643 lines
19 KiB
C
643 lines
19 KiB
C
|
/*
|
||
|
* jcdctmgr.c
|
||
|
*
|
||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||
|
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
||
|
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||
|
* Copyright (C) 2011 D. R. Commander
|
||
|
* This file is part of the Independent JPEG Group's software.
|
||
|
* For conditions of distribution and use, see the accompanying README file.
|
||
|
*
|
||
|
* This file contains the forward-DCT management logic.
|
||
|
* This code selects a particular DCT implementation to be used,
|
||
|
* and it performs related housekeeping chores including coefficient
|
||
|
* quantization.
|
||
|
*/
|
||
|
|
||
|
#define JPEG_INTERNALS
|
||
|
#include "jinclude.h"
|
||
|
#include "jpeglib.h"
|
||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||
|
#include "jsimddct.h"
|
||
|
|
||
|
|
||
|
/* Private subobject for this module */
|
||
|
|
||
|
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
|
||
|
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
|
||
|
|
||
|
typedef JMETHOD(void, convsamp_method_ptr,
|
||
|
(JSAMPARRAY sample_data, JDIMENSION start_col,
|
||
|
DCTELEM * workspace));
|
||
|
typedef JMETHOD(void, float_convsamp_method_ptr,
|
||
|
(JSAMPARRAY sample_data, JDIMENSION start_col,
|
||
|
FAST_FLOAT *workspace));
|
||
|
|
||
|
typedef JMETHOD(void, quantize_method_ptr,
|
||
|
(JCOEFPTR coef_block, DCTELEM * divisors,
|
||
|
DCTELEM * workspace));
|
||
|
typedef JMETHOD(void, float_quantize_method_ptr,
|
||
|
(JCOEFPTR coef_block, FAST_FLOAT * divisors,
|
||
|
FAST_FLOAT * workspace));
|
||
|
|
||
|
METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
|
||
|
|
||
|
typedef struct {
|
||
|
struct jpeg_forward_dct pub; /* public fields */
|
||
|
|
||
|
/* Pointer to the DCT routine actually in use */
|
||
|
forward_DCT_method_ptr dct;
|
||
|
convsamp_method_ptr convsamp;
|
||
|
quantize_method_ptr quantize;
|
||
|
|
||
|
/* The actual post-DCT divisors --- not identical to the quant table
|
||
|
* entries, because of scaling (especially for an unnormalized DCT).
|
||
|
* Each table is given in normal array order.
|
||
|
*/
|
||
|
DCTELEM * divisors[NUM_QUANT_TBLS];
|
||
|
|
||
|
/* work area for FDCT subroutine */
|
||
|
DCTELEM * workspace;
|
||
|
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
/* Same as above for the floating-point case. */
|
||
|
float_DCT_method_ptr float_dct;
|
||
|
float_convsamp_method_ptr float_convsamp;
|
||
|
float_quantize_method_ptr float_quantize;
|
||
|
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
||
|
FAST_FLOAT * float_workspace;
|
||
|
#endif
|
||
|
} my_fdct_controller;
|
||
|
|
||
|
typedef my_fdct_controller * my_fdct_ptr;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Find the highest bit in an integer through binary search.
|
||
|
*/
|
||
|
LOCAL(int)
|
||
|
flss (UINT16 val)
|
||
|
{
|
||
|
int bit;
|
||
|
|
||
|
bit = 16;
|
||
|
|
||
|
if (!val)
|
||
|
return 0;
|
||
|
|
||
|
if (!(val & 0xff00)) {
|
||
|
bit -= 8;
|
||
|
val <<= 8;
|
||
|
}
|
||
|
if (!(val & 0xf000)) {
|
||
|
bit -= 4;
|
||
|
val <<= 4;
|
||
|
}
|
||
|
if (!(val & 0xc000)) {
|
||
|
bit -= 2;
|
||
|
val <<= 2;
|
||
|
}
|
||
|
if (!(val & 0x8000)) {
|
||
|
bit -= 1;
|
||
|
val <<= 1;
|
||
|
}
|
||
|
|
||
|
return bit;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute values to do a division using reciprocal.
|
||
|
*
|
||
|
* This implementation is based on an algorithm described in
|
||
|
* "How to optimize for the Pentium family of microprocessors"
|
||
|
* (http://www.agner.org/assem/).
|
||
|
* More information about the basic algorithm can be found in
|
||
|
* the paper "Integer Division Using Reciprocals" by Robert Alverson.
|
||
|
*
|
||
|
* The basic idea is to replace x/d by x * d^-1. In order to store
|
||
|
* d^-1 with enough precision we shift it left a few places. It turns
|
||
|
* out that this algoright gives just enough precision, and also fits
|
||
|
* into DCTELEM:
|
||
|
*
|
||
|
* b = (the number of significant bits in divisor) - 1
|
||
|
* r = (word size) + b
|
||
|
* f = 2^r / divisor
|
||
|
*
|
||
|
* f will not be an integer for most cases, so we need to compensate
|
||
|
* for the rounding error introduced:
|
||
|
*
|
||
|
* no fractional part:
|
||
|
*
|
||
|
* result = input >> r
|
||
|
*
|
||
|
* fractional part of f < 0.5:
|
||
|
*
|
||
|
* round f down to nearest integer
|
||
|
* result = ((input + 1) * f) >> r
|
||
|
*
|
||
|
* fractional part of f > 0.5:
|
||
|
*
|
||
|
* round f up to nearest integer
|
||
|
* result = (input * f) >> r
|
||
|
*
|
||
|
* This is the original algorithm that gives truncated results. But we
|
||
|
* want properly rounded results, so we replace "input" with
|
||
|
* "input + divisor/2".
|
||
|
*
|
||
|
* In order to allow SIMD implementations we also tweak the values to
|
||
|
* allow the same calculation to be made at all times:
|
||
|
*
|
||
|
* dctbl[0] = f rounded to nearest integer
|
||
|
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
|
||
|
* dctbl[2] = 1 << ((word size) * 2 - r)
|
||
|
* dctbl[3] = r - (word size)
|
||
|
*
|
||
|
* dctbl[2] is for stupid instruction sets where the shift operation
|
||
|
* isn't member wise (e.g. MMX).
|
||
|
*
|
||
|
* The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
|
||
|
* is that most SIMD implementations have a "multiply and store top
|
||
|
* half" operation.
|
||
|
*
|
||
|
* Lastly, we store each of the values in their own table instead
|
||
|
* of in a consecutive manner, yet again in order to allow SIMD
|
||
|
* routines.
|
||
|
*/
|
||
|
LOCAL(int)
|
||
|
compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
|
||
|
{
|
||
|
UDCTELEM2 fq, fr;
|
||
|
UDCTELEM c;
|
||
|
int b, r;
|
||
|
|
||
|
b = flss(divisor) - 1;
|
||
|
r = sizeof(DCTELEM) * 8 + b;
|
||
|
|
||
|
fq = ((UDCTELEM2)1 << r) / divisor;
|
||
|
fr = ((UDCTELEM2)1 << r) % divisor;
|
||
|
|
||
|
c = divisor / 2; /* for rounding */
|
||
|
|
||
|
if (fr == 0) { /* divisor is power of two */
|
||
|
/* fq will be one bit too large to fit in DCTELEM, so adjust */
|
||
|
fq >>= 1;
|
||
|
r--;
|
||
|
} else if (fr <= (divisor / 2)) { /* fractional part is < 0.5 */
|
||
|
c++;
|
||
|
} else { /* fractional part is > 0.5 */
|
||
|
fq++;
|
||
|
}
|
||
|
|
||
|
dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */
|
||
|
dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */
|
||
|
dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */
|
||
|
dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
|
||
|
|
||
|
if(r <= 16) return 0;
|
||
|
else return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize for a processing pass.
|
||
|
* Verify that all referenced Q-tables are present, and set up
|
||
|
* the divisor table for each one.
|
||
|
* In the current implementation, DCT of all components is done during
|
||
|
* the first pass, even if only some components will be output in the
|
||
|
* first scan. Hence all components should be examined here.
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
start_pass_fdctmgr (j_compress_ptr cinfo)
|
||
|
{
|
||
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||
|
int ci, qtblno, i;
|
||
|
jpeg_component_info *compptr;
|
||
|
JQUANT_TBL * qtbl;
|
||
|
DCTELEM * dtbl;
|
||
|
|
||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||
|
ci++, compptr++) {
|
||
|
qtblno = compptr->quant_tbl_no;
|
||
|
/* Make sure specified quantization table is present */
|
||
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||
|
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||
|
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||
|
/* Compute divisors for this quant table */
|
||
|
/* We may do this more than once for same table, but it's not a big deal */
|
||
|
switch (cinfo->dct_method) {
|
||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||
|
case JDCT_ISLOW:
|
||
|
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||
|
* coefficients multiplied by 8 (to counteract scaling).
|
||
|
*/
|
||
|
if (fdct->divisors[qtblno] == NULL) {
|
||
|
fdct->divisors[qtblno] = (DCTELEM *)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
|
||
|
}
|
||
|
dtbl = fdct->divisors[qtblno];
|
||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||
|
if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i])
|
||
|
&& fdct->quantize == jsimd_quantize)
|
||
|
fdct->quantize = quantize;
|
||
|
}
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef DCT_IFAST_SUPPORTED
|
||
|
case JDCT_IFAST:
|
||
|
{
|
||
|
/* For AA&N IDCT method, divisors are equal to quantization
|
||
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||
|
* scalefactor[0] = 1
|
||
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||
|
* We apply a further scale factor of 8.
|
||
|
*/
|
||
|
#define CONST_BITS 14
|
||
|
static const INT16 aanscales[DCTSIZE2] = {
|
||
|
/* precomputed values scaled up by 14 bits */
|
||
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||
|
};
|
||
|
SHIFT_TEMPS
|
||
|
|
||
|
if (fdct->divisors[qtblno] == NULL) {
|
||
|
fdct->divisors[qtblno] = (DCTELEM *)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
|
||
|
}
|
||
|
dtbl = fdct->divisors[qtblno];
|
||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||
|
if(!compute_reciprocal(
|
||
|
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||
|
(INT32) aanscales[i]),
|
||
|
CONST_BITS-3), &dtbl[i])
|
||
|
&& fdct->quantize == jsimd_quantize)
|
||
|
fdct->quantize = quantize;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
case JDCT_FLOAT:
|
||
|
{
|
||
|
/* For float AA&N IDCT method, divisors are equal to quantization
|
||
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||
|
* scalefactor[0] = 1
|
||
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||
|
* We apply a further scale factor of 8.
|
||
|
* What's actually stored is 1/divisor so that the inner loop can
|
||
|
* use a multiplication rather than a division.
|
||
|
*/
|
||
|
FAST_FLOAT * fdtbl;
|
||
|
int row, col;
|
||
|
static const double aanscalefactor[DCTSIZE] = {
|
||
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
||
|
};
|
||
|
|
||
|
if (fdct->float_divisors[qtblno] == NULL) {
|
||
|
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
||
|
}
|
||
|
fdtbl = fdct->float_divisors[qtblno];
|
||
|
i = 0;
|
||
|
for (row = 0; row < DCTSIZE; row++) {
|
||
|
for (col = 0; col < DCTSIZE; col++) {
|
||
|
fdtbl[i] = (FAST_FLOAT)
|
||
|
(1.0 / (((double) qtbl->quantval[i] *
|
||
|
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Load data into workspace, applying unsigned->signed conversion.
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
|
||
|
{
|
||
|
register DCTELEM *workspaceptr;
|
||
|
register JSAMPROW elemptr;
|
||
|
register int elemr;
|
||
|
|
||
|
workspaceptr = workspace;
|
||
|
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||
|
elemptr = sample_data[elemr] + start_col;
|
||
|
|
||
|
#if DCTSIZE == 8 /* unroll the inner loop */
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
#else
|
||
|
{
|
||
|
register int elemc;
|
||
|
for (elemc = DCTSIZE; elemc > 0; elemc--)
|
||
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Quantize/descale the coefficients, and store into coef_blocks[].
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
|
||
|
{
|
||
|
int i;
|
||
|
DCTELEM temp;
|
||
|
UDCTELEM recip, corr, shift;
|
||
|
UDCTELEM2 product;
|
||
|
JCOEFPTR output_ptr = coef_block;
|
||
|
|
||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||
|
temp = workspace[i];
|
||
|
recip = divisors[i + DCTSIZE2 * 0];
|
||
|
corr = divisors[i + DCTSIZE2 * 1];
|
||
|
shift = divisors[i + DCTSIZE2 * 3];
|
||
|
|
||
|
if (temp < 0) {
|
||
|
temp = -temp;
|
||
|
product = (UDCTELEM2)(temp + corr) * recip;
|
||
|
product >>= shift + sizeof(DCTELEM)*8;
|
||
|
temp = product;
|
||
|
temp = -temp;
|
||
|
} else {
|
||
|
product = (UDCTELEM2)(temp + corr) * recip;
|
||
|
product >>= shift + sizeof(DCTELEM)*8;
|
||
|
temp = product;
|
||
|
}
|
||
|
|
||
|
output_ptr[i] = (JCOEF) temp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Perform forward DCT on one or more blocks of a component.
|
||
|
*
|
||
|
* The input samples are taken from the sample_data[] array starting at
|
||
|
* position start_row/start_col, and moving to the right for any additional
|
||
|
* blocks. The quantized coefficients are returned in coef_blocks[].
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||
|
JDIMENSION start_row, JDIMENSION start_col,
|
||
|
JDIMENSION num_blocks)
|
||
|
/* This version is used for integer DCT implementations. */
|
||
|
{
|
||
|
/* This routine is heavily used, so it's worth coding it tightly. */
|
||
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||
|
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
||
|
DCTELEM * workspace;
|
||
|
JDIMENSION bi;
|
||
|
|
||
|
/* Make sure the compiler doesn't look up these every pass */
|
||
|
forward_DCT_method_ptr do_dct = fdct->dct;
|
||
|
convsamp_method_ptr do_convsamp = fdct->convsamp;
|
||
|
quantize_method_ptr do_quantize = fdct->quantize;
|
||
|
workspace = fdct->workspace;
|
||
|
|
||
|
sample_data += start_row; /* fold in the vertical offset once */
|
||
|
|
||
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||
|
/* Load data into workspace, applying unsigned->signed conversion */
|
||
|
(*do_convsamp) (sample_data, start_col, workspace);
|
||
|
|
||
|
/* Perform the DCT */
|
||
|
(*do_dct) (workspace);
|
||
|
|
||
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||
|
(*do_quantize) (coef_blocks[bi], divisors, workspace);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace)
|
||
|
{
|
||
|
register FAST_FLOAT *workspaceptr;
|
||
|
register JSAMPROW elemptr;
|
||
|
register int elemr;
|
||
|
|
||
|
workspaceptr = workspace;
|
||
|
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||
|
elemptr = sample_data[elemr] + start_col;
|
||
|
#if DCTSIZE == 8 /* unroll the inner loop */
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
#else
|
||
|
{
|
||
|
register int elemc;
|
||
|
for (elemc = DCTSIZE; elemc > 0; elemc--)
|
||
|
*workspaceptr++ = (FAST_FLOAT)
|
||
|
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace)
|
||
|
{
|
||
|
register FAST_FLOAT temp;
|
||
|
register int i;
|
||
|
register JCOEFPTR output_ptr = coef_block;
|
||
|
|
||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||
|
/* Apply the quantization and scaling factor */
|
||
|
temp = workspace[i] * divisors[i];
|
||
|
|
||
|
/* Round to nearest integer.
|
||
|
* Since C does not specify the direction of rounding for negative
|
||
|
* quotients, we have to force the dividend positive for portability.
|
||
|
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||
|
* code should work for either 16-bit or 32-bit ints.
|
||
|
*/
|
||
|
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||
|
JDIMENSION start_row, JDIMENSION start_col,
|
||
|
JDIMENSION num_blocks)
|
||
|
/* This version is used for floating-point DCT implementations. */
|
||
|
{
|
||
|
/* This routine is heavily used, so it's worth coding it tightly. */
|
||
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||
|
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
||
|
FAST_FLOAT * workspace;
|
||
|
JDIMENSION bi;
|
||
|
|
||
|
|
||
|
/* Make sure the compiler doesn't look up these every pass */
|
||
|
float_DCT_method_ptr do_dct = fdct->float_dct;
|
||
|
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
|
||
|
float_quantize_method_ptr do_quantize = fdct->float_quantize;
|
||
|
workspace = fdct->float_workspace;
|
||
|
|
||
|
sample_data += start_row; /* fold in the vertical offset once */
|
||
|
|
||
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||
|
/* Load data into workspace, applying unsigned->signed conversion */
|
||
|
(*do_convsamp) (sample_data, start_col, workspace);
|
||
|
|
||
|
/* Perform the DCT */
|
||
|
(*do_dct) (workspace);
|
||
|
|
||
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||
|
(*do_quantize) (coef_blocks[bi], divisors, workspace);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* DCT_FLOAT_SUPPORTED */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Initialize FDCT manager.
|
||
|
*/
|
||
|
|
||
|
GLOBAL(void)
|
||
|
jinit_forward_dct (j_compress_ptr cinfo)
|
||
|
{
|
||
|
my_fdct_ptr fdct;
|
||
|
int i;
|
||
|
|
||
|
fdct = (my_fdct_ptr)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
SIZEOF(my_fdct_controller));
|
||
|
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
||
|
fdct->pub.start_pass = start_pass_fdctmgr;
|
||
|
|
||
|
/* First determine the DCT... */
|
||
|
switch (cinfo->dct_method) {
|
||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||
|
case JDCT_ISLOW:
|
||
|
fdct->pub.forward_DCT = forward_DCT;
|
||
|
if (jsimd_can_fdct_islow())
|
||
|
fdct->dct = jsimd_fdct_islow;
|
||
|
else
|
||
|
fdct->dct = jpeg_fdct_islow;
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef DCT_IFAST_SUPPORTED
|
||
|
case JDCT_IFAST:
|
||
|
fdct->pub.forward_DCT = forward_DCT;
|
||
|
if (jsimd_can_fdct_ifast())
|
||
|
fdct->dct = jsimd_fdct_ifast;
|
||
|
else
|
||
|
fdct->dct = jpeg_fdct_ifast;
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
case JDCT_FLOAT:
|
||
|
fdct->pub.forward_DCT = forward_DCT_float;
|
||
|
if (jsimd_can_fdct_float())
|
||
|
fdct->float_dct = jsimd_fdct_float;
|
||
|
else
|
||
|
fdct->float_dct = jpeg_fdct_float;
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* ...then the supporting stages. */
|
||
|
switch (cinfo->dct_method) {
|
||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||
|
case JDCT_ISLOW:
|
||
|
#endif
|
||
|
#ifdef DCT_IFAST_SUPPORTED
|
||
|
case JDCT_IFAST:
|
||
|
#endif
|
||
|
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
|
||
|
if (jsimd_can_convsamp())
|
||
|
fdct->convsamp = jsimd_convsamp;
|
||
|
else
|
||
|
fdct->convsamp = convsamp;
|
||
|
if (jsimd_can_quantize())
|
||
|
fdct->quantize = jsimd_quantize;
|
||
|
else
|
||
|
fdct->quantize = quantize;
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
case JDCT_FLOAT:
|
||
|
if (jsimd_can_convsamp_float())
|
||
|
fdct->float_convsamp = jsimd_convsamp_float;
|
||
|
else
|
||
|
fdct->float_convsamp = convsamp_float;
|
||
|
if (jsimd_can_quantize_float())
|
||
|
fdct->float_quantize = jsimd_quantize_float;
|
||
|
else
|
||
|
fdct->float_quantize = quantize_float;
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Allocate workspace memory */
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
if (cinfo->dct_method == JDCT_FLOAT)
|
||
|
fdct->float_workspace = (FAST_FLOAT *)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
SIZEOF(FAST_FLOAT) * DCTSIZE2);
|
||
|
else
|
||
|
#endif
|
||
|
fdct->workspace = (DCTELEM *)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
SIZEOF(DCTELEM) * DCTSIZE2);
|
||
|
|
||
|
/* Mark divisor tables unallocated */
|
||
|
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||
|
fdct->divisors[i] = NULL;
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
fdct->float_divisors[i] = NULL;
|
||
|
#endif
|
||
|
}
|
||
|
}
|