line_pos;
char *last_error;
void parse_error (const char *e) {
if (parse.pos > last_error_pos) {
last_error_pos = parse.pos;
last_error_line = parse.line;
last_error_line_pos = parse.line_pos;
if (last_error) {
tfree (last_error, strlen (last_error) + 1);
}
last_error = tstrdup (e);
}
}
void tl_print_parse_error (void) {
fprintf (stderr, "Error near line %d pos %d: `%s`\n", last_error_line + 1, last_error_line_pos + 1, last_error);
}
char *parse_lex (void) {
while (1) {
while (curch && is_whitespace (curch)) { nextch (); }
if (curch == '/' && nextch () == '/') {
while (nextch () != 10);
nextch ();
} else {
break;
}
}
if (!curch) {
parse.lex.len = 0;
parse.lex.type = lex_eof;
return (parse.lex.ptr = 0);
}
char *p = parse.text + parse.pos;
parse.lex.flags = 0;
switch (curch) {
case '-':
if (nextch () != '-' || nextch () != '-') {
parse_error ("Can not parse triple minus");
parse.lex.type = lex_error;
return (parse.lex.ptr = (void *)-1);
} else {
parse.lex.len = 3;
parse.lex.type = lex_triple_minus;
nextch ();
return (parse.lex.ptr = p);
}
case ':':
case ';':
case '(':
case ')':
case '[':
case ']':
case '{':
case '}':
case '=':
case '#':
case '?':
case '%':
case '<':
case '>':
case '+':
case ',':
case '*':
case '_':
case '!':
case '.':
nextch ();
parse.lex.len = 1;
parse.lex.type = lex_char;
return (parse.lex.ptr = p);
case 'a'...'z':
case 'A'...'Z':
parse.lex.flags = 0;
if (is_uletter (curch)) {
while (is_ident_char (nextch ()));
parse.lex.len = parse.text + parse.pos - p;
parse.lex.ptr = p;
if (parse.lex.len == 5 && !memcmp (parse.lex.ptr, "Final", 5)) {
parse.lex.type = lex_final;
} else if (parse.lex.len == 3 && !memcmp (parse.lex.ptr, "New", 3)) {
parse.lex.type = lex_new;
} else if (parse.lex.len == 5 && !memcmp (parse.lex.ptr, "Empty", 5)) {
parse.lex.type = lex_empty;
} else {
parse.lex.type = lex_uc_ident;
}
return (parse.lex.ptr = p);
}
while (is_ident_char (nextch ()));
if (curch == '.' && !is_letter (parse.text[parse.pos + 1])) {
parse.lex.len = parse.text + parse.pos - p;
parse.lex.type = lex_lc_ident;
return (parse.lex.ptr = p);
}
if (curch == '.') {
parse.lex.flags |= 1;
nextch ();
if (is_uletter (curch)) {
while (is_ident_char (nextch ()));
parse.lex.len = parse.text + parse.pos - p;
parse.lex.type = lex_uc_ident;
return (parse.lex.ptr = p);
}
if (is_lletter (curch)) {
while (is_ident_char (nextch ()));
} else {
parse_error ("Expected letter");
parse.lex.type = lex_error;
return (parse.lex.ptr = (void *)-1);
}
}
if (curch == '#') {
parse.lex.flags |= 2;
int i;
int ok = 1;
for (i = 0; i < 8; i++) {
if (!is_hexdigit (nextch())) {
if (curch == ' ' && i >= 5) {
ok = 2;
break;
} else {
parse_error ("Hex digit expected");
parse.lex.type = lex_error;
return (parse.lex.ptr = (void *)-1);
}
}
}
if (ok == 1) {
nextch ();
}
}
parse.lex.len = parse.text + parse.pos - p;
parse.lex.type = lex_lc_ident;
return (parse.lex.ptr = p);
case '0'...'9':
while (is_digit (nextch ()));
parse.lex.len = parse.text + parse.pos - p;
parse.lex.type = lex_num;
return (parse.lex.ptr = p);
default:
parse_error ("Unknown lexem");
parse.lex.type = lex_error;
return (parse.lex.ptr = (void *)-1);
}
}
int expect (char *s) {
if (!parse.lex.ptr || parse.lex.ptr == (void *)-1 || parse.lex.type == lex_error || parse.lex.type == lex_none || parse.lex.len != (int)strlen (s) || memcmp (s, parse.lex.ptr, parse.lex.len)) {
static char buf[1000];
sprintf (buf, "Expected %s", s);
parse_error (buf);
return -1;
} else {
parse_lex ();
}
return 1;
}
struct parse *tl_init_parse_file (const char *fname) {
int fd = open (fname, O_RDONLY);
if (fd < 0) {
fprintf (stderr, "Error %m\n");
assert (0);
return 0;
}
long long size = lseek (fd, 0, SEEK_END);
if (size <= 0) {
fprintf (stderr, "size is %lld. Too small.\n", size);
return 0;
}
static struct parse save;
save.text = talloc (size);
lseek (fd, 0, SEEK_SET);
save.len = read (fd, save.text, size);
assert (save.len == size);
save.pos = 0;
save.line = 0;
save.line_pos = 0;
save.lex.ptr = save.text;
save.lex.len = 0;
save.lex.type = lex_none;
return &save;
}
#define PARSE_INIT(_type) struct parse save = save_parse (); struct tree *T = tree_alloc (); T->type = (_type); T->lex_line = parse.line; T->lex_line_pos = parse.line_pos; struct tree *S __attribute__ ((unused));
#define PARSE_FAIL load_parse (save); tree_delete (T); return 0;
#define PARSE_OK return T;
#define PARSE_TRY_PES(x) if (!(S = x ())) { PARSE_FAIL; } { tree_add_child (T, S); }
#define PARSE_TRY_OPT(x) if ((S = x ())) { tree_add_child (T, S); PARSE_OK }
#define PARSE_TRY(x) S = x ();
#define PARSE_ADD(_type) S = tree_alloc (); S->type = _type; tree_add_child (T, S);
#define EXPECT(s) if (expect (s) < 0) { PARSE_FAIL; }
#define LEX_CHAR(c) (parse.lex.type == lex_char && *parse.lex.ptr == c)
struct tree *parse_args (void);
struct tree *parse_expr (void);
struct tree *parse_boxed_type_ident (void) {
PARSE_INIT (type_boxed_type_ident);
if (parse.lex.type != lex_uc_ident) {
parse_error ("Can not parse boxed type");
PARSE_FAIL;
} else {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
}
}
struct tree *parse_full_combinator_id (void) {
PARSE_INIT (type_full_combinator_id);
if (parse.lex.type == lex_lc_ident || LEX_CHAR('_')) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else {
parse_error ("Can not parse full combinator id");
PARSE_FAIL;
}
}
struct tree *parse_combinator_id (void) {
PARSE_INIT (type_combinator_id);
if (parse.lex.type == lex_lc_ident && !(parse.lex.flags & 2)) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else {
parse_error ("Can not parse combinator id");
PARSE_FAIL;
}
}
struct tree *parse_var_ident (void) {
PARSE_INIT (type_var_ident);
if ((parse.lex.type == lex_lc_ident || parse.lex.type == lex_uc_ident) && !(parse.lex.flags & 3)) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else {
parse_error ("Can not parse var ident");
PARSE_FAIL;
}
}
struct tree *parse_var_ident_opt (void) {
PARSE_INIT (type_var_ident_opt);
if ((parse.lex.type == lex_lc_ident || parse.lex.type == lex_uc_ident)&& !(parse.lex.flags & 3)) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else if (LEX_CHAR ('_')) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else {
parse_error ("Can not parse var ident opt");
PARSE_FAIL;
}
}
struct tree *parse_nat_const (void) {
PARSE_INIT (type_nat_const);
if (parse.lex.type == lex_num) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else {
parse_error ("Can not parse nat const");
PARSE_FAIL;
}
}
struct tree *parse_type_ident (void) {
PARSE_INIT (type_type_ident);
if (parse.lex.type == lex_uc_ident && !(parse.lex.flags & 2)) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else if (parse.lex.type == lex_lc_ident && !(parse.lex.flags & 2)) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else if (LEX_CHAR ('#')) {
T->text = parse.lex.ptr;
T->len = parse.lex.len;
T->flags = parse.lex.flags;
parse_lex ();
PARSE_OK;
} else {
parse_error ("Can not parse type ident");
PARSE_FAIL;
}
}
struct tree *parse_term (void) {
PARSE_INIT (type_term);
while (LEX_CHAR ('%')) {
EXPECT ("%")
PARSE_ADD (type_percent);
}
if (LEX_CHAR ('(')) {
EXPECT ("(");
PARSE_TRY_PES (parse_expr);
EXPECT (")");
PARSE_OK;
}
PARSE_TRY (parse_type_ident);
if (S) {
tree_add_child (T, S);
if (LEX_CHAR ('<')) {
EXPECT ("<");
while (1) {
PARSE_TRY_PES (parse_expr);
if (LEX_CHAR ('>')) { break; }
EXPECT (",");
}
EXPECT (">");
}
PARSE_OK;
}
PARSE_TRY_OPT (parse_type_ident);
PARSE_TRY_OPT (parse_var_ident);
PARSE_TRY_OPT (parse_nat_const);
PARSE_FAIL;
}
struct tree *parse_nat_term (void) {
PARSE_INIT (type_nat_term);
PARSE_TRY_PES (parse_term);
PARSE_OK;
}
struct tree *parse_subexpr (void) {
PARSE_INIT (type_subexpr);
int was_term = 0;
int cc = 0;
while (1) {
PARSE_TRY (parse_nat_const);
if (S) {
tree_add_child (T, S);
} else if (!was_term) {
was_term = 1;
PARSE_TRY (parse_term);
if (S) {
tree_add_child (T, S);
} else {
break;
}
}
cc ++;
if (!LEX_CHAR ('+')) {
break;
}
EXPECT ("+");
}
if (!cc) {
PARSE_FAIL;
} else {
PARSE_OK;
}
}
struct tree *parse_expr (void) {
PARSE_INIT (type_expr);
int cc = 0;
while (1) {
PARSE_TRY (parse_subexpr);
if (S) {
tree_add_child (T, S);
cc ++;
} else {
if (cc < 1) { PARSE_FAIL; }
else { PARSE_OK; }
}
}
}
struct tree *parse_final_empty (void) {
PARSE_INIT (type_final_empty);
EXPECT ("Empty");
PARSE_TRY_PES (parse_boxed_type_ident);
PARSE_OK;
}
struct tree *parse_final_new (void) {
PARSE_INIT (type_final_new);
EXPECT ("New");
PARSE_TRY_PES (parse_boxed_type_ident);
PARSE_OK;
}
struct tree *parse_final_final (void) {
PARSE_INIT (type_final_final);
EXPECT ("Final");
PARSE_TRY_PES (parse_boxed_type_ident);
PARSE_OK;
}
struct tree *parse_partial_comb_app_decl (void) {
PARSE_INIT (type_partial_comb_app_decl);
PARSE_TRY_PES (parse_combinator_id);
while (1) {
PARSE_TRY_PES (parse_subexpr);
if (LEX_CHAR (';')) { break; }
}
PARSE_OK;
}
struct tree *parse_partial_type_app_decl (void) {
PARSE_INIT (type_partial_type_app_decl);
PARSE_TRY_PES (parse_boxed_type_ident);
if (LEX_CHAR ('<')) {
EXPECT ("<");
while (1) {
PARSE_TRY_PES (parse_expr);
if (LEX_CHAR ('>')) { break; }
EXPECT (",");
}
EXPECT (">");
PARSE_OK;
} else {
while (1) {
PARSE_TRY_PES (parse_subexpr);
if (LEX_CHAR (';')) { break; }
}
PARSE_OK;
}
}
struct tree *parse_multiplicity (void) {
PARSE_INIT (type_multiplicity);
PARSE_TRY_PES (parse_nat_term);
PARSE_OK;
}
struct tree *parse_type_term (void) {
PARSE_INIT (type_type_term);
PARSE_TRY_PES (parse_term);
PARSE_OK;
}
struct tree *parse_optional_arg_def (void) {
PARSE_INIT (type_optional_arg_def);
PARSE_TRY_PES (parse_var_ident);
EXPECT (".");
PARSE_TRY_PES (parse_nat_const);
EXPECT ("?");
PARSE_OK;
}
struct tree *parse_args4 (void) {
PARSE_INIT (type_args4);
struct parse so = save_parse ();
PARSE_TRY (parse_optional_arg_def);
if (S) {
tree_add_child (T, S);
} else {
load_parse (so);
}
if (LEX_CHAR ('!')) {
PARSE_ADD (type_exclam);
EXPECT ("!");
}
PARSE_TRY_PES (parse_type_term);
PARSE_OK;
}
struct tree *parse_args3 (void) {
PARSE_INIT (type_args3);
PARSE_TRY_PES (parse_var_ident_opt);
EXPECT (":");
struct parse so = save_parse ();
PARSE_TRY (parse_optional_arg_def);
if (S) {
tree_add_child (T, S);
} else {
load_parse (so);
}
if (LEX_CHAR ('!')) {
PARSE_ADD (type_exclam);
EXPECT ("!");
}
PARSE_TRY_PES (parse_type_term);
PARSE_OK;
}
struct tree *parse_args2 (void) {
PARSE_INIT (type_args2);
PARSE_TRY (parse_var_ident_opt);
if (S && LEX_CHAR (':')) {
tree_add_child (T, S);
EXPECT (":");
} else {
load_parse (save);
}
struct parse so = save_parse ();
PARSE_TRY (parse_optional_arg_def);
if (S) {
tree_add_child (T, S);
} else {
load_parse (so);
}
struct parse save2 = save_parse ();
PARSE_TRY (parse_multiplicity);
if (S && LEX_CHAR ('*')) {
tree_add_child (T, S);
EXPECT ("*");
} else {
load_parse (save2);
}
EXPECT ("[");
while (1) {
if (LEX_CHAR (']')) { break; }
PARSE_TRY_PES (parse_args);
}
EXPECT ("]");
PARSE_OK;
}
struct tree *parse_args1 (void) {
PARSE_INIT (type_args1);
EXPECT ("(");
while (1) {
PARSE_TRY_PES (parse_var_ident_opt);
if (LEX_CHAR(':')) { break; }
}
EXPECT (":");
struct parse so = save_parse ();
PARSE_TRY (parse_optional_arg_def);
if (S) {
tree_add_child (T, S);
} else {
load_parse (so);
}
if (LEX_CHAR ('!')) {
PARSE_ADD (type_exclam);
EXPECT ("!");
}
PARSE_TRY_PES (parse_type_term);
EXPECT (")");
PARSE_OK;
}
struct tree *parse_args (void) {
PARSE_INIT (type_args);
PARSE_TRY_OPT (parse_args1);
PARSE_TRY_OPT (parse_args2);
PARSE_TRY_OPT (parse_args3);
PARSE_TRY_OPT (parse_args4);
PARSE_FAIL;
}
struct tree *parse_opt_args (void) {
PARSE_INIT (type_opt_args);
while (1) {
PARSE_TRY_PES (parse_var_ident);
if (parse.lex.type == lex_char && *parse.lex.ptr == ':') { break;}
}
EXPECT (":");
PARSE_TRY_PES (parse_type_term);
PARSE_OK;
}
struct tree *parse_final_decl (void) {
PARSE_INIT (type_final_decl);
PARSE_TRY_OPT (parse_final_new);
PARSE_TRY_OPT (parse_final_final);
PARSE_TRY_OPT (parse_final_empty);
PARSE_FAIL;
}
struct tree *parse_partial_app_decl (void) {
PARSE_INIT (type_partial_app_decl);
PARSE_TRY_OPT (parse_partial_type_app_decl);
PARSE_TRY_OPT (parse_partial_comb_app_decl);
PARSE_FAIL;
}
struct tree *parse_result_type (void) {
PARSE_INIT (type_result_type);
PARSE_TRY_PES (parse_boxed_type_ident);
if (LEX_CHAR ('<')) {
EXPECT ("<");
while (1) {
PARSE_TRY_PES (parse_expr);
if (LEX_CHAR ('>')) { break; }
EXPECT (",");
}
EXPECT (">");
PARSE_OK;
} else {
while (1) {
if (LEX_CHAR (';')) { PARSE_OK; }
PARSE_TRY_PES (parse_subexpr);
}
}
}
struct tree *parse_combinator_decl (void) {
PARSE_INIT (type_combinator_decl);
PARSE_TRY_PES (parse_full_combinator_id)
while (1) {
if (LEX_CHAR ('{')) {
parse_lex ();
PARSE_TRY_PES (parse_opt_args);
EXPECT ("}");
} else {
break;
}
}
while (1) {
if (LEX_CHAR ('=')) { break; }
PARSE_TRY_PES (parse_args);
}
EXPECT ("=");
PARSE_ADD (type_equals);
PARSE_TRY_PES (parse_result_type);
PARSE_OK;
}
struct tree *parse_builtin_combinator_decl (void) {
PARSE_INIT (type_builtin_combinator_decl);
PARSE_TRY_PES (parse_full_combinator_id)
EXPECT ("?");
EXPECT ("=");
PARSE_TRY_PES (parse_boxed_type_ident);
PARSE_OK;
}
struct tree *parse_declaration (void) {
PARSE_INIT (type_declaration);
PARSE_TRY_OPT (parse_combinator_decl);
PARSE_TRY_OPT (parse_partial_app_decl);
PARSE_TRY_OPT (parse_final_decl);
PARSE_TRY_OPT (parse_builtin_combinator_decl);
PARSE_FAIL;
}
struct tree *parse_constr_declarations (void) {
PARSE_INIT (type_constr_declarations);
if (parse.lex.type == lex_triple_minus || parse.lex.type == lex_eof) { PARSE_OK; }
while (1) {
PARSE_TRY_PES (parse_declaration);
EXPECT (";");
if (parse.lex.type == lex_eof || parse.lex.type == lex_triple_minus) { PARSE_OK; }
}
}
struct tree *parse_fun_declarations (void) {
PARSE_INIT (type_fun_declarations);
if (parse.lex.type == lex_triple_minus || parse.lex.type == lex_eof) { PARSE_OK; }
while (1) {
PARSE_TRY_PES (parse_declaration);
EXPECT (";");
if (parse.lex.type == lex_eof || parse.lex.type == lex_triple_minus) { PARSE_OK; }
}
}
struct tree *parse_program (void) {
PARSE_INIT (type_tl_program);
while (1) {
PARSE_TRY_PES (parse_constr_declarations);
if (parse.lex.type == lex_eof) { PARSE_OK; }
if (parse.lex.type == lex_error || expect ("---") < 0 || expect ("functions") < 0 || expect ("---") < 0) { PARSE_FAIL; }
PARSE_TRY_PES (parse_fun_declarations);
if (parse.lex.type == lex_eof) { PARSE_OK; }
if (parse.lex.type == lex_error || expect ("---") < 0 || expect ("types") < 0 || expect ("---") < 0) { PARSE_FAIL; }
}
}
struct tree *tl_parse_lex (struct parse *_parse) {
assert (_parse);
load_parse (*_parse);
if (parse.lex.type == lex_none) {
parse_lex ();
}
if (parse.lex.type == lex_error) {
return 0;
}
return parse_program ();
}
int mystrcmp2 (const char *b, int len, const char *a) {
int c = strncmp (b, a, len);
return c ? a[len] ? -1 : 0 : c;
}
char *mystrdup (const char *a, int len) {
char *z = talloc (len + 1);
memcpy (z, a, len);
z[len] = 0;
return z;
}
struct tl_program *tl_program_cur;
#define TL_TRY_PES(x) if (!(x)) { return 0; }
#define tl_type_cmp(a,b) (strcmp (a->id, b->id))
DEFINE_TREE (tl_type,struct tl_type *,tl_type_cmp,0)
struct tree_tl_type *tl_type_tree;
DEFINE_TREE (tl_constructor,struct tl_constructor *,tl_type_cmp,0)
struct tree_tl_constructor *tl_constructor_tree;
struct tree_tl_constructor *tl_function_tree;
DEFINE_TREE (tl_var,struct tl_var *,tl_type_cmp,0)
struct tl_var_value {
struct tl_combinator_tree *ptr;
struct tl_combinator_tree *val;
int num_val;
};
#define tl_var_value_cmp(a,b) (((char *)a.ptr) - ((char *)b.ptr))
struct tl_var_value empty;
DEFINE_TREE (var_value, struct tl_var_value, tl_var_value_cmp, empty)
//tree_tl_var_t *tl_var_tree;
DEFINE_TREE (tl_field,char *,strcmp, 0)
//tree_tl_field_t *tl_field_tree;
#define TL_FAIL return 0;
#define TL_INIT(x) struct tl_combinator_tree *x = 0;
#define TL_TRY(f,x) { struct tl_combinator_tree *_t = f; if (!_t) { TL_FAIL;} x = tl_union (x, _t); if (!x) { TL_FAIL; }}
#define TL_ERROR(...) fprintf (stderr, __VA_ARGS__);
#define TL_WARNING(...) fprintf (stderr, __VA_ARGS__);
void tl_set_var_value (struct tree_var_value **T, struct tl_combinator_tree *var, struct tl_combinator_tree *value) {
struct tl_var_value t = {.ptr = var, .val = value, .num_val = 0};
if (tree_lookup_var_value (*T, t).ptr) {
*T = tree_delete_var_value (*T, t);
}
*T = tree_insert_var_value (*T, t, lrand48 ());
}
void tl_set_var_value_num (struct tree_var_value **T, struct tl_combinator_tree *var, struct tl_combinator_tree *value, long long num_value) {
struct tl_var_value t = {.ptr = var, .val = value, .num_val = num_value};
if (tree_lookup_var_value (*T, t).ptr) {
*T = tree_delete_var_value (*T, t);
}
*T = tree_insert_var_value (*T, t, lrand48 ());
}
struct tl_combinator_tree *tl_get_var_value (struct tree_var_value **T, struct tl_combinator_tree *var) {
struct tl_var_value t = {.ptr = var, .val = 0, .num_val = 0};
struct tl_var_value r = tree_lookup_var_value (*T, t);
return r.ptr ? r.val : 0;
}
int tl_get_var_value_num (struct tree_var_value **T, struct tl_combinator_tree *var) {
struct tl_var_value t = {.ptr = var, .val = 0};
struct tl_var_value r = tree_lookup_var_value (*T, t);
return r.ptr ? r.num_val : 0;
}
int namespace_level;
struct tree_tl_var *vars[10];
struct tree_tl_field *fields[10];
struct tl_var *last_num_var[10];
int tl_is_type_name (const char *id, int len) {
if (len == 1 && *id == '#') { return 1;}
int ok = id[0] >= 'A' && id[0] <= 'Z';
int i;
for (i = 0; i < len - 1; i++) if (id[i] == '.') {
ok = id[i + 1] >= 'A' && id[i + 1] <= 'Z';
}
return ok;
}
int tl_add_field (char *id) {
assert (namespace_level < 10);
assert (namespace_level >= 0);
if (tree_lookup_tl_field (fields[namespace_level], id)) {
return 0;
}
fields[namespace_level] = tree_insert_tl_field (fields[namespace_level], id, lrand48 ());
return 1;
}
void tl_clear_fields (void) {
// tree_act_tl_field (fields[namespace_level], (void *)free);
fields[namespace_level] = tree_clear_tl_field (fields[namespace_level]);
}
struct tl_var *tl_add_var (char *id, struct tl_combinator_tree *ptr, int type) {
struct tl_var *v = talloc (sizeof (*v));
v->id = tstrdup (id);
v->type = type;
v->ptr = ptr;
v->flags = 0;
if (tree_lookup_tl_var (vars[namespace_level], v)) {
return 0;
}
vars[namespace_level] = tree_insert_tl_var (vars[namespace_level], v, lrand48 ());
if (type) {
last_num_var[namespace_level] = v;
}
return v;
}
void tl_del_var (struct tl_var *v) {
// free (v->id);
tfree (v, sizeof (*v));
}
void tl_clear_vars (void) {
tree_act_tl_var (vars[namespace_level], tl_del_var);
vars[namespace_level] = tree_clear_tl_var (vars[namespace_level]);
last_num_var[namespace_level] = 0;
}
struct tl_var *tl_get_last_num_var (void) {
return last_num_var[namespace_level];
}
struct tl_var *tl_get_var (char *_id, int len) {
char *id = mystrdup (_id, len);
struct tl_var v = {.id = id};
int i;
for (i = namespace_level; i >= 0; i--) {
struct tl_var *w = tree_lookup_tl_var (vars[i], &v);
if (w) {
tfree (id, len + 1);
return w;
}
}
tfree (id, len + 1);
return 0;
}
void namespace_push (void) {
namespace_level ++;
assert (namespace_level < 10);
tl_clear_vars ();
tl_clear_fields ();
}
void namespace_pop (void) {
namespace_level --;
assert (namespace_level >= 0);
}
struct tl_type *tl_get_type (const char *_id, int len) {
char *id = mystrdup (_id, len);
struct tl_type _t = {.id = id};
struct tl_type *r = tree_lookup_tl_type (tl_type_tree, &_t);
tfree (id, len + 1);
return r;
}
struct tl_type *tl_add_type (const char *_id, int len, int params_num, long long params_types) {
char *id = talloc (len + 1);
memcpy (id, _id, len);
id[len] = 0;
struct tl_type _t = {.id = id};
struct tl_type *_r = 0;
if ((_r = tree_lookup_tl_type (tl_type_tree, &_t))) {
tfree (id, len + 1);
if (params_num >= 0 && (_r->params_num != params_num || _r->params_types != params_types)) {
TL_ERROR ("Wrong params_num or types for type %s\n", _r->id);
return 0;
}
return _r;
}
struct tl_type *t = talloc (sizeof (*t));
t->id = id;
t->print_id = tstrdup (t->id);
int i;
for (i = 0; i < len; i++) if (t->print_id[i] == '.' || t->print_id[i] == '#' || t->print_id[i] == ' ') {
t->print_id[i] = '$';
}
t->name = 0;
t->constructors_num = 0;
t->constructors = 0;
t->flags = 0;
t->real_id = 0;
if (params_num >= 0) {
assert (params_num <= 64);
t->params_num = params_num;
t->params_types = params_types;
} else {
t->flags |= 4;
t->params_num = -1;
}
tl_type_tree = tree_insert_tl_type (tl_type_tree, t, lrand48 ());
total_types_num ++;
return t;
}
void tl_add_type_param (struct tl_type *t, int x) {
assert (t->flags & 4);
assert (t->params_num <= 64);
if (x) {
t->params_types |= (1ull << (t->params_num ++));
} else {
t->params_num ++;
}
}
int tl_type_set_params (struct tl_type *t, int x, long long y) {
if (t->flags & 4) {
t->params_num = x;
t->params_types = y;
t->flags &= ~4;
} else {
if (t->params_num != x || t->params_types != y) {
fprintf (stderr, "Wrong num of params (type %s)\n", t->id);
return 0;
}
}
return 1;
}
void tl_type_finalize (struct tl_type *t) {
t->flags &= ~4;
}
struct tl_constructor *tl_get_constructor (const char *_id, int len) {
char *id = mystrdup (_id, len);
struct tl_constructor _t = {.id = id};
struct tl_constructor *r = tree_lookup_tl_constructor (tl_constructor_tree, &_t);
tfree (id, len + 1);
return r;
}
struct tl_constructor *tl_add_constructor (struct tl_type *a, const char *_id, int len, int force_magic) {
assert (a);
if (a->flags & 1) {
TL_ERROR ("New constructor for type `%s` after final statement\n", a->id);
return 0;
}
int x = 0;
while (x < len && (_id[x] != '#' || force_magic)) { x++; }
char *id = talloc (x + 1);
memcpy (id, _id, x);
id[x] = 0;
unsigned magic = 0;
if (x < len) {
assert (len - x >= 6 && len - x <= 9);
int i;
for (i = 1; i < len - x; i++) {
magic = (magic << 4) + (_id[x + i] <= '9' ? _id[x + i] - '0' : _id[x + i] - 'a' + 10);
}
assert (magic && magic != (unsigned)-1);
}
len = x;
if (*id != '_') {
struct tl_constructor _t = {.id = id};
if (tree_lookup_tl_constructor (tl_constructor_tree, &_t)) {
TL_ERROR ("Duplicate constructor id `%s`\n", id);
tfree (id, len + 1);
return 0;
}
} else {
assert (len == 1);
}
struct tl_constructor *t = talloc (sizeof (*t));
t->type = a;
t->name = magic;
t->id = id;
t->print_id = tstrdup (id);
t->real_id = 0;
int i;
for (i = 0; i < len; i++) if (t->print_id[i] == '.' || t->print_id[i] == '#' || t->print_id[i] == ' ') {
t->print_id[i] = '$';
}
t->left = t->right = 0;
a->constructors = realloc (a->constructors, sizeof (void *) * (a->constructors_num + 1));
assert (a->constructors);
a->constructors[a->constructors_num ++] = t;
if (*id != '_') {
tl_constructor_tree = tree_insert_tl_constructor (tl_constructor_tree, t, lrand48 ());
}
total_constructors_num ++;
a->flags |= FLAG_DEFAULT_CONSTRUCTOR;
return t;
}
struct tl_constructor *tl_get_function (const char *_id, int len) {
char *id = mystrdup (_id, len);
struct tl_constructor _t = {.id = id};
struct tl_constructor *r = tree_lookup_tl_constructor (tl_function_tree, &_t);
tfree (id, len + 1);
return r;
}
struct tl_constructor *tl_add_function (struct tl_type *a, const char *_id, int len, int force_magic) {
// assert (a);
int x = 0;
while (x < len && ((_id[x] != '#') || force_magic)) { x++; }
char *id = talloc (x + 1);
memcpy (id, _id, x);
id[x] = 0;
unsigned magic = 0;
if (x < len) {
assert (len - x >= 6 && len - x <= 9);
int i;
for (i = 1; i < len - x; i++) {
magic = (magic << 4) + (_id[x + i] <= '9' ? _id[x + i] - '0' : _id[x + i] - 'a' + 10);
}
assert (magic && magic != (unsigned)-1);
}
len = x;
struct tl_constructor _t = {.id = id};
if (tree_lookup_tl_constructor (tl_function_tree, &_t)) {
TL_ERROR ("Duplicate function id `%s`\n", id);
tfree (id, len + 1);
return 0;
}
struct tl_constructor *t = talloc (sizeof (*t));
t->type = a;
t->name = magic;
t->id = id;
t->print_id = tstrdup (id);
t->real_id = 0;
int i;
for (i = 0; i < len; i++) if (t->print_id[i] == '.' || t->print_id[i] == '#' || t->print_id[i] == ' ') {
t->print_id[i] = '$';
}
t->left = t->right = 0;
tl_function_tree = tree_insert_tl_constructor (tl_function_tree, t, lrand48 ());
total_functions_num ++;
return t;
}
static char buf[(1 << 20)];
int buf_pos;
struct tl_combinator_tree *alloc_ctree_node (void) {
struct tl_combinator_tree *T = talloc (sizeof (*T));
assert (T);
memset (T, 0, sizeof (*T));
return T;
}
struct tl_combinator_tree *tl_tree_dup (struct tl_combinator_tree *T) {
if (!T) { return 0; }
struct tl_combinator_tree *S = talloc (sizeof (*S));
memcpy (S, T, sizeof (*S));
S->left = tl_tree_dup (T->left);
S->right = tl_tree_dup (T->right);
return S;
}
struct tl_type *tl_tree_get_type (struct tl_combinator_tree *T) {
assert (T->type == type_type);
if (T->act == act_array) { return 0;}
while (T->left) {
T = T->left;
if (T->act == act_array) { return 0;}
assert (T->type == type_type);
}
assert (T->act == act_type || T->act == act_var || T->act == act_array);
return T->act == act_type ? T->data : 0;
}
void tl_tree_set_len (struct tl_combinator_tree *T) {
TL_INIT (H);
H = T;
while (H->left) {
H->left->type_len = H->type_len + 1;
H = H->left;
}
assert (H->type == type_type);
struct tl_type *t = H->data;
assert (t);
assert (H->type_len == t->params_num);
}
void tl_buf_reset (void) {
buf_pos = 0;
}
void tl_buf_add_string (char *s, int len) {
if (len < 0) { len = strlen (s); }
buf[buf_pos ++] = ' ';
memcpy (buf + buf_pos, s, len); buf_pos += len;
buf[buf_pos] = 0;
}
void tl_buf_add_string_nospace (char *s, int len) {
if (len < 0) { len = strlen (s); }
// if (buf_pos) { buf[buf_pos ++] = ' '; }
memcpy (buf + buf_pos, s, len); buf_pos += len;
buf[buf_pos] = 0;
}
void tl_buf_add_string_q (char *s, int len, int x) {
if (x) {
tl_buf_add_string (s, len);
} else {
tl_buf_add_string_nospace (s, len);
}
}
void tl_buf_add_tree (struct tl_combinator_tree *T, int x) {
if (!T) { return; }
assert (T != (void *)-1l && T != (void *)-2l);
switch (T->act) {
case act_question_mark:
tl_buf_add_string_q ("?", -1, x);
return;
case act_type:
if ((T->flags & 1) && !(T->flags & 4)) {
tl_buf_add_string_q ("%", -1, x);
x = 0;
}
if (T->flags & 2) {
tl_buf_add_string_q ((char *)T->data, -1, x);
} else {
struct tl_type *t = T->data;
if (T->flags & 4) {
assert (t->constructors_num == 1);
tl_buf_add_string_q (t->constructors[0]->real_id ? t->constructors[0]->real_id : t->constructors[0]->id, -1, x);
} else {
tl_buf_add_string_q (t->real_id ? t->real_id : t->id, -1, x);
}
}
return;
case act_field:
if (T->data) {
tl_buf_add_string_q ((char *)T->data, -1, x);
x = 0;
tl_buf_add_string_q (":", -1, 0);
}
tl_buf_add_tree (T->left, x);
tl_buf_add_tree (T->right, 1);
return;
case act_union:
tl_buf_add_tree (T->left, x);
tl_buf_add_tree (T->right, 1);
return;
case act_var:
{
if (T->data == (void *)-1l) { return; }
struct tl_combinator_tree *v = T->data;
tl_buf_add_string_q ((char *)v->data, -1, x);
if (T->type == type_num && T->type_flags) {
static char _buf[30];
sprintf (_buf, "+%lld", T->type_flags);
tl_buf_add_string_q (_buf, -1, 0);
}
}
return;
case act_arg:
tl_buf_add_tree (T->left, x);
tl_buf_add_tree (T->right, 1);
return;
case act_array:
if (T->left && !(T->left->flags & 128)) {
tl_buf_add_tree (T->left, x);
x = 0;
tl_buf_add_string_q ("*", -1, x);
}
tl_buf_add_string_q ("[", -1, x);
tl_buf_add_tree (T->right, 1);
tl_buf_add_string_q ("]", -1, 1);
return;
case act_plus:
tl_buf_add_tree (T->left, x);
tl_buf_add_string_q ("+", -1, 0);
tl_buf_add_tree (T->right, 0);
return;
case act_nat_const:
{
static char _buf[30];
snprintf (_buf, 29, "%lld", T->type_flags);
tl_buf_add_string_q (_buf, -1, x);
return;
}
case act_opt_field:
{
struct tl_combinator_tree *v = T->left->data;
tl_buf_add_string_q ((char *)v->data, -1, x);
tl_buf_add_string_q (".", -1, 0);
static char _buf[30];
sprintf (_buf, "%lld", T->left->type_flags);
tl_buf_add_string_q (_buf, -1, 0);
tl_buf_add_string_q ("?", -1, 0);
tl_buf_add_tree (T->right, 0);
return;
}
default:
fprintf (stderr, "%s %s\n", TL_ACT (T->act), TL_TYPE (T->type));
assert (0);
return;
}
}
int tl_count_combinator_name (struct tl_constructor *c) {
assert (c);
tl_buf_reset ();
tl_buf_add_string_nospace (c->real_id ? c->real_id : c->id, -1);
tl_buf_add_tree (c->left, 1);
tl_buf_add_string ("=", -1);
tl_buf_add_tree (c->right, 1);
//fprintf (stderr, "%.*s\n", buf_pos, buf);
if (!c->name) {
c->name = compute_crc32 (buf, buf_pos);
}
return c->name;
}
int tl_print_combinator (struct tl_constructor *c) {
tl_buf_reset ();
tl_buf_add_string_nospace (c->real_id ? c->real_id : c->id, -1);
static char _buf[10];
sprintf (_buf, "#%08x", c->name);
tl_buf_add_string_nospace (_buf, -1);
tl_buf_add_tree (c->left, 1);
tl_buf_add_string ("=", -1);
tl_buf_add_tree (c->right, 1);
if (output_expressions >= 1) {
fprintf (stderr, "%.*s\n", buf_pos, buf);
}
/* if (!c->name) {
c->name = compute_crc32 (buf, buf_pos);
}*/
return c->name;
}
int _tl_finish_subtree (struct tl_combinator_tree *R, int x, long long y) {
assert (R->type == type_type);
assert (R->type_len < 0);
assert (R->act == act_arg || R->act == act_type);
R->type_len = x;
R->type_flags = y;
if (R->act == act_type) {
struct tl_type *t = R->data;
assert (t);
return tl_type_set_params (t, x, y);
}
assert ((R->right->type == type_type && R->right->type_len == 0) || R->right->type == type_num || R->right->type == type_num_value);
return _tl_finish_subtree (R->left, x + 1, y * 2 + (R->right->type == type_num || R->right->type == type_num_value));
}
int tl_finish_subtree (struct tl_combinator_tree *R) {
assert (R);
if (R->type != type_type) {
return 1;
}
if (R->type_len >= 0) {
if (R->type_len > 0) {
TL_ERROR ("Not enough params\n");
return 0;
}
return 1;
}
return _tl_finish_subtree (R, 0, 0);
}
struct tl_combinator_tree *tl_union (struct tl_combinator_tree *L, struct tl_combinator_tree *R) {
if (!L) { return R; }
if (!R) { return L; }
TL_INIT (v);
v = alloc_ctree_node ();
v->left = L;
v->right = R;
switch (L->type) {
case type_num:
if (R->type != type_num_value) {
TL_ERROR ("Union: type mistmatch\n");
return 0;
}
tfree (v, sizeof (*v));
L->type_flags += R->type_flags;
return L;
case type_num_value:
if (R->type != type_num_value && R->type != type_num) {
TL_ERROR ("Union: type mistmatch\n");
return 0;
}
tfree (v, sizeof (*v));
R->type_flags += L->type_flags;
return R;
case type_list_item:
case type_list:
if (R->type != type_list_item) {
TL_ERROR ("Union: type mistmatch\n");
return 0;
}
v->type = type_list;
v->act = act_union;
return v;
case type_type:
if (L->type_len == 0) {
TL_ERROR ("Arguments number exceeds type arity\n");
return 0;
}
if (R->type != type_num && R->type != type_type && R->type != type_num_value) {
TL_ERROR ("Union: type mistmatch\n");
return 0;
}
if (R->type_len < 0) {
if (!tl_finish_subtree (R)) {
return 0;
}
}
if (R->type_len > 0) {
TL_ERROR ("Argument type must have full number of arguments\n");
return 0;
}
if (L->type_len > 0 && ((L->type_flags & 1) != (R->type == type_num || R->type == type_num_value))) {
TL_ERROR ("Argument types mistmatch: L->type_flags = %lld, R->type = %s\n", L->flags, TL_TYPE (R->type));
return 0;
}
v->type = type_type;
v->act = act_arg;
v->type_len = L->type_len > 0 ? L->type_len - 1 : -1;
v->type_flags = L->type_flags >> 1;
return v;
default:
assert (0);
return 0;
}
}
struct tl_combinator_tree *tl_parse_any_term (struct tree *T, int s);
struct tl_combinator_tree *tl_parse_term (struct tree *T, int s) {
assert (T->type == type_term);
int i = 0;
while (i < T->nc && T->c[i]->type == type_percent) { i ++; s ++; }
assert (i < T->nc);
TL_INIT (L);
while (i < T->nc) {
TL_TRY (tl_parse_any_term (T->c[i], s), L);
s = 0;
i ++;
}
return L;
}
struct tl_combinator_tree *tl_parse_type_term (struct tree *T, int s) {
assert (T->type == type_type_term);
assert (T->nc == 1);
struct tl_combinator_tree *Z = tl_parse_term (T->c[0], s);
if (!Z || Z->type != type_type) { if (Z) { TL_ERROR ("type_term: found type %s\n", TL_TYPE (Z->type)); } TL_FAIL; }
return Z;
}
struct tl_combinator_tree *tl_parse_nat_term (struct tree *T, int s) {
assert (T->type == type_nat_term);
assert (T->nc == 1);
struct tl_combinator_tree *Z = tl_parse_term (T->c[0], s);
if (!Z || (Z->type != type_num && Z->type != type_num_value)) { if (Z) { TL_ERROR ("nat_term: found type %s\n", TL_TYPE (Z->type)); }TL_FAIL; }
return Z;
}
struct tl_combinator_tree *tl_parse_subexpr (struct tree *T, int s) {
assert (T->type == type_subexpr);
assert (T->nc >= 1);
int i;
TL_INIT (L);
for (i = 0; i < T->nc; i++) {
TL_TRY (tl_parse_any_term (T->c[i], s), L);
s = 0;
}
return L;
}
struct tl_combinator_tree *tl_parse_expr (struct tree *T, int s) {
assert (T->type == type_expr);
assert (T->nc >= 1);
int i;
TL_INIT (L);
for (i = 0; i < T->nc; i++) {
TL_TRY (tl_parse_subexpr (T->c[i], s), L);
s = 0;
}
return L;
}
struct tl_combinator_tree *tl_parse_nat_const (struct tree *T, int s) {
assert (T->type == type_nat_const);
assert (!T->nc);
if (s > 0) {
TL_ERROR ("Nat const can not preceed with %%\n");
TL_FAIL;
}
assert (T->type == type_nat_const);
assert (!T->nc);
TL_INIT (L);
L = alloc_ctree_node ();
L->act = act_nat_const;
L->type = type_num_value;
int i;
long long x = 0;
for (i = 0; i < T->len; i++) {
x = x * 10 + T->text[i] - '0';
}
L->type_flags = x;
return L;
}
struct tl_combinator_tree *tl_parse_ident (struct tree *T, int s) {
assert (T->type == type_type_ident || T->type == type_var_ident || T->type == type_boxed_type_ident);
assert (!T->nc);
struct tl_var *v = tl_get_var (T->text, T->len);
TL_INIT (L);
if (v) {
L = alloc_ctree_node ();
L->act = act_var;
L->type = v->type ? type_num : type_type;
if (L->type == type_num && s) {
TL_ERROR ("Nat var can not preceed with %%\n");
TL_FAIL;
} else {
if (s) {
L->flags |= 1;
}
}
L->type_len = 0;
L->type_flags = 0;
L->data = v->ptr;
return L;
}
/* if (!mystrcmp2 (T->text, T->len, "#") || !mystrcmp2 (T->text, T->len, "Type")) {
L = alloc_ctree_node ();
L->act = act_type;
L->flags |= 2;
L->data = tl_get_type (T->text, T->len);
assert (L->data);
L->type = type_type;
L->type_len = 0;
L->type_flags = 0;
return L;
}*/
struct tl_constructor *c = tl_get_constructor (T->text, T->len);
if (c) {
assert (c->type);
if (c->type->constructors_num != 1) {
TL_ERROR ("Constructor can be used only if it is the only constructor of the type\n");
return 0;
}
c->type->flags |= 1;
L = alloc_ctree_node ();
L->act = act_type;
L->flags |= 5;
L->data = c->type;
L->type = type_type;
L->type_len = c->type->params_num;
L->type_flags = c->type->params_types;
return L;
}
int x = tl_is_type_name (T->text, T->len);
if (x) {
struct tl_type *t = tl_add_type (T->text, T->len, -1, 0);
L = alloc_ctree_node ();
if (s) {
L->flags |= 1;
t->flags |= 8;
}
L->act = act_type;
L->data = t;
L->type = type_type;
L->type_len = t->params_num;
L->type_flags = t->params_types;
return L;
} else {
TL_ERROR ("Not a type/var ident `%.*s`\n", T->len, T->text);
return 0;
}
}
struct tl_combinator_tree *tl_parse_any_term (struct tree *T, int s) {
switch (T->type) {
case type_type_term:
return tl_parse_type_term (T, s);
case type_nat_term:
return tl_parse_nat_term (T, s);
case type_term:
return tl_parse_term (T, s);
case type_expr:
return tl_parse_expr (T, s);
case type_subexpr:
return tl_parse_subexpr (T, s);
case type_nat_const:
return tl_parse_nat_const (T, s);
case type_type_ident:
case type_var_ident:
return tl_parse_ident (T, s);
default:
fprintf (stderr, "type = %d\n", T->type);
assert (0);
return 0;
}
}
struct tl_combinator_tree *tl_parse_multiplicity (struct tree *T) {
assert (T->type == type_multiplicity);
assert (T->nc == 1);
return tl_parse_nat_term (T->c[0], 0);
}
struct tl_combinator_tree *tl_parse_opt_args (struct tree *T) {
assert (T);
assert (T->type == type_opt_args);
assert (T->nc >= 2);
TL_INIT (R);
TL_TRY (tl_parse_type_term (T->c[T->nc - 1], 0), R);
assert (R->type == type_type && !R->type_len);
assert (tl_finish_subtree (R));
struct tl_type *t = tl_tree_get_type (R);
//assert (t);
int tt = -1;
if (t && !strcmp (t->id, "#")) {
tt = 1;
} else if (t && !strcmp (t->id, "Type")) {
tt = 0;
}
if (tt < 0) {
TL_ERROR ("Optargs can be only of type # or Type\n");
TL_FAIL;
}
int i;
for (i = 0; i < T->nc - 1; i++) {
if (T->c[i]->type != type_var_ident) {
TL_ERROR ("Variable name expected\n");
TL_FAIL;
}
if (T->c[i]->len == 1 && *T->c[i]->text == '_') {
TL_ERROR ("Variables can not be unnamed\n");
TL_FAIL;
}
}
TL_INIT (H);
// for (i = T->nc - 2; i >= (T->nc >= 2 ? 0 : -1); i--) {
for (i = 0; i <= T->nc - 2; i++) {
TL_INIT (S); S = alloc_ctree_node ();
S->left = (i == T->nc - 2) ? R : tl_tree_dup (R) ; S->right = 0;
S->type = type_list_item;
S->type_len = 0;
S->act = act_field;
S->data = i >= 0 ? mystrdup (T->c[i]->text, T->c[i]->len) : 0;
if (tt >= 0) {
assert (S->data);
tl_add_var (S->data, S, tt);
}
S->flags = 33;
H = tl_union (H, S);
}
return H;
}
struct tl_combinator_tree *tl_parse_args (struct tree *T);
struct tl_combinator_tree *tl_parse_args2 (struct tree *T) {
assert (T);
assert (T->type == type_args2);
assert (T->nc >= 1);
TL_INIT (R);
TL_INIT (L);
int x = 0;
char *field_name = 0;
if (T->c[x]->type == type_var_ident_opt || T->c[x]->type == type_var_ident) {
field_name = mystrdup (T->c[x]->text, T->c[x]->len);
if (!tl_add_field (field_name)) {
TL_ERROR ("Duplicate field name %s\n", field_name);
TL_FAIL;
}
x ++;
}
//fprintf (stderr, "%d %d\n", x, T->nc);
if (T->c[x]->type == type_multiplicity) {
L = tl_parse_multiplicity (T->c[x]);
if (!L) { TL_FAIL;}
x ++;
} else {
struct tl_var *v = tl_get_last_num_var ();
if (!v) {
TL_ERROR ("Expected multiplicity or nat var\n");
TL_FAIL;
}
L = alloc_ctree_node ();
L->act = act_var;
L->type = type_num;
L->flags |= 128;
L->type_len = 0;
L->type_flags = 0;
L->data = v->ptr;
((struct tl_combinator_tree *)(v->ptr))->flags |= 256;
}
namespace_push ();
while (x < T->nc) {
TL_TRY (tl_parse_args (T->c[x]), R);
x ++;
}
namespace_pop ();
struct tl_combinator_tree *S = alloc_ctree_node ();
S->type = type_type;
S->type_len = 0;
S->act = act_array;
S->left = L;
S->right = R;
//S->data = field_name;
struct tl_combinator_tree *H = alloc_ctree_node ();
H->type = type_list_item;
H->act = act_field;
H->left = S;
H->right = 0;
H->data = field_name;
H->type_len = 0;
return H;
}
void tl_mark_vars (struct tl_combinator_tree *T);
struct tl_combinator_tree *tl_parse_args134 (struct tree *T) {
assert (T);
assert (T->type == type_args1 || T->type == type_args3 || T->type == type_args4);
assert (T->nc >= 1);
TL_INIT (R);
TL_TRY (tl_parse_type_term (T->c[T->nc - 1], 0), R);
assert (tl_finish_subtree (R));
assert (R->type == type_type && !R->type_len);
struct tl_type *t = tl_tree_get_type (R);
//assert (t);
int tt = -1;
if (t && !strcmp (t->id, "#")) {
tt = 1;
} else if (t && !strcmp (t->id, "Type")) {
tt = 0;
}
/* if (tt >= 0 && T->nc == 1) {
TL_ERROR ("Variables can not be unnamed (type %d)\n", tt);
}*/
int last = T->nc - 2;
int excl = 0;
if (last >= 0 && T->c[last]->type == type_exclam) {
excl ++;
tl_mark_vars (R);
last --;
}
if (last >= 0 && T->c[last]->type == type_optional_arg_def) {
assert (T->c[last]->nc == 2);
TL_INIT (E); E = alloc_ctree_node ();
E->type = type_type;
E->act = act_opt_field;
E->left = tl_parse_ident (T->c[last]->c[0], 0);
int i;
long long x = 0;
for (i = 0; i < T->c[last]->c[1]->len; i++) {
x = x * 10 + T->c[last]->c[1]->text[i] - '0';
}
E->left->type_flags = x;
E->type_flags = R->type_flags;
E->type_len = R->type_len;
E->right = R;
R = E;
last --;
}
int i;
for (i = 0; i < last; i++) {
if (T->c[i]->type != type_var_ident && T->c[i]->type != type_var_ident_opt) {
TL_ERROR ("Variable name expected\n");
TL_FAIL;
}
/* if (tt >= 0 && (T->nc == 1 || (T->c[i]->len == 1 && *T->c[i]->text == '_'))) {
TL_ERROR ("Variables can not be unnamed\n");
TL_FAIL;
}*/
}
TL_INIT (H);
// for (i = T->nc - 2; i >= (T->nc >= 2 ? 0 : -1); i--) {
for (i = (last >= 0 ? 0 : -1); i <= last; i++) {
TL_INIT (S); S = alloc_ctree_node ();
S->left = (i == last) ? R : tl_tree_dup (R) ; S->right = 0;
S->type = type_list_item;
S->type_len = 0;
S->act = act_field;
S->data = i >= 0 ? mystrdup (T->c[i]->text, T->c[i]->len) : 0;
if (excl) {
S->flags |= FLAG_EXCL;
}
if (S->data && (T->c[i]->len >= 2 || *T->c[i]->text != '_')) {
if (!tl_add_field (S->data)) {
TL_ERROR ("Duplicate field name %s\n", (char *)S->data);
TL_FAIL;
}
}
if (tt >= 0) {
//assert (S->data);
char *name = S->data;
if (!name) {
static char s[20];
sprintf (s, "%lld", lrand48 () * (1ll << 32) + lrand48 ());
name = s;
}
struct tl_var *v = tl_add_var (name, S, tt);
if (!v) {TL_FAIL;}
v->flags |= 2;
}
H = tl_union (H, S);
}
return H;
}
struct tl_combinator_tree *tl_parse_args (struct tree *T) {
assert (T->type == type_args);
assert (T->nc == 1);
switch (T->c[0]->type) {
case type_args1:
return tl_parse_args134 (T->c[0]);
case type_args2:
return tl_parse_args2 (T->c[0]);
case type_args3:
return tl_parse_args134 (T->c[0]);
case type_args4:
return tl_parse_args134 (T->c[0]);
default:
assert (0);
return 0;
}
}
void tl_mark_vars (struct tl_combinator_tree *T) {
if (!T) { return; }
if (T->act == act_var) {
char *id = ((struct tl_combinator_tree *)(T->data))->data;
struct tl_var *v = tl_get_var (id, strlen (id));
assert (v);
v->flags |= 1;
}
tl_mark_vars (T->left);
tl_mark_vars (T->right);
}
struct tl_combinator_tree *tl_parse_result_type (struct tree *T) {
assert (T->type == type_result_type);
assert (T->nc >= 1);
assert (T->nc <= 64);
TL_INIT (L);
if (tl_get_var (T->c[0]->text, T->c[0]->len)) {
if (T->nc != 1) {
TL_ERROR ("Variable can not take params\n");
TL_FAIL;
}
L = alloc_ctree_node ();
L->act = act_var;
L->type = type_type;
struct tl_var *v = tl_get_var (T->c[0]->text, T->c[0]->len);
if (v->type) {
TL_ERROR ("Type mistmatch\n");
TL_FAIL;
}
L->data = v->ptr;
// assert (v->ptr);
} else {
L = alloc_ctree_node ();
L->act = act_type;
L->type = type_type;
struct tl_type *t = tl_add_type (T->c[0]->text, T->c[0]->len, -1, 0);
assert (t);
L->type_len = t->params_num;
L->type_flags = t->params_types;
L->data = t;
int i;
for (i = 1; i < T->nc; i++) {
TL_TRY (tl_parse_any_term (T->c[i], 0), L);
assert (L->right);
assert (L->right->type == type_num || L->right->type == type_num_value || (L->right->type == type_type && L->right->type_len == 0));
}
}
if (!tl_finish_subtree (L)) {
TL_FAIL;
}
tl_mark_vars (L);
return L;
}
int __ok;
void tl_var_check_used (struct tl_var *v) {
__ok = __ok && (v->flags & 3);
}
int tl_parse_combinator_decl (struct tree *T, int fun) {
assert (T->type == type_combinator_decl);
assert (T->nc >= 3);
namespace_level = 0;
tl_clear_vars ();
tl_clear_fields ();
TL_INIT (L);
TL_INIT (R);
int i = 1;
while (i < T->nc - 2 && T->c[i]->type == type_opt_args) {
TL_TRY (tl_parse_opt_args (T->c[i]), L);
i++;
}
while (i < T->nc - 2 && T->c[i]->type == type_args) {
TL_TRY (tl_parse_args (T->c[i]), L);
i++;
}
assert (i == T->nc - 2 && T->c[i]->type == type_equals);
i ++;
R = tl_parse_result_type (T->c[i]);
if (!R) { TL_FAIL; }
struct tl_type *t = tl_tree_get_type (R);
if (!fun && !t) {
TL_ERROR ("Only functions can return variables\n");
}
assert (t || fun);
assert (namespace_level == 0);
__ok = 1;
tree_act_tl_var (vars[0], tl_var_check_used);
if (!__ok) {
TL_ERROR ("Not all variables are used in right side\n");
TL_FAIL;
}
if (tl_get_constructor (T->c[0]->text, T->c[0]->len) || tl_get_function (T->c[0]->text, T->c[0]->len)) {
TL_ERROR ("Duplicate combinator id %.*s\n", T->c[0]->len, T->c[0]->text);
return 0;
}
struct tl_constructor *c = !fun ? tl_add_constructor (t, T->c[0]->text, T->c[0]->len, 0) : tl_add_function (t, T->c[0]->text, T->c[0]->len, 0);
if (!c) { TL_FAIL; }
c->left = L;
c->right = R;
if (!c->name) {
tl_count_combinator_name (c);
}
tl_print_combinator (c);
return 1;
}
void change_var_ptrs (struct tl_combinator_tree *O, struct tl_combinator_tree *D, struct tree_var_value **V) {
if (!O || !D) {
assert (!O && !D);
return;
}
if (O->act == act_field) {
struct tl_type *t = tl_tree_get_type (O->left);
if (t && (!strcmp (t->id, "#") || !strcmp (t->id, "Type"))) {
tl_set_var_value (V, O, D);
}
}
if (O->act == act_var) {
assert (D->data == O->data);
D->data = tl_get_var_value (V, O->data);
assert (D->data);
}
change_var_ptrs (O->left, D->left, V);
change_var_ptrs (O->right, D->right, V);
}
struct tl_combinator_tree *change_first_var (struct tl_combinator_tree *O, struct tl_combinator_tree **X, struct tl_combinator_tree *Y) {
if (!O) { return (void *)-2l; };
if (O->act == act_field && !*X) {
struct tl_type *t = tl_tree_get_type (O->left);
if (t && !strcmp (t->id, "#")) {
if (Y->type != type_num && Y->type != type_num_value) {
TL_ERROR ("change_var: Type mistmatch\n");
return 0;
} else {
*X = O;
return (void *)-1l;
}
}
if (t && !strcmp (t->id, "Type")) {
if (Y->type != type_type || Y->type_len != 0) {
TL_ERROR ("change_var: Type mistmatch\n");
return 0;
} else {
*X = O;
return (void *)-1l;
}
}
}
if (O->act == act_var) {
if (O->data == *X) {
struct tl_combinator_tree *R = tl_tree_dup (Y);
if (O->type == type_num || O->type == type_num_value) { R->type_flags += O->type_flags; }
return R;
}
}
struct tl_combinator_tree *t;
t = change_first_var (O->left, X, Y);
if (!t) { return 0;}
if (t == (void *)-1l) {
t = change_first_var (O->right, X, Y);
if (!t) { return 0;}
if (t == (void *)-1l) { return (void *)-1l; }
if (t != (void *)-2l) { return t;}
return (void *)-1l;
}
if (t != (void *)-2l) {
O->left = t;
}
t = change_first_var (O->right, X, Y);
if (!t) { return 0;}
if (t == (void *)-1l) {
return O->left;
}
if (t != (void *)-2l) {
O->right = t;
}
return O;
}
int uniformize (struct tl_combinator_tree *L, struct tl_combinator_tree *R, struct tree_var_value **T);
struct tree_var_value **_T;
int __tok;
void check_nat_val (struct tl_var_value v) {
if (!__tok) { return; }
long long x = v.num_val;
struct tl_combinator_tree *L = v.val;
if (L->type == type_type) { return;}
while (1) {
if (L->type == type_num_value) {
if (x + L->type_flags < 0) {
__tok = 0;
return;
} else {
return;
}
}
assert (L->type == type_num);
x += L->type_flags;
x += tl_get_var_value_num (_T, L->data);
L = tl_get_var_value (_T, L->data);
if (!L) { return;}
}
}
int check_constructors_equal (struct tl_combinator_tree *L, struct tl_combinator_tree *R, struct tree_var_value **T) {
if (!uniformize (L, R, T)) { return 0; }
__tok = 1;
_T = T;
tree_act_var_value (*T, check_nat_val);
return __tok;
}
struct tl_combinator_tree *reduce_type (struct tl_combinator_tree *A, struct tl_type *t) {
assert (A);
if (A->type_len == t->params_num) {
assert (A->type_flags == t->params_types);
A->act = act_type;
A->type = type_type;
A->left = A->right = 0;
A->data = t;
return A;
}
A->left = reduce_type (A->left, t);
return A;
}
struct tl_combinator_tree *change_value_var (struct tl_combinator_tree *O, struct tree_var_value **X) {
if (!O) { return (void *)-2l; };
while (O->act == act_var) {
assert (O->data);
if (!tl_get_var_value (X, O->data)) {
break;
}
if (O->type == type_type) {
O = tl_tree_dup (tl_get_var_value (X, O->data));
} else {
long long n = tl_get_var_value_num (X, O->data);
struct tl_combinator_tree *T = tl_get_var_value (X, O->data);
O->data = T->data;
O->type = T->type;
O->act = T->act;
O->type_flags = O->type_flags + n + T->type_flags;
}
}
if (O->act == act_field) {
if (tl_get_var_value (X, O)) { return (void *)-1l; }
}
struct tl_combinator_tree *t;
t = change_value_var (O->left, X);
if (!t) { return 0;}
if (t == (void *)-1l) {
t = change_value_var (O->right, X);
if (!t) { return 0;}
if (t == (void *)-1l) { return (void *)-1l; }
if (t != (void *)-2l) { return t;}
return (void *)-1l;
}
if (t != (void *)-2l) {
O->left = t;
}
t = change_value_var (O->right, X);
if (!t) { return 0;}
if (t == (void *)-1l) {
return O->left;
}
if (t != (void *)-2l) {
O->right = t;
}
return O;
}
int tl_parse_partial_type_app_decl (struct tree *T) {
assert (T->type == type_partial_type_app_decl);
assert (T->nc >= 1);
assert (T->c[0]->type == type_boxed_type_ident);
struct tl_type *t = tl_get_type (T->c[0]->text, T->c[0]->len);
if (!t) {
TL_ERROR ("Can not make partial app for unknown type\n");
return 0;
}
tl_type_finalize (t);
struct tl_combinator_tree *L = tl_parse_ident (T->c[0], 0);
assert (L);
int i;
tl_buf_reset ();
int cc = T->nc - 1;
for (i = 1; i < T->nc; i++) {
TL_TRY (tl_parse_any_term (T->c[i], 0), L);
tl_buf_add_tree (L->right, 1);
}
while (L->type_len) {
struct tl_combinator_tree *C = alloc_ctree_node ();
C->act = act_var;
C->type = (L->type_flags & 1) ? type_num : type_type;
C->type_len = 0;
C->type_flags = 0;
C->data = (void *)-1l;
L = tl_union (L, C);
if (!L) { return 0; }
}
static char _buf[100000];
snprintf (_buf, 100000, "%s%.*s", t->id, buf_pos, buf);
struct tl_type *nt = tl_add_type (_buf, strlen (_buf), t->params_num - cc, t->params_types >> cc);
assert (nt);
//snprintf (_buf, 100000, "%s #", t->id);
//nt->real_id = strdup (_buf);
for (i = 0; i < t->constructors_num; i++) {
struct tl_constructor *c = t->constructors[i];
struct tree_var_value *V = 0;
TL_INIT (A);
TL_INIT (B);
A = tl_tree_dup (c->left);
B = tl_tree_dup (c->right);
struct tree_var_value *W = 0;
change_var_ptrs (c->left, A, &W);
change_var_ptrs (c->right, B, &W);
if (!check_constructors_equal (B, L, &V)) { continue; }
B = reduce_type (B, nt);
A = change_value_var (A, &V);
if (A == (void *)-1l) { A = 0;}
B = change_value_var (B, &V);
assert (B != (void *)-1l);
snprintf (_buf, 100000, "%s%.*s", c->id, buf_pos, buf);
struct tl_constructor *r = tl_add_constructor (nt, _buf, strlen (_buf), 1);
snprintf (_buf, 100000, "%s", c->id);
r->real_id = tstrdup (_buf);
r->left = A;
r->right = B;
if (!r->name) {
tl_count_combinator_name (r);
}
tl_print_combinator (r);
}
return 1;
}
int tl_parse_partial_comb_app_decl (struct tree *T, int fun) {
assert (T->type == type_partial_comb_app_decl);
struct tl_constructor *c = !fun ? tl_get_constructor (T->c[0]->text, T->c[0]->len) : tl_get_function (T->c[0]->text, T->c[0]->len);
if (!c) {
TL_ERROR ("Can not make partial app for undefined combinator\n");
return 0;
}
//TL_INIT (K);
//static char buf[1000];
//int x = sprintf (buf, "%s", c->id);
TL_INIT (L);
TL_INIT (R);
L = tl_tree_dup (c->left);
R = tl_tree_dup (c->right);
struct tree_var_value *V = 0;
change_var_ptrs (c->left, L, &V);
change_var_ptrs (c->right, R, &V);
V = tree_clear_var_value (V);
int i;
tl_buf_reset ();
for (i = 1; i < T->nc; i++) {
TL_INIT (X);
TL_INIT (Z);
X = tl_parse_any_term (T->c[i], 0);
struct tl_combinator_tree *K = 0;
if (!(Z = change_first_var (L, &K, X))) {
TL_FAIL;
}
L = Z;
if (!K) {
TL_ERROR ("Partial app: not enougth variables (i = %d)\n", i);
TL_FAIL;
}
if (!(Z = change_first_var (R, &K, X))) {
TL_FAIL;
}
assert (Z == R);
tl_buf_add_tree (X, 1);
}
static char _buf[100000];
snprintf (_buf, 100000, "%s%.*s", c->id, buf_pos, buf);
// fprintf (stderr, "Local id: %s\n", _buf);
struct tl_constructor *r = !fun ? tl_add_constructor (c->type, _buf, strlen (_buf), 1) : tl_add_function (c->type, _buf, strlen (_buf), 1);
r->left = L;
r->right = R;
snprintf (_buf, 100000, "%s", c->id);
r->real_id = tstrdup (_buf);
if (!r->name) {
tl_count_combinator_name (r);
}
tl_print_combinator (r);
return 1;
}
int tl_parse_partial_app_decl (struct tree *T, int fun) {
assert (T->type == type_partial_app_decl);
assert (T->nc == 1);
if (T->c[0]->type == type_partial_comb_app_decl) {
return tl_parse_partial_comb_app_decl (T->c[0], fun);
} else {
if (fun) {
TL_ERROR ("Partial type app in functions block\n");
TL_FAIL;
}
return tl_parse_partial_type_app_decl (T->c[0]);
}
}
int tl_parse_final_final (struct tree *T) {
assert (T->type == type_final_final);
assert (T->nc == 1);
struct tl_type *R;
if ((R = tl_get_type (T->c[0]->text, T->c[0]->len))) {
R->flags |= 1;
return 1;
} else {
TL_ERROR ("Final statement for type `%.*s` before declaration\n", T->c[0]->len, T->c[0]->text);
TL_FAIL;
}
}
int tl_parse_final_new (struct tree *T) {
assert (T->type == type_final_new);
assert (T->nc == 1);
if (tl_get_type (T->c[0]->text, T->c[0]->len)) {
TL_ERROR ("New statement: type `%.*s` already declared\n", T->c[0]->len, T->c[0]->text);
TL_FAIL;
} else {
return 1;
}
}
int tl_parse_final_empty (struct tree *T) {
assert (T->type == type_final_empty);
assert (T->nc == 1);
if (tl_get_type (T->c[0]->text, T->c[0]->len)) {
TL_ERROR ("New statement: type `%.*s` already declared\n", T->c[0]->len, T->c[0]->text);
TL_FAIL;
}
struct tl_type *t = tl_add_type (T->c[0]->text, T->c[0]->len, 0, 0);
assert (t);
t->flags |= 1 | FLAG_EMPTY;
return 1;
}
int tl_parse_final_decl (struct tree *T, int fun) {
assert (T->type == type_final_decl);
assert (!fun);
assert (T->nc == 1);
switch (T->c[0]->type) {
case type_final_new:
return tl_parse_final_new (T->c[0]);
case type_final_final:
return tl_parse_final_final (T->c[0]);
case type_final_empty:
return tl_parse_final_empty (T->c[0]);
default:
assert (0);
return 0;
}
}
int tl_parse_builtin_combinator_decl (struct tree *T, int fun) {
if (fun) {
TL_ERROR ("Builtin type can not be described in function block\n");
return -1;
}
assert (T->type == type_builtin_combinator_decl);
assert (T->nc == 2);
assert (T->c[0]->type == type_full_combinator_id);
assert (T->c[1]->type == type_boxed_type_ident);
if ((!mystrcmp2 (T->c[0]->text, T->c[0]->len, "int") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "Int")) ||
(!mystrcmp2 (T->c[0]->text, T->c[0]->len, "long") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "Long")) ||
(!mystrcmp2 (T->c[0]->text, T->c[0]->len, "double") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "Double")) ||
(!mystrcmp2 (T->c[0]->text, T->c[0]->len, "string") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "String"))) {
struct tl_type *t = tl_add_type (T->c[1]->text, T->c[1]->len, 0, 0);
if (!t) {
return 0;
}
struct tl_constructor *c = tl_add_constructor (t, T->c[0]->text, T->c[0]->len, 0);
if (!c) {
return 0;
}
c->left = alloc_ctree_node ();
c->left->act = act_question_mark;
c->left->type = type_list_item;
c->right = alloc_ctree_node ();
c->right->act = act_type;
c->right->data = t;
c->right->type = type_type;
if (!c->name) {
tl_count_combinator_name (c);
}
tl_print_combinator (c);
} else {
TL_ERROR ("Unknown builting type `%.*s`\n", T->c[0]->len, T->c[0]->text);
return 0;
}
return 1;
}
int tl_parse_declaration (struct tree *T, int fun) {
assert (T->type == type_declaration);
assert (T->nc == 1);
switch (T->c[0]->type) {
case type_combinator_decl:
return tl_parse_combinator_decl (T->c[0], fun);
case type_partial_app_decl:
return tl_parse_partial_app_decl (T->c[0], fun);
case type_final_decl:
return tl_parse_final_decl (T->c[0], fun);
case type_builtin_combinator_decl:
return tl_parse_builtin_combinator_decl (T->c[0], fun);
default:
assert (0);
return 0;
}
}
int tl_parse_constr_declarations (struct tree *T) {
assert (T->type == type_constr_declarations);
int i;
for (i = 0; i < T->nc; i++) {
TL_TRY_PES (tl_parse_declaration (T->c[i], 0));
}
return 1;
}
int tl_parse_fun_declarations (struct tree *T) {
assert (T->type == type_fun_declarations);
int i;
for (i = 0; i < T->nc; i++) {
TL_TRY_PES (tl_parse_declaration (T->c[i], 1));
}
return 1;
}
int tl_tree_lookup_value (struct tl_combinator_tree *L, void *var, struct tree_var_value **T) {
if (!L) {
return -1;
}
if (L->act == act_var && L->data == var) {
return 0;
}
if (L->act == act_var) {
struct tl_combinator_tree *E = tl_get_var_value (T, L->data);
if (!E) { return -1;}
else { return tl_tree_lookup_value (E, var, T); }
}
if (tl_tree_lookup_value (L->left, var, T) >= 0) { return 1; }
if (tl_tree_lookup_value (L->right, var, T) >= 0) { return 1; }
return -1;
}
int tl_tree_lookup_value_nat (struct tl_combinator_tree *L, void *var, long long x, struct tree_var_value **T) {
assert (L);
if (L->type == type_num_value) { return -1; }
assert (L->type == type_num);
assert (L->act == act_var);
if (L->data == var) {
return x == L->type_flags ? 0 : 1;
} else {
if (!tl_get_var_value (T, L->data)) {
return -1;
}
return tl_tree_lookup_value_nat (tl_get_var_value (T, L->data), var, x + tl_get_var_value_num (T, L->data), T);
}
}
int uniformize (struct tl_combinator_tree *L, struct tl_combinator_tree *R, struct tree_var_value **T) {
if (!L || !R) {
assert (!L && !R);
return 1;
}
if (R->act == act_var) {
struct tl_combinator_tree *_ = R; R = L; L = _;
}
if (L->type == type_type) {
if (R->type != type_type || L->type_len != R->type_len || L->type_flags != R->type_flags) {
return 0;
}
if (R->data == (void *)-1l || L->data == (void *)-1l) { return 1;}
if (L->act == act_var) {
int x = tl_tree_lookup_value (R, L->data, T);
if (x > 0) {
// if (tl_tree_lookup_value (R, L->data, T) > 0) {
return 0;
}
if (x == 0) {
return 1;
}
struct tl_combinator_tree *E = tl_get_var_value (T, L->data);
if (!E) {
tl_set_var_value (T, L->data, R);
return 1;
} else {
return uniformize (E, R, T);
}
} else {
if (L->act != R->act || L->data != R->data) {
return 0;
}
return uniformize (L->left, R->left, T) && uniformize (L->right, R->right, T);
}
} else {
assert (L->type == type_num || L->type == type_num_value);
if (R->type != type_num && R->type != type_num_value) {
return 0;
}
assert (R->type == type_num || R->type == type_num_value);
if (R->data == (void *)-1l || L->data == (void *)-1l) { return 1;}
long long x = 0;
struct tl_combinator_tree *K = L;
while (1) {
x += K->type_flags;
if (K->type == type_num_value) {
break;
}
if (!tl_get_var_value (T, K->data)) {
int s = tl_tree_lookup_value_nat (R, K->data, K->type_flags, T);
if (s > 0) {
return 0;
}
if (s == 0) {
return 1;
}
/*tl_set_var_value_num (T, K->data, R, -x);
return 1;*/
break;
}
x += tl_get_var_value_num (T, K->data);
K = tl_get_var_value (T, K->data);
}
long long y = 0;
struct tl_combinator_tree *M = R;
while (1) {
y += M->type_flags;
if (M->type == type_num_value) {
break;
}
if (!tl_get_var_value (T, M->data)) {
int s = tl_tree_lookup_value_nat (L, M->data, M->type_flags, T);
if (s > 0) {
return 0;
}
if (s == 0) {
return 1;
}
/*tl_set_var_value_num (T, M->data, L, -y);
return 1;*/
break;
}
y += tl_get_var_value_num (T, M->data);
M = tl_get_var_value (T, M->data);
}
if (K->type == type_num_value && M->type == type_num_value) {
return x == y;
}
if (M->type == type_num_value) {
tl_set_var_value_num (T, K->data, M, -(x - y + M->type_flags));
return 1;
} else if (K->type == type_num_value) {
tl_set_var_value_num (T, M->data, K, -(y - x + K->type_flags));
return 1;
} else {
if (x >= y) {
tl_set_var_value_num (T, K->data, M, -(x - y + M->type_flags));
} else {
tl_set_var_value_num (T, M->data, K, -(y - x + K->type_flags));
}
return 1;
}
}
return 0;
}
void tl_type_check (struct tl_type *t) {
if (!__ok) return;
if (!strcmp (t->id, "#")) { t->name = 0x70659eff; return; }
if (!strcmp (t->id, "Type")) { t->name = 0x2cecf817; return; }
if (t->constructors_num <= 0 && !(t->flags & FLAG_EMPTY)) {
TL_ERROR ("Type %s has no constructors\n", t->id);
__ok = 0;
return;
}
int i, j;
t->name = 0;
for (i = 0; i < t->constructors_num; i++) {
t->name ^= t->constructors[i]->name;
}
for (i = 0; i < t->constructors_num; i++) {
for (j = i + 1; j < t->constructors_num; j++) {
struct tree_var_value *v = 0;
if (check_constructors_equal (t->constructors[i]->right, t->constructors[j]->right, &v)) {
t->flags |= 16;
}
}
}
if ((t->flags & 24) == 24) {
TL_WARNING ("Warning: Type %s has overlapping costructors, but it is used with `%%`\n", t->id);
}
int z = 0;
int sid = 0;
for (i = 0; i < t->constructors_num; i++) if (*t->constructors[i]->id == '_') {
z ++;
sid = i;
}
if (z > 1) {
TL_ERROR ("Type %s has %d default constructors\n", t->id, z);
__ok = 0;
return;
}
if (z == 1 && (t->flags & 8)) {
TL_ERROR ("Type %s has default constructors and used bare\n", t->id);
__ok = 0;
return;
}
if (z) {
struct tl_constructor *c;
c = t->constructors[sid];
t->constructors[sid] = t->constructors[t->constructors_num - 1];
t->constructors[t->constructors_num - 1] = c;
}
}
struct tl_program *tl_parse (struct tree *T) {
assert (T);
assert (T->type == type_tl_program);
int i;
tl_program_cur = talloc (sizeof (*tl_program_cur));
tl_add_type ("#", 1, 0, 0);
tl_add_type ("Type", 4, 0, 0);
for (i = 0; i < T->nc; i++) {
if (T->c[i]->type == type_constr_declarations) { TL_TRY_PES (tl_parse_constr_declarations (T->c[i])); }
else { TL_TRY_PES (tl_parse_fun_declarations (T->c[i])) }
}
__ok = 1;
tree_act_tl_type (tl_type_tree, tl_type_check);
if (!__ok) {
return 0;
}
return tl_program_cur;
}
int __f;
int num = 0;
void wint (int a) {
// printf ("%d ", a);
assert (write (__f, &a, 4) == 4);
}
void wdata (const void *x, int len) {
assert (write (__f, x, len) == len);
}
void wstr (const char *s) {
if (s) {
// printf ("\"%s\" ", s);
if (schema_version < 1) {
wint (strlen (s));
wdata (s, strlen (s));
} else {
int x = strlen (s);
if (x <= 254) {
assert (write (__f, &x, 1) == 1);
} else {
fprintf (stderr, "String is too big...\n");
assert (0);
}
wdata (s, x);
x ++;
int t = 0;
if (x & 3) {
wdata (&t, 4 - (x & 3));
}
}
} else {
// printf (" ");
wint (0);
}
}
void wll (long long a) {
// printf ("%lld ", a);
assert (write (__f, &a, 8) == 8);
}
int count_list_size (struct tl_combinator_tree *T) {
assert (T->type == type_list || T->type == type_list_item);
if (T->type == type_list_item) {
return 1;
} else {
return count_list_size (T->left) + count_list_size (T->right);
}
}
void write_type_flags (long long flags) {
int new_flags = 0;
if (flags & 1) {
new_flags |= FLAG_BARE;
}
if (flags & FLAG_DEFAULT_CONSTRUCTOR) {
new_flags |= FLAG_DEFAULT_CONSTRUCTOR;
}
wint (new_flags);
}
void write_field_flags (long long flags) {
int new_flags = 0;
//fprintf (stderr, "%lld\n", flags);
if (flags & 1) {
new_flags |= FLAG_BARE;
}
if (flags & 32) {
new_flags |= FLAG_OPT_VAR;
}
if (flags & FLAG_EXCL) {
new_flags |= FLAG_EXCL;
}
if (flags & FLAG_OPT_FIELD) {
// new_flags |= FLAG_OPT_FIELD;
new_flags |= 2;
}
if (flags & (1 << 21)) {
new_flags |= 4;
}
wint (new_flags);
}
void write_var_type_flags (long long flags) {
int new_flags = 0;
if (flags & 1) {
new_flags |= FLAG_BARE;
}
if (new_flags & FLAG_BARE) {
TL_ERROR ("Sorry, bare vars are not (yet ?) supported.\n");
assert (!(new_flags & FLAG_BARE));
}
wint (new_flags);
}
void write_tree (struct tl_combinator_tree *T, int extra, struct tree_var_value **v, int *last_var);
void write_args (struct tl_combinator_tree *T, struct tree_var_value **v, int *last_var) {
assert (T->type == type_list || T->type == type_list_item);
if (T->type == type_list) {
assert (T->act == act_union);
assert (T->left);
assert (T->right);
write_args (T->left, v, last_var);
write_args (T->right, v, last_var);
return;
}
if (schema_version == 1) {
wint (TLS_ARG);
} if (schema_version == 2) {
wint (TLS_ARG_V2);
} else {
wint (-3);
}
if (T->act == act_question_mark) {
if (schema_version >= 1) {
assert (0);
} else {
wint (-100);
}
return;
}
if (schema_version >= 1) {
} else {
wint (-99);
}
assert (T->act == act_field);
assert (T->left);
wstr (T->data && strcmp (T->data, "_") ? T->data : 0);
long long f = T->flags;
if (T->left->act == act_opt_field) {
f |= (1 << 20);
}
if (T->left->act == act_type && T->left->data && (!strcmp (((struct tl_type *)T->left->data)->id, "#") || !strcmp (((struct tl_type *)T->left->data)->id, "Type"))) {
write_field_flags (f | (1 << 21));
wint (*last_var);
*last_var = (*last_var) + 1;
tl_set_var_value_num (v, T, 0, (*last_var) - 1);
} else {
write_field_flags (f);
if (schema_version <= 1) {
wint (-1);
}
}
write_tree (T->left, 0, v, last_var);
}
void write_array (struct tl_combinator_tree *T, struct tree_var_value **v, int *last_var) {
if (schema_version == 1) {
wint (TLS_TREE_ARRAY);
} else if (schema_version == 2) {
wint (TLS_ARRAY);
} else {
wint (-8);
}
write_tree (T->left, 0, v, last_var);
write_tree (T->right, 0, v, last_var);
}
void write_type_rec (struct tl_combinator_tree *T, int cc, struct tree_var_value **v, int *last_var) {
if (T->act == act_arg) {
write_type_rec (T->left, cc + 1, v, last_var);
if (schema_version >= 2) {
if (T->right->type == type_num_value || T->right->type == type_num) {
wint (TLS_EXPR_NAT);
} else {
wint (TLS_EXPR_TYPE);
}
}
write_tree (T->right, 0, v, last_var);
} else {
assert (T->act == act_var || T->act == act_type);
if (T->act == act_var) {
assert (!cc);
if (schema_version == 1) {
wint (TLS_TREE_TYPE_VAR);
} else if (schema_version == 2) {
wint (TLS_TYPE_VAR);
} else {
wint (-6);
}
wint (tl_get_var_value_num (v, T->data));
write_var_type_flags (T->flags);
//wint (T->flags);
} else {
if (schema_version == 1) {
wint (TLS_TREE_TYPE);
} else if (schema_version == 2) {
wint (TLS_TYPE_EXPR);
} else {
wint (-7);
}
struct tl_type *t = T->data;
wint (t->name);
write_type_flags (T->flags);
// wint (T->flags);
wint (cc);
// fprintf (stderr, "cc = %d\n", cc);
}
}
}
void write_opt_type (struct tl_combinator_tree *T, struct tree_var_value **v, int *last_var) {
if (schema_version >= 1) {
} else {
wint (-20);
}
wint (tl_get_var_value_num (v, T->left->data));
wint (T->left->type_flags);
// write_tree (T->right, 0, v, last_var);
assert (T);
T = T->right;
switch (T->type) {
case type_type:
if (T->act == act_array) {
write_array (T, v, last_var);
} else if (T->act == act_type || T->act == act_var || T->act == act_arg) {
write_type_rec (T, 0, v, last_var);
} else {
assert (0);
}
break;
default:
assert (0);
}
}
void write_tree (struct tl_combinator_tree *T, int extra, struct tree_var_value **v, int *last_var) {
assert (T);
switch (T->type) {
case type_list_item:
case type_list:
if (schema_version >= 1) {
if (extra) {
wint (schema_version >= 2 ? TLS_COMBINATOR_RIGHT_V2 : TLS_COMBINATOR_RIGHT);
}
} else {
wint (extra ? -1 : -2);
}
wint (count_list_size (T));
write_args (T, v, last_var);
break;
case type_num_value:
wint (schema_version >= 1 ? schema_version >= 2 ? (int)TLS_NAT_CONST : (int)TLS_TREE_NAT_CONST : -4);
if (schema_version >= 2) {
wint (T->type_flags);
} else {
wll (T->type_flags);
}
break;
case type_num:
wint (schema_version >= 1 ? schema_version >= 2 ? (int)TLS_NAT_VAR : (int)TLS_TREE_NAT_VAR : -5);
if (schema_version >= 2) {
wint (T->type_flags);
} else {
wll (T->type_flags);
}
wint (tl_get_var_value_num (v, T->data));
break;
case type_type:
if (T->act == act_array) {
write_array (T, v, last_var);
} else if (T->act == act_type || T->act == act_var || T->act == act_arg) {
write_type_rec (T, 0, v, last_var);
} else {
assert (T->act == act_opt_field);
write_opt_type (T, v, last_var);
}
break;
default:
assert (0);
}
}
void write_type (struct tl_type *t) {
wint (schema_version >= 1 ? TLS_TYPE : 1);
wint (t->name);
wstr (t->id);
wint (t->constructors_num);
wint (t->flags);
wint (t->params_num);
wll (t->params_types);
}
int is_builtin_type (const char *id) {
return !strcmp (id, "int") || !strcmp (id, "long") || !strcmp (id, "double") || !strcmp (id, "string");
}
void write_combinator (struct tl_constructor *c) {
wint (c->name);
wstr (c->id);
wint (c->type ? c->type->name : 0);
struct tree_var_value *T = 0;
int x = 0;
assert (c->right);
if (c->left) {
if (schema_version >= 1 && is_builtin_type (c->id)) {
wint (TLS_COMBINATOR_LEFT_BUILTIN);
} else {
if (schema_version >= 1) {
wint (TLS_COMBINATOR_LEFT);
}
// wint (count_list_size (c->left));
write_tree (c->left, 0, &T, &x);
}
} else {
if (schema_version >= 1) {
wint (TLS_COMBINATOR_LEFT);
wint (0);
} else {
wint (-11);
}
}
if (schema_version >= 1) {
wint (schema_version >= 2 ? TLS_COMBINATOR_RIGHT_V2 : TLS_COMBINATOR_RIGHT);
}
write_tree (c->right, 1, &T, &x);
}
void write_constructor (struct tl_constructor *c) {
wint (schema_version >= 1 ? TLS_COMBINATOR : 2);
write_combinator (c);
}
void write_function (struct tl_constructor *c) {
wint (schema_version >= 1 ? TLS_COMBINATOR : 3);
write_combinator (c);
}
void write_type_constructors (struct tl_type *t) {
int i;
for (i = 0; i < t->constructors_num; i++) {
write_constructor (t->constructors[i]);
}
}
int MAGIC = 0x850230aa;
void write_types (int f) {
__f = f;
if (schema_version == 1) {
wint (TLS_SCHEMA);
} else if (schema_version == 2) {
wint (TLS_SCHEMA_V2);
} else {
wint (MAGIC);
}
if (schema_version >= 1) {
wint (0);
wint (time (0));
}
num = 0;
if (schema_version >= 1) {
wint (total_types_num);
}
tree_act_tl_type (tl_type_tree, write_type);
if (schema_version >= 1) {
wint (total_constructors_num);
}
tree_act_tl_type (tl_type_tree, write_type_constructors);
if (schema_version >= 1) {
wint (total_functions_num);
}
tree_act_tl_constructor (tl_function_tree, write_function);
}