602 lines
16 KiB
Raku
602 lines
16 KiB
Raku
#!/usr/bin/env perl
|
|
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
|
|
# January 2009
|
|
#
|
|
# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
|
|
# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
|
|
# Graphic Unit would make it possible to achieve higher instruction-
|
|
# level parallelism, ILP, and thus higher performance. It should be
|
|
# explicitly noted that ILP is the keyword, and it means that this
|
|
# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
|
|
# not really novel, Sun had VIS-powered implementation for a while.
|
|
# Unlike Sun's implementation this one can process multiple unaligned
|
|
# input blocks, and as such works as drop-in replacement for OpenSSL
|
|
# sha1_block_data_order. Performance improvement was measured to be
|
|
# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
|
|
# UltraSPARC-III. See below for discussion...
|
|
#
|
|
# The module does not present direct interest for OpenSSL, because
|
|
# it doesn't provide better performance on contemporary SPARCv9 CPUs,
|
|
# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
|
|
# absolutely must score on UltraSPARC-I-IV can simply replace
|
|
# crypto/sha/asm/sha1-sparcv9.pl with this module.
|
|
#
|
|
# (*) "Pipe-lined" means that even if it takes several cycles to
|
|
# complete, next instruction using same functional unit [but not
|
|
# depending on the result of the current instruction] can start
|
|
# execution without having to wait for the unit. "Pairable"
|
|
# means that two [or more] independent instructions can be
|
|
# issued at the very same time.
|
|
|
|
$bits=32;
|
|
for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
|
|
if ($bits==64) { $bias=2047; $frame=192; }
|
|
else { $bias=0; $frame=112; }
|
|
|
|
$output=shift;
|
|
open STDOUT,">$output";
|
|
|
|
$ctx="%i0";
|
|
$inp="%i1";
|
|
$len="%i2";
|
|
$tmp0="%i3";
|
|
$tmp1="%i4";
|
|
$tmp2="%i5";
|
|
$tmp3="%g5";
|
|
|
|
$base="%g1";
|
|
$align="%g4";
|
|
$Xfer="%o5";
|
|
$nXfer=$tmp3;
|
|
$Xi="%o7";
|
|
|
|
$A="%l0";
|
|
$B="%l1";
|
|
$C="%l2";
|
|
$D="%l3";
|
|
$E="%l4";
|
|
@V=($A,$B,$C,$D,$E);
|
|
|
|
$Actx="%o0";
|
|
$Bctx="%o1";
|
|
$Cctx="%o2";
|
|
$Dctx="%o3";
|
|
$Ectx="%o4";
|
|
|
|
$fmul="%f32";
|
|
$VK_00_19="%f34";
|
|
$VK_20_39="%f36";
|
|
$VK_40_59="%f38";
|
|
$VK_60_79="%f40";
|
|
@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
|
|
@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
|
|
"%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
|
|
|
|
# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
|
|
# covers even K_NN_MM addition...
|
|
sub Xupdate {
|
|
my ($i)=@_;
|
|
my $K=@VK[($i+16)/20];
|
|
my $j=($i+16)%16;
|
|
|
|
# [ provided that GSR.alignaddr_offset is 5, $mul contains
|
|
# 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
|
|
# chosen registers... ]
|
|
$code.=<<___;
|
|
fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13]
|
|
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
|
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
|
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
|
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
|
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
|
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
|
![fxors %f15,%f2,%f2]
|
|
for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
|
![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency
|
|
fpadd32 $K,@X[$j],%f20
|
|
std %f20,[$Xfer+`4*$j`]
|
|
___
|
|
# The numbers delimited with slash are the earliest possible dispatch
|
|
# cycles for given instruction assuming 1 cycle latency for simple VIS
|
|
# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
|
|
# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
|
|
# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
|
|
# round. As [long as] FPU/VIS instructions are perfectly pairable with
|
|
# IALU ones, the round timing is defined by the maximum between VIS
|
|
# and IALU timings. The latter varies from round to round and averages
|
|
# out at 6.25 ticks. This means that USI&II should operate at IALU
|
|
# rate, while USIII&IV - at VIS rate. This explains why performance
|
|
# improvement varies among processors. Well, given that pure IALU
|
|
# sha1-sparcv9.pl module exhibits virtually uniform performance of
|
|
# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
|
|
# lower limits. Real-life performance was measured to be 6.6 cycles
|
|
# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
|
|
# half-round VIS timing, because there are 16 Xupdate-free rounds,
|
|
# which "push down" average theoretical timing to 8 cycles...
|
|
|
|
# (*) SPARC64-V[II] was originally believed to have 2 cycles VIS
|
|
# latency. Well, it might have, but it doesn't have dedicated
|
|
# VIS-unit. Instead, VIS instructions are executed by other
|
|
# functional units, ones used here - by IALU. This doesn't
|
|
# improve effective ILP...
|
|
}
|
|
|
|
# The reference Xupdate procedure is then "strained" over *pairs* of
|
|
# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
|
|
# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
|
|
# plenty of room to amortize for read-after-write hazard, as well as
|
|
# to fetch and align input for the next spin. The VIS instructions are
|
|
# scheduled for latency of 2 cycles, because there are not enough IALU
|
|
# instructions to schedule for latency of 3, while scheduling for 1
|
|
# would give no gain on USI&II anyway.
|
|
|
|
sub BODY_00_19 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $j=$i&~1;
|
|
my $k=($j+16+2)%16; # ahead reference
|
|
my $l=($j+16-2)%16; # behind reference
|
|
my $K=@VK[($j+16-2)/20];
|
|
|
|
$j=($j+16)%16;
|
|
|
|
$code.=<<___ if (!($i&1));
|
|
sll $a,5,$tmp0 !! $i
|
|
and $c,$b,$tmp3
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
|
sll $b,30,$tmp2
|
|
add $tmp1,$e,$e
|
|
andn $d,$b,$tmp1
|
|
add $Xi,$e,$e
|
|
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
|
srl $b,2,$b
|
|
or $tmp1,$tmp3,$tmp1
|
|
or $tmp2,$b,$b
|
|
add $tmp1,$e,$e
|
|
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
|
___
|
|
$code.=<<___ if ($i&1);
|
|
sll $a,5,$tmp0 !! $i
|
|
and $c,$b,$tmp3
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
|
sll $b,30,$tmp2
|
|
add $tmp1,$e,$e
|
|
fpadd32 $K,@X[$l],%f20 !
|
|
andn $d,$b,$tmp1
|
|
add $Xi,$e,$e
|
|
fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
|
|
srl $b,2,$b
|
|
or $tmp1,$tmp3,$tmp1
|
|
fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
|
or $tmp2,$b,$b
|
|
add $tmp1,$e,$e
|
|
___
|
|
$code.=<<___ if ($i&1 && $i>=2);
|
|
std %f20,[$Xfer+`4*$l`] !
|
|
___
|
|
}
|
|
|
|
sub BODY_20_39 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $j=$i&~1;
|
|
my $k=($j+16+2)%16; # ahead reference
|
|
my $l=($j+16-2)%16; # behind reference
|
|
my $K=@VK[($j+16-2)/20];
|
|
|
|
$j=($j+16)%16;
|
|
|
|
$code.=<<___ if (!($i&1) && $i<64);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
|
___
|
|
$code.=<<___ if ($i&1 && $i<64);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
fpadd32 $K,@X[$l],%f20 !
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
std %f20,[$Xfer+`4*$l`] !
|
|
___
|
|
$code.=<<___ if ($i==64);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
fpadd32 $K,@X[$l],%f20
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
std %f20,[$Xfer+`4*$l`]
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
___
|
|
$code.=<<___ if ($i>64);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
___
|
|
}
|
|
|
|
sub BODY_40_59 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $j=$i&~1;
|
|
my $k=($j+16+2)%16; # ahead reference
|
|
my $l=($j+16-2)%16; # behind reference
|
|
my $K=@VK[($j+16-2)/20];
|
|
|
|
$j=($j+16)%16;
|
|
|
|
$code.=<<___ if (!($i&1));
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
|
and $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
or $c,$b,$tmp1
|
|
fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
|
srl $b,2,$b
|
|
and $d,$tmp1,$tmp1
|
|
add $Xi,$e,$e
|
|
or $tmp1,$tmp0,$tmp1
|
|
faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
|
or $tmp2,$b,$b
|
|
add $tmp1,$e,$e
|
|
fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
|
___
|
|
$code.=<<___ if ($i&1);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
|
and $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
fpadd32 $K,@X[$l],%f20 !
|
|
sll $b,30,$tmp2
|
|
or $c,$b,$tmp1
|
|
fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
|
|
srl $b,2,$b
|
|
and $d,$tmp1,$tmp1
|
|
fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
|
add $Xi,$e,$e
|
|
or $tmp1,$tmp0,$tmp1
|
|
or $tmp2,$b,$b
|
|
add $tmp1,$e,$e
|
|
std %f20,[$Xfer+`4*$l`] !
|
|
___
|
|
}
|
|
|
|
# If there is more data to process, then we pre-fetch the data for
|
|
# next iteration in last ten rounds...
|
|
sub BODY_70_79 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $j=$i&~1;
|
|
my $m=($i%8)*2;
|
|
|
|
$j=($j+16)%16;
|
|
|
|
$code.=<<___ if ($i==70);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
ldd [$inp+64],@X[0]
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
|
|
and $inp,-64,$nXfer
|
|
inc 64,$inp
|
|
and $nXfer,255,$nXfer
|
|
alignaddr %g0,$align,%g0
|
|
add $base,$nXfer,$nXfer
|
|
___
|
|
$code.=<<___ if ($i==71);
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
___
|
|
$code.=<<___ if ($i>=72);
|
|
faligndata @X[$m],@X[$m+2],@X[$m]
|
|
sll $a,5,$tmp0 !! $i
|
|
ld [$Xfer+`4*($i%16)`],$Xi
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
fpadd32 $VK_00_19,@X[$m],%f20
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $Xi,$e,$e
|
|
___
|
|
$code.=<<___ if ($i<77);
|
|
ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
|
|
___
|
|
$code.=<<___ if ($i==77); # redundant if $inp was aligned
|
|
add $align,63,$tmp0
|
|
and $tmp0,-8,$tmp0
|
|
ldd [$inp+$tmp0],@X[16]
|
|
___
|
|
$code.=<<___ if ($i>=72);
|
|
std %f20,[$nXfer+`4*$m`]
|
|
___
|
|
}
|
|
|
|
$code.=<<___;
|
|
.section ".text",#alloc,#execinstr
|
|
|
|
.align 64
|
|
vis_const:
|
|
.long 0x5a827999,0x5a827999 ! K_00_19
|
|
.long 0x6ed9eba1,0x6ed9eba1 ! K_20_39
|
|
.long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59
|
|
.long 0xca62c1d6,0xca62c1d6 ! K_60_79
|
|
.long 0x00000100,0x00000100
|
|
.align 64
|
|
.type vis_const,#object
|
|
.size vis_const,(.-vis_const)
|
|
|
|
.globl sha1_block_data_order
|
|
sha1_block_data_order:
|
|
save %sp,-$frame,%sp
|
|
add %fp,$bias-256,$base
|
|
|
|
1: call .+8
|
|
add %o7,vis_const-1b,$tmp0
|
|
|
|
ldd [$tmp0+0],$VK_00_19
|
|
ldd [$tmp0+8],$VK_20_39
|
|
ldd [$tmp0+16],$VK_40_59
|
|
ldd [$tmp0+24],$VK_60_79
|
|
ldd [$tmp0+32],$fmul
|
|
|
|
ld [$ctx+0],$Actx
|
|
and $base,-256,$base
|
|
ld [$ctx+4],$Bctx
|
|
sub $base,$bias+$frame,%sp
|
|
ld [$ctx+8],$Cctx
|
|
and $inp,7,$align
|
|
ld [$ctx+12],$Dctx
|
|
and $inp,-8,$inp
|
|
ld [$ctx+16],$Ectx
|
|
|
|
! X[16] is maintained in FP register bank
|
|
alignaddr %g0,$align,%g0
|
|
ldd [$inp+0],@X[0]
|
|
sub $inp,-64,$Xfer
|
|
ldd [$inp+8],@X[2]
|
|
and $Xfer,-64,$Xfer
|
|
ldd [$inp+16],@X[4]
|
|
and $Xfer,255,$Xfer
|
|
ldd [$inp+24],@X[6]
|
|
add $base,$Xfer,$Xfer
|
|
ldd [$inp+32],@X[8]
|
|
ldd [$inp+40],@X[10]
|
|
ldd [$inp+48],@X[12]
|
|
brz,pt $align,.Laligned
|
|
ldd [$inp+56],@X[14]
|
|
|
|
ldd [$inp+64],@X[16]
|
|
faligndata @X[0],@X[2],@X[0]
|
|
faligndata @X[2],@X[4],@X[2]
|
|
faligndata @X[4],@X[6],@X[4]
|
|
faligndata @X[6],@X[8],@X[6]
|
|
faligndata @X[8],@X[10],@X[8]
|
|
faligndata @X[10],@X[12],@X[10]
|
|
faligndata @X[12],@X[14],@X[12]
|
|
faligndata @X[14],@X[16],@X[14]
|
|
|
|
.Laligned:
|
|
mov 5,$tmp0
|
|
dec 1,$len
|
|
alignaddr %g0,$tmp0,%g0
|
|
fpadd32 $VK_00_19,@X[0],%f16
|
|
fpadd32 $VK_00_19,@X[2],%f18
|
|
fpadd32 $VK_00_19,@X[4],%f20
|
|
fpadd32 $VK_00_19,@X[6],%f22
|
|
fpadd32 $VK_00_19,@X[8],%f24
|
|
fpadd32 $VK_00_19,@X[10],%f26
|
|
fpadd32 $VK_00_19,@X[12],%f28
|
|
fpadd32 $VK_00_19,@X[14],%f30
|
|
std %f16,[$Xfer+0]
|
|
mov $Actx,$A
|
|
std %f18,[$Xfer+8]
|
|
mov $Bctx,$B
|
|
std %f20,[$Xfer+16]
|
|
mov $Cctx,$C
|
|
std %f22,[$Xfer+24]
|
|
mov $Dctx,$D
|
|
std %f24,[$Xfer+32]
|
|
mov $Ectx,$E
|
|
std %f26,[$Xfer+40]
|
|
fxors @X[13],@X[0],@X[0]
|
|
std %f28,[$Xfer+48]
|
|
ba .Loop
|
|
std %f30,[$Xfer+56]
|
|
.align 32
|
|
.Loop:
|
|
___
|
|
for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
tst $len
|
|
bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail
|
|
nop
|
|
___
|
|
for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
add $A,$Actx,$Actx
|
|
add $B,$Bctx,$Bctx
|
|
add $C,$Cctx,$Cctx
|
|
add $D,$Dctx,$Dctx
|
|
add $E,$Ectx,$Ectx
|
|
mov 5,$tmp0
|
|
fxors @X[13],@X[0],@X[0]
|
|
mov $Actx,$A
|
|
mov $Bctx,$B
|
|
mov $Cctx,$C
|
|
mov $Dctx,$D
|
|
mov $Ectx,$E
|
|
alignaddr %g0,$tmp0,%g0
|
|
dec 1,$len
|
|
ba .Loop
|
|
mov $nXfer,$Xfer
|
|
|
|
.align 32
|
|
.Ltail:
|
|
___
|
|
for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
add $A,$Actx,$Actx
|
|
add $B,$Bctx,$Bctx
|
|
add $C,$Cctx,$Cctx
|
|
add $D,$Dctx,$Dctx
|
|
add $E,$Ectx,$Ectx
|
|
|
|
st $Actx,[$ctx+0]
|
|
st $Bctx,[$ctx+4]
|
|
st $Cctx,[$ctx+8]
|
|
st $Dctx,[$ctx+12]
|
|
st $Ectx,[$ctx+16]
|
|
|
|
ret
|
|
restore
|
|
.type sha1_block_data_order,#function
|
|
.size sha1_block_data_order,(.-sha1_block_data_order)
|
|
.asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 4
|
|
___
|
|
|
|
# Purpose of these subroutines is to explicitly encode VIS instructions,
|
|
# so that one can compile the module without having to specify VIS
|
|
# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
|
|
# Idea is to reserve for option to produce "universal" binary and let
|
|
# programmer detect if current CPU is VIS capable at run-time.
|
|
sub unvis {
|
|
my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
|
my $ref,$opf;
|
|
my %visopf = ( "fmul8ulx16" => 0x037,
|
|
"faligndata" => 0x048,
|
|
"fpadd32" => 0x052,
|
|
"fxor" => 0x06c,
|
|
"fxors" => 0x06d );
|
|
|
|
$ref = "$mnemonic\t$rs1,$rs2,$rd";
|
|
|
|
if ($opf=$visopf{$mnemonic}) {
|
|
foreach ($rs1,$rs2,$rd) {
|
|
return $ref if (!/%f([0-9]{1,2})/);
|
|
$_=$1;
|
|
if ($1>=32) {
|
|
return $ref if ($1&1);
|
|
# re-encode for upper double register addressing
|
|
$_=($1|$1>>5)&31;
|
|
}
|
|
}
|
|
|
|
return sprintf ".word\t0x%08x !%s",
|
|
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
|
|
$ref;
|
|
} else {
|
|
return $ref;
|
|
}
|
|
}
|
|
sub unalignaddr {
|
|
my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
|
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
|
|
my $ref="$mnemonic\t$rs1,$rs2,$rd";
|
|
|
|
foreach ($rs1,$rs2,$rd) {
|
|
if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
|
|
else { return $ref; }
|
|
}
|
|
return sprintf ".word\t0x%08x !%s",
|
|
0x81b00300|$rd<<25|$rs1<<14|$rs2,
|
|
$ref;
|
|
}
|
|
|
|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
|
$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
|
|
&unvis($1,$2,$3,$4)
|
|
/gem;
|
|
$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
|
|
&unalignaddr($1,$2,$3,$4)
|
|
/gem;
|
|
print $code;
|
|
close STDOUT;
|